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ABSTRACT

Ensemble-based data assimilation is a state estimation technique that uses short-term ensemble forecasts to

estimate flow-dependent background error covariance and is best known by varying forms of ensemble

Kalman filters (EnKFs). The EnKF has recently emerged as one of the primary alternatives to the variational

data assimilation methods widely used in both global and limited-area numerical weather prediction models.

In addition to comparing the EnKF with variational methods, this article reviews recent advances and

challenges in the development and applications of the EnKF, including its hybrid with variational methods, in

limited-area models that resolve weather systems from convective to meso- and regional scales.

1. Introduction

The accuracy of numerical weather prediction (NWP)

depends critically on the qualities of the initial conditions

and the forecast model. The initial conditions of an NWP

model usually come from data assimilation, a procedure

that aims to estimate the state and uncertainty of the at-

mosphere as accurately as possible by combining all

available information (including both model forecasts

and observations, and their respective uncertainties).

In the data assimilation community, the ensemble

Kalman filter (EnKF; Evensen 1994), which estimates the

background error covariance with a short-term ensemble

forecast, is drawing increasing attention. Since its first

application in atmospheric sciences (Houtekamer and

Mitchell 1998), the EnKF has been widely examined with

different models at different scales (e.g., Hamill and

Snyder 2000; Anderson 2001; Whitaker and Hamill 2002;

Mitchell et al. 2002; Snyder and Zhang 2003; Zhang and

Anderson 2003; Zhang et al. 2004, 2006, 2009a; Aksoy

et al. 2005, 2006a,b; Houtekamer et al. 2005, 2009; Tong

and Xue 2005; Dirren et al. 2007; Meng and Zhang 2007,

2008a,b; Whitaker et al. 2008; Torn and Hakim 2008a,

2009a; Buehner et al. 2010a,b). There are several recent

review articles on the EnKF including, Evensen (2003,

2007), Hamill (2006), and Ehrendorfer (2007). However,

none of these is dedicated to EnKF applications ranging

from regional to meso- and convective scales in limited-

area models (LAMs), which is the focus of the current

review. 1

The first LAM application of the EnKF was found in

Snyder and Zhang (2003) and Zhang et al. (2004), where

synthetic radar data was assimilated into a cloud model.

Those two studies demonstrated that the EnKF analysis can

faithfully approximate the truth in terms of both dynamic

and thermodynamic variables of a supercell storm (Fig. 1).

The first real-data application appeared in Dowell

et al. (2004) in which the same EnKF was used to as-

similate real radar observations for a tornadic supercell
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1 Our scale characterization loosely follows Orlanski (1975) in

which mesoscale refers to a spatial dimension between 20 and

200 km (his mesobeta scale). The regional scale is anything larger

than the mesoscale but smaller than the global scale while the

convective scale is anything below 20 km that requires explicit

modeling of convection (with ‘‘convection permitting’’ grid reso-

lutions).
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thunderstorm. This EnKF was further demonstrated to

be comparable to a four-dimensional variational data

assimilation (4DVar) system when implemented in the

same cloud model (Caya et al. 2005). Similar to global-

scale EnKF applications, the LAM EnKF progressed

from earlier perfect-model Observing System Simulation

Experiments (OSSEs) to more real-data, real-time,

quasi-operational applications (Tong and Xue 2005;

Barker 2005; Zhang et al. 2006; Chen and Snyder 2007;

Meng and Zhang 2007; Fujita et al. 2007, 2008; Hacker

et al. 2007; Meng and Zhang 2008a,b; Torn and Hakim

2008a, 2009a; Zhang et al. 2009a; Aksoy et al. 2009, 2010).

The first pseudo-operational regional-scale EnKF sys-

tem, based on the Weather Research and Forecasting

model (WRF), was implemented at the University of

Washington in January 2005 (Torn and Hakim 2008a).

The 2-yr performance of this system was found to have

slightly larger errors of wind and temperature fields, but

smaller errors in moisture in comparison to deterministic

output of different operational forecast models (Fig. 2).

Most recently, a WRF-based LAM EnKF system has

also been used to assimilate real Doppler radar radial

velocity observations for cloud-resolving hurricane anal-

ysis, initialization, and prediction (Zhang et al. 2009a). It

was found that deterministic forecasts initialized from the

EnKF analysis could be able to predict the rapid forma-

tion and intensification of Hurricane Humberto (2007)

(Figs. 3c,d), providing analysis and forecasts superior to

a WRF-based, three-dimensional variational data assim-

ilation (3DVar) system. This EnKF data assimilation

system is capable of ingesting airborne and ground-based

radar observations and has been implemented for real-

time hurricane analysis and forecasts in 2008 and 2009

(Y. Weng 2010, personal communication).

The potential of using ensemble-based data assimila-

tion at regional scales is also being explored in several

operational meteorological centers. For example, the

Italian National Meteorological Service compared a local

ensemble transform Kalman filter (LETKF) with its op-

erational 3DVar algorithm for a regional NWP system at

realistic model resolution, but reduced observation den-

sity and exclusion of satellite radiance data and scatter-

ometer winds. Their results showed that the LETKF

clearly outperformed 3DVar when the same model con-

figuration was implemented (Bonavita et al. 2010). Other

operational centers in active pursuit of an ensemble-based

data assimilation approach for improving LAM predic-

tion systems include (but are not limited to) Environment

FIG. 1. The performance of a convective-scale EnKF in assimilating radar radial velocity for splitting convection in an OSSE scenario

[adapted from Snyder and Zhang (2003)]. The shading denotes vertical velocity wt at z 5 6 km in (a)–(e) the reference simulation or the

truth and (f)–(j) the EnKF analysis (the ensemble mean). Shades of red and blue indicate upward and downward motion, respectively,

with gradations of color every 2.5 m s21 beginning at 61.25 m s21 and up to a maximum of 26.25 m s21. The black contours denote the

20.75-K temperature perturbation at z 5 1 km. Fields are shown at t 5 30, 35, 45, 60, and 80 min.
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Canada (L. Fillion 2010, personal communication), the

Japanese Meteorological Agency, the Met Office

(UKMO), and the National Centers for Environmental

Prediction (NCEP) as reported at the fourth EnKF

workshop held during 6–10 April 2010 in New York

(more information is available online at http://hfip.psu.

edu/EDA2010).

The performance of the EnKF can be subject to the

particular model and to the scale of the geophysical

system at hand, because of its strong dependence on the

accuracy of the forecast model and the dynamics and

predictability of the underlying weather systems. There

are several differences between applications of the

EnKF in global and limited-area models. First, the LAM

EnKF needs a proper way to perturb lateral boundary

conditions. Second, as a result of the smaller scale of the

systems of interest, model error might be more severe

since the dynamics and physics of meso- to convective-

scale systems are less well understood and thus likely

to be more poorly represented in the model. Further-

more, there are more inhomogeneities in the spatial

and temporal coverage of observations and more data-

void areas for the LAM EnKF applications, especially

considering our increasing desire to explicitly resolve

moist convection. Associated with the data-sparseness

problem, the error features of any given mesoscale fore-

cast are poorly known, and as a result it is more diffi-

cult to generate initial perturbations and to verify the

LAM EnKF results relative to the results of its large-

scale counterpart. Moreover, the error growth dynamics

of meso- to convective-scale systems are substantially

different from that of large-scale systems; they tend

FIG. 2. The performance of a quasi-operational WRF-EnKF system implemented at the University of Washington

in comparison to selected operational forecasts in terms of RMS error (solid) and bias (forecast 2 observation,

dashed) in 24-h forecasts of (a) temperature, (b) meridional wind, (c) geopotential height, and (d) dewpoint tem-

perature from 1 Jan 2005 to 1 Jan 2007. All forecasts are verified against the same set of rawinsonde observations. The

black line denotes the European Centre for Medium-Range Weather Forecasts (ECMWF) rawinsonde observation

error standard deviation assumed during data assimilation (adapted from Torn and Hakim 2008a).
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to be more multiscale in nature, more nonlinear, and

non-Gaussian (Dévényi and Schlatter 1994). For practi-

cal purposes, different error dynamics demands a different

treatment of model error. The objective of this review is

to summarize recent advances and challenges in the de-

velopment and applications of the LAM EnKF, some of

which were highlighted in a recent World Meteorological

Organization/World Weather Research Programme/

The Observing System Research and Predictability Ex-

periment (WMO/WWRP/THORPEX) workshop on

4DVar and EnKF intercomparisons held in Argentina in

November 2008, as well as in the third and the fourth

EnKF workshops held in Austin, Texas, in April 2008, and

in Rensselaerville, New York, in April 2010. Section 2

gives a brief introduction to the LAM EnKF. Section 3

provides an overview of issues specific to the LAM EnKF,

including the generation of initial and boundary pertur-

bations, as well as the respective errors in observations,

modeling, and sampling. Progress obtained in the com-

parison and hybridization of the LAM EnKF with var-

iational data assimilation methods is summarized in

section 4. Several applications of the LAM EnKF beyond

state estimation are presented in section 5. The conclu-

sions are given in section 6.

2. An overview of the LAM EnKF

The Kalman filter is a linear, recursive estimator that

produces the unbiased minimum variance estimate, in

a least squares sense, under the assumption of unbiased

FIG. 3. Real-data applications of convective-scale radar data assimilation with two independent EnKF systems:

(a),(b) the 8 May 2003 Oklahoma City tornadic supercell storm case [adapted from Lei et al. (2008), courtesy of M.

Xue at OU] and (c),(d) Hurricane Humberto (2007) [adapted from Zhang et al. (2009a)]. The 500-m forecast re-

flectivity [shaded in (b)] initialized from the EnKF analysis by assimilating radar radial velocity, radar reflectivity, and

surface observations displays large agreement with the observed reflectivity valid at 2210 UTC 8 May 2003 [as shown

in (a)]. Also shown in (b) are wind vectors and vertical vorticity at 1 km at the same time. A WRF-based EnKF

analysis [shown in (d)] can successfully capture detailed structure of the radial velocity field of Hurricane Humberto

[shown in (c)], which is observed at 0.58 base scan at the KHGX radar at 0300 UTC 13 Sep 2007.
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noise processes (Kalman 1960; Kalman and Bucy 1961).

To circumvent the coding of tangent linear and adjoint

models, as well as the high computational cost posed by

the weighting matrix calculation and the propagation of

the background error covariance in the classic Kalman

filter, Evensen (1994) proposed the use of an ensemble

Kalman filter by representing the best estimate of the

state vector and its covariance by using a random en-

semble with a limited number of ensemble members.

The algorithm advances in two steps: an analysis step

and a forecast step. The analysis step in the standard EnKF

proceeds according to the classic Kalman filter equations

with the required sample means and covariances:

xa
i 5 xb

i 1 K(yo
i 2 Hxb

i ), for i 5 1, . . . , n, (1)

K 5 PbHT(HPbHT 1 R)21, (2)

Pb 5
1

n 2 1
(xb 2 xb)(xb2 xb)T, and (3)

Pa 5
1

n 2 1
(xa 2 xa)(xa 2 xa)T, (4)

where the analysis state vector xa for each member i of

the ensemble with size n is obtained by adding to the

background state vector xb a weighted difference be-

tween observations yo and the background vector pro-

jected to observation space through an observation

operator H. Here H is the tangent linear of H and HT is

the adjoint of H. Tangent linear means the linearization

about a time- or space-varying trajectory of a nonlinear

operator, which gives the evolution of the first-order

perturbation of a nonlinear vector. In the EnKF, PbHT

and HPbHT are calculated using the sample covariance

and thus HT and H are not explicitly needed. Here Pa and

Pb are the analysis and background error covariance,

respectively, which are approximated in the EnKF

by the respective ensemble covariance. The K is the

Kalman gain, which takes into account the observation

error R and the background error covariance Pb in de-

termining the extent to which observations are weighted

relative to the background. Here xb and xa are the

sample mean values of the forecast and the analysis

ensemble. The high computational cost of the Kalman

gain in the classic Kalman filter is alleviated since the

rank of the background-error covariance matrix is small.

Given the analysis ensemble, the forecast step simply

involves forecasting each member forward from time

index t 2 1 to t when the next observations are avail-

able:

xb
i (t) 5 M[xa

i (t 2 1)], for i 5 1, . . . , n, (5)

where M is a nonlinear model. The EnKF procedure is

a Monte Carlo approximation to the computationally

overwhelming propagation of the full probability den-

sity function (PDF) forward in time, at least to the ex-

tent that the analysis ensemble is a random sample from

the full PDF. The ensemble-based algorithm asymp-

totically approaches the Kalman filter in the limit of

a large ensemble and Gaussian error distributions.

Based on the method for generating the analysis en-

semble, various EnKFs can be characterized as stochas-

tic, where the analysis ensemble is obtained with the

Kalman gain and randomly perturbed observations, or

deterministic, where the analysis ensemble is created by

deterministically transforming the forecast ensemble

without perturbing the observations (Tippett et al. 2003).

A stochastic filter first implemented in Houtekamer

and Mitchell (1998) divides the ensemble into two or

more subgroups to avoid a deficient ensemble spread in

the case of small ensembles. This is accomplished by up-

dating the state vectors of one subgroup ensemble using

the weights calculated from a different subgroup ensem-

ble. Houtekamer et al. (2009) showed that with their

current operational configuration of four subensembles,

rather good agreement between the ensemble mean error

and the ensemble spread was obtained in a perfect-model

context without any need for covariance inflation. This

approach has been shown to be effective not only in

global assimilation systems (Houtekamer et al. 2005,

2009), but also with LAMs (Charron et al. 2006). The

deterministic method, however, has been more widely

used in LAM applications than the stochastic method.

The most commonly employed deterministic method

has the form of ensemble square root filters (EnSRF) as

reviewed in Tippett et al. (2003), such as the serial EnSRF

(Whitaker and Hamill 2002), the ensemble transform

Kalman filter (ETKF; Bishop et al. 2001), and the

ensemble adjustment Kalman filter (EAKF; Anderson

2001; Aksoy et al. 2009, 2010). The serial EnSRF

(Whitaker and Hamill 2002) processes the observa-

tions one by one assuming independent observation

errors, which has been shown to be effective in mesoscale-

ensemble-based data assimilation (Snyder and Zhang

2003; Barker 2005; Tong and Xue 2005; Zhang et al.

2006; Fujita et al. 2007; Meng and Zhang 2008a,b; Torn

and Hakim 2008a). However, this sequential method

may become computationally inefficient if the observa-

tions get very dense in space. It also has difficulties in

assimilating observations with correlated observation

errors.

The ETKF (Bishop et al. 2001) uses a transform ma-

trix to directly transform the forecast error covariance

to an analysis error covariance in a smaller subensemble

space, thus reducing computational cost. Instead of
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assimilating data sequentially, the local ensemble Kalman

filter (LEKF; Ott et al. 2004) updates independent grid

points simultaneously using only observations in a lo-

calized subspace. By combining the ETKF and the

LEKF, Hunt et al. (2007) proposed the LETKF, which is

more efficient and flexible for nonlocal observations

such as satellite radiances. The LETKF has been shown

to be very useful in convective systems (Miyoshi and

Aranami 2006). Encouraging results have been achieved

in 4DEnKF, which assimilates observations instan-

taneously as they are measured by expanding the state

vector through finding the linear combination of the

ensemble trajectories that best fits the observations at

the appropriate times (Hunt et al. 2004; Houtekamer

and Mitchell 2005). To the best of our knowledge, the

4DEnKF has so far been applied with the Lorenz model

(Hunt et al. 2004) and with global models (Whitaker

et al. 2008; Houtekamer et al. 2009), but not with LAMs.

Because of the large dimension of the model state

vector and the large number of observations needed in

the LAM-EnKF scenario, various algorithms of the LAM

EnKF have been proposed to improve computational

efficiency. Anderson and Collins (2007) proposed a par-

allel ensemble Kalman filter in the least squares frame-

work by arbitrarily partitioning the background ensemble

to a set of processors that can be easily implemented into

a variety of EnKFs. For a linear observation operator, the

result of this parallel Kalman filter is the same as that of

a single-processor filter, and similar results can be ob-

tained for a nonlinear observation operator. The parallel

Kalman filter has been implemented in the National

Center for Atmospheric Research (NCAR) Data As-

similation Research Test bed (DART) and was used in

Aksoy et al. (2009, 2010). A preemptive forecast method

was also proposed to reduce the computational cost

by propagating current analysis increments to update

the future forecast, assuming that preemptive forecasts

were of similar quality to the updated model forecasts

(Etherton 2007). Algorithms that are efficient in terms

of covariance calculation will be described in sections 3b

and 3c.

3. Issues specific to the LAM EnKF

a. Ensemble initialization

The LAM EnKF may be initialized from an existing

global or larger-scale ensemble (Zhang et al. 2010). If

a global ensemble forecast is not readily accessible, the

most common alternative is to randomly sample the

climatological uncertainties of the initial state (Aksoy

et al. 2006b) or to derive random perturbations from the

background error statistics of an existing 3D/4DVar

system (e.g., Barker 2005; Meng and Zhang 2008a,b;

Torn and Hakim 2008a), as is done for the global EnKF

(e.g., Houtekamer et al. 2005; Whitaker et al. 2008).

How to generate an initial ensemble for convective-

scale EnKF systems remains an open question because

of the lack of accurate error statistics. Random sampling

of a static variational background error covariance may

not be applicable for convective scales because of its

balance constraint and large length scale. For many

convective-scale applications, Gaussian noise can be

added to a horizontally uniform background (sounding)

for all state variables (Snyder and Zhang 2003; Tong and

Xue 2005) or for some cases, only the horizontal wind

components (Aksoy et al. 2009, 2010), or only where

rain was observed (Caya et al. 2005).

b. Boundary perturbations and nesting

Compared to initial condition uncertainty, proper rep-

resentation of boundary uncertainties may have a larger

impact on the LAM EnKF. Lack of sufficient ensemble

spread on the lateral boundaries may propagate inward

and lead to filter divergence. Filter divergence means that

the ensemble mean deviates farther and farther away from

the truth as a result of the underestimated variance of the

forecast ensemble, which results in more weight being

given to the prior (model forecast) than to the observa-

tions. An additional consideration in generating boundary

perturbations is the necessity of flow-dependent pertur-

bations.

Boundary perturbations can be generated using the

same methods as ensemble initialization described above,

such as random sampling from a specified multivariate

Gaussian distribution (Barker 2005; Torn et al. 2006; Torn

and Hakim 2008a; Meng and Zhang 2008a), scaling de-

viations from randomly drawn climatological time series,

or by using a smaller sample of global ensemble forecast or

limited-area ensemble analysis to directly perturb only

a subset of the boundary grid points, while perturbing all

other points using an assumed covariance model (Torn

et al. 2006). Torn et al. (2006) showed that the errors

caused by perturbing the boundary condition around

a mean following a certain form of PDF in comparison to a

perfect ‘‘global’’ EnKF that extended beyond the limited-

area domain were mostly constrained to areas near the

boundaries. On the other hand, since higher spatial reso-

lution may need more frequent boundary updates, random

climatological states may not be adequate in terms of

temporal frequency for LAM boundary perturbations

(Dirren et al. 2007). Meng and Zhang (2008b) perturbed

the lateral boundaries of the data assimilation domain,

which is the inner domain, by updating the outer domain

using the 6-h NCEP final analyses (FNL) perturbed by

random draws from the WRF-3DVar background error
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covariance scaled to approximate the forecast uncertainty

of the Global Forecast System (GFS) at different lead

times. This flow-dependent perturbation method was ef-

fective in preventing the system inside the assimilation

domain from drifting away from the truth.

Besides the boundary conditions of the outermost

domain, nesting is also an important issue of the LAM

EnKF across different domains. Since the inner domain

usually decreases the horizontal grid spacing by a factor

of 3 (thus the number of grid points increases by a factor

of 9 over the same area of the coarse domain), per-

forming the EnKF analysis and the model forecast in the

inner domains is much more computationally expensive.

One approach to deal with this problem is to use a

coarser-resolution ensemble to estimate the background

error covariance while the EnKF analysis and the con-

trol forecast are performed on a higher-resolution grid

(Gao and Xue 2008; Yang et al. 2009).

How to perform the data thinning and covariance lo-

calization for nested domains is another important issue.

A commonly used approach is one where all domains

assimilate the same data and use a fixed radius of in-

fluence. Zhang et al. (2009a) proposed a successive co-

variance localization (SCL) technique in which a larger

radius of influence (ROI) is used to assimilate a relatively

small subset of observations in the coarser domains, while

a smaller ROI is used to assimilate higher-density ob-

servations in the inner domains. This method will be de-

tailed in section 3e(2) for sampling error treatment.

Performing data assimilation in all domains may cause

inconsistencies and imbalances near the boundaries, whose

impacts have not received much attention in the literature.

c. Observational issues

Different observing platforms at diverse spatial and

temporal resolutions may have dissimilar impacts on the

EnKF performance and the quality of the initial condi-

tions (ICs) at different scales. For regional-scale LAM

applications, radiosonde observations have been found

to have a larger impact on the quality of ICs and fore-

casts than wind profiles and surface observations (Meng

and Zhang 2008a). However, surface observations are

a very important data source for mesoscale systems due

to their higher resolution and thus their capability of

reflecting more detailed mesoscale features, which re-

duces spinup time relative to coarse observations. Sur-

face observations, including precipitation, have been

shown to be useful for improving the simulation skill of

mesoscale convective systems (MCSs), such as the lo-

cation and intensity of the dryline, frontal boundaries, as

well as the depth and structure of the planetary bound-

ary layer (PBL; Fujita et al. 2007, 2008), although the

results are not always positive (Miyoshi and Aranami

2006). Surface pressure is not only useful in reconstructing

three-dimensional fields in large-scale models (Whitaker

et al. 2004; Anderson et al. 2005), but also very helpful in

retrieving different structures at the mesoscale (Dirren

et al. 2007). Surface observations may also be beneficial for

simulating boundary layer processes (Hacker and Snyder

2005; Aksoy et al. 2005). It has been demonstrated that the

surface observations may affect the entire PBL (Hacker

et al. 2007). How to effectively assimilate surface obser-

vations is important because PBL structure plays a key

role in determining the type of deep moist convection.

However, because of the error from the difference

between the real and the model terrain height and un-

certainties in the parameterization of boundary layer

and land surface physical processes, surface observa-

tions have been a big challenge in the mesoscale data

assimilation field. Fujita et al. (2007) showed that using

different physical parameterization schemes for differ-

ent members can improve the quality of background

error covariance and thus noticeably reduce forecast

error especially for thermodynamic variables. However,

Fujita et al. also found that the forecast error when as-

similating surface observations could maintain a smaller

value (as compared to without assimilation) only for 6 h

after the assimilation period. The EnKF performance

may also be sensitive to different formulations of the

same observations. For example, the assimilation of al-

timeter setting, which is the surface pressure reduced to

sea level using the standard atmosphere temperature

profile, and is merely a function of surface pressure and

terrain height, may result in a larger analysis error re-

duction than assimilating the 1-h surface pressure ten-

dency when depicting mesoscale pressure patterns

(Wheatley and Stensrud 2010). The EnKF is also found

to have a reduced analysis error when assimilating po-

tential temperature and dewpoint instead of tempera-

ture and specific humidity at the surface, which is likely

due to the larger variability and less Gaussian distribu-

tion of the latter variables (Fujita et al. 2007).

To describe more detailed mesoscale features, ob-

servations with higher resolution than conventional

surface observations are required. More and more at-

tention is being paid to the assimilation of remotely

sensed observations for the LAM EnKF. Doppler radars

[e.g., Doppler-on-Wheels (DOW) and Weather Sur-

veillance Radar-1988 Doppler (WSR-88D), airborne]

may be the only observing platform that has sufficient

temporal and spatial coverage to constrain convective

clouds. The effectiveness of using the EnKF to assimi-

late Doppler radar velocities for supercell storms was

first demonstrated in OSSEs in Snyder and Zhang

(2003) (Fig. 1) and with real data in Dowell et al. (2004)

and Lei et al. (2008). Good agreement was achieved
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between the EnKF prediction of the finescale supercell

structure and the observations (Figs. 3a,b). Doppler radar

velocities have also been shown in recent studies to im-

prove the accuracy of both track and intensity forecasts

for tropical cyclones (Zhang et al. 2009a; Weng et al.

2011), whereby the assimilation of radial velocity could

draw the WRF-EnKF analysis of radial velocity to be

very close to the observations (Figs. 3c,d). Assimilation of

airborne radar Doppler velocity may have similar im-

pacts as those of ground-based radars on hurricane

forecasting (Y. Weng 2010, personal communication).

Rapid-scan Phased Array Radar (PAR) observations

have also been used to achieve a better analysis and

subsequent ensemble forecast of an MCS while using

a shorter assimilating time than WSR-88D data (Yussouf

and Stensrud 2010).

The effectiveness of assimilating radar reflectivity and

other hydrometer related quantities for convective-scale

analysis and forecasts, on the other hand, remains an

open question. Radar reflectivity has been shown to be

less effective than Doppler radial velocity (Tong and Xue

2005). The likely non-Gaussian error distribution, weak

cross correlations between state variables, inherent small-

scale variability, and strong dependence of these quan-

tities on the accuracy of model microphysics schemes

appear to be the main limiting factors. Nevertheless, the

assimilation of differential reflectivity ZDR, reflectivity

difference Zdp, and specific differential phase KDP be-

yond radar reflectivity and/or radial velocity seems to

improve the storm analysis in the OSSEs of Jung et al.

(2008). Moreover, the assimilation of even the echo-free

radar observations, defined as radar reflectivity below

a threshold value of 5 dBZ, sometimes effectively sup-

presses spurious convection (Aksoy et al. 2009).

With large volumes of radar observations recorded at

a much higher resolution than the forecast model grid

spacing for the EnKF data assimilation, significant data

thinning of observations may be necessary. The process of

combining multiple observations into one high-accuracy

‘‘super’’ observation (SO) is often referred to as ‘‘super-

obbing.’’ A data thinning and quality control procedure

was developed in Zhang et al. (2009a) to generate SOs for

ground-based Doppler radars (e.g., WSR-88Ds), with the

observation error for radial velocity assumed to be 3 m s21.

To avoid averaging of radial velocities (Vr) with signifi-

cantly different directions, the averaging bin is defined as

the area in a sector between two arcs that must satisfy all

the following conditions: 1) the angle at center is no larger

than 58, 2) the length of the outer arc is no larger than 5 km,

and 3) the distance between the two arcs is no larger than

5 km. Additional quality control procedures are applied

during the superobbing to minimize the impact of ground

clutter and to correct the failures in the dealiasing step,

while further quality controls are implemented in the pro-

cessing of the EnKF analysis (Zhang et al. 2009a). A similar

procedure was used in Weng et al. (2011) in assimilating

airborne Doppler radar observations.

As a special case of data thinning, subsampling of

observations has been found to be able to generate

a similar result as to when much more data is used (Torn

and Hakim 2008b, 2009b). Torn and Hakim (2008b)

found that assimilating the O(100) most significant ob-

servations may produce a similar forecast-metric vari-

ance as by assimilating thousands of observations with

a statistically significant metric-mean change. How fre-

quent in time the observations should be assimilated has

remained empirical. Too frequent assimilation may not

allow enough time for the short-term ensemble forecast

to be initialized appropriately and to develop mean-

ingful background error covariance, and for the imbal-

ance that was introduced during the assimilation cycle to

be adjusted (e.g., Meng and Zhang 2008a).

In addition to radars, an examination has already be-

gun on the assimilation of satellite observations and/or

satellite-derived products in the LAM EnKF. Challeng-

ing Minisatellite Payload (CHAMP) radio occultation

refractivity has been found beneficial in regions where

conventional high-quality observations are sparse (H. Liu

et al. 2008). The model performances after assimilating

univariate and multivariate specific humidity retrieved

from the Atmospheric Infrared Sounder (AIRS) were

compared using the LETKF (J. Liu et al. 2009). It was

found that the largest improvement was obtained by

multivariate specific humidity assimilation when the

specific humidity was updated by all data types.

Compared to applications in global models (Houtekamer

et al. 2005; Miyoshi and Sato 2007; Whitaker et al. 2009;

Aravéquia et al. 2011), direct assimilation of satellite

radiance with the LAM EnKF is still in its infancy. At the

fourth EnKF workshop held during 6–10 April 2010 in

New York, Z. Liu reported a better performance in as-

similating Advanced Microwave Sounding Unit (AMSU)

radiance for a tropical cyclone event in comparison to

3DVar (see online at http://hfip.psu.edu/EDA2010/LiuZQ.

pdf). However, many issues remain to be explored in satel-

lite radiance assimilation. For example, observation bias

correction requires long-term stationary statistics of satellite

observations over large areas, which is usually not available

for mesoscale models. Additionally, mesoscale models usu-

ally do not have a high-enough model top, which may induce

difficulties in the forward operator for some radiance mea-

surements (the response function usually spans a large alti-

tude range). It may be possible and necessary for the LAM

EnKF to take advantage of existing bias correction ap-

proaches for satellite observations that are already in place

for global (operational) NWP models.
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Besides the aforementioned in situ and remotely

sensed data, some special synthesized object-oriented

observations, such as the vortex position of tropical cy-

clones, can also be easily assimilated by the EnKF and

have been demonstrated to be helpful in improving

hurricane forecast ability (Chen and Snyder 2007; Torn

and Hakim 2009a). Wu et al. (2010) found that the EnKF

performs well in initializing tropical cyclones after as-

similating synthetic observations including position, in-

tensity, and size derived from dropsondes and satellites.

d. Treatment of model error

Model error may be the single most critical challenge

that limits all aspects of NWP. It can result from in-

adequate parameterization of subgrid-scale physical

processes, numerical inaccuracy, truncation error, ill-

defined boundary conditions, or other random errors.

Model error, especially at the mesoscale, is generally

difficult to identify and deal with because of the chaotic

nature of the atmosphere, its flow-dependent charac-

teristics, and the lack of sufficiently dense observations

for verification (e.g., Stensrud et al. 2000). The presence

of model error often result in both a large bias in the

ensemble mean and too little spread, which may ulti-

mately cause the ensemble forecast to fail. Model error

may lead to ensemble spread deficiency because of the

missing model error term in the ensemble-based calcu-

lation of forecast error covariance (Hamill 2006). Ad-

ditionally, model error components tend to be projected

onto more stable modes, which will also limit the growth

of ensemble spread (Mitchell et al. 2002). Since the

EnKF depends critically on the quality of the first guess

and the forecast error covariance estimated from a short-

term ensemble forecast, the presence of model error may

lead to poor filter performance and even filter divergence

(e.g., Hamill and Whitaker 2005; Houtekamer et al. 2009;

Li et al. 2009).

Several ad hoc approaches that have been used to ac-

count for model error in the context of the EnKF, in-

cluding covariance inflation, bias correction, and/or the use

of multimodel or multiphysics ensemble, will be reviewed

in detail in this section. Alternative approaches that in-

clude simultaneous state and parameter estimation will be

discussed in section 5a.

Additive covariance inflation, where a set of ensemble

perturbations that can reflect forecast uncertainty is added

to the forecast ensemble (e.g., Mitchell et al. 2002; Hamill

and Whitaker 2005) has been shown to be effective in

improving the performance of the LAM EnKF (Barker

2005). More detailed discussion on covariance inflation

will be given in section 3e for the issue of sampling error.

Though most statistical data assimilation methods as-

sume that the model forecast (or first guess) is unbiased,

that is rarely the case. Model bias error can system-

atically cause the model to drift away from the truth.

Since bias is a part of the model error, a better per-

formance of the EnKF may be achieved through both

bias correction and the treatment of random error (Li

et al. 2009). Using a multimodel or multiphysics ensem-

ble (discussed next) and simultaneous state and param-

eter estimation (section 5a) may also help to correct the

bias.

Over the past decade, there has been an increasing

amount of evidence demonstrating the advantages and

effectiveness of using multimodel ensembles (over single-

model ensembles) to account for model error in the

prediction system (Krishnamurti et al. 1999; Palmer

et al. 2004; Weigel et al. 2008; Weisheimer et al. 2009). A

multimodel ensemble may provide a more realistic en-

semble spread (better error covariance) and even re-

duce the error or the bias in the ensemble mean estimate

(better first guess), which shows great potential for im-

proving the EnKF (although it may lead to artificial

clustering with little correspondence to the forecast

uncertainties of the day). However, given technical im-

plementation difficulties associated with inherent dif-

ferences in model numerics, dynamical coordinates,

and/or (prognostic) state variables among different

forecast models, multimodel ensembles have not been

used for the LAM or global EnKF.

Since a considerable part of the model error comes

from parameterization of subgrid-scale physical pro-

cesses (e.g., Stensrud et al. 2000), a more practical ap-

proach is to use a variety of physical parameterization

schemes available in the same forecast model for dif-

ferent members to account for model uncertainties.

Similar to the multimodel approach, each of the physics

schemes in the multiphysics ensemble usually has its

own advantages and disadvantages based on its own

underlying physical assumptions whose accuracy is hard

to distinguish a priori. For example, Wang and Seaman

(1997) compared the performance of a mesoscale model

with different cumulus parameterization schemes for

several synoptic events and found that no particular

scheme performs consistently better than another

scheme. Multiphysics ensembles have been shown to be

effective in accounting for model error in both global

(Houtekamer et al. 1996) and mesoscale (Stensrud et al.

2000) ensemble forecast systems.

A multiphysics ensemble to account for model error

in the LAM EnKF was first reported in Meng and Zhang

(2007) through OSSEs and Fujita et al. (2007) for real

surface data assimilation. Meng and Zhang (2007)

demonstrated how a multiphysics ensemble may greatly

improve the performance of the EnKF, especially for

thermodynamic variables, in the presence of model
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error introduced by physical parameterization schemes.

The effectiveness of a multiphysics ensemble has been

confirmed in follow-up real-data experiments (Meng and

Zhang 2008a,b), which showed that the use of a multi-

physics ensemble results in consistently smaller error for

different variables throughout the troposphere than

the use of a single-physics ensemble (Fig. 4). A multi-

physics ensemble contributes to the performance of the

EnKF, likely through improved ensemble mean esti-

mates, the increasing of ensemble spread, and a more

effective background error covariance. Fujita et al.

(2007) compared the method of generating an ensem-

ble by perturbing the physics with multiphysics ap-

proach to other methods such as only perturbing the

initial field and perturbing both the initial field and

physics. It was shown that using a multiphysics en-

semble may result in larger variance of temperature

and dewpoint. This conclusion is consistent with the

larger improvement obtained in the thermodynamic

variables with a multiphysics ensemble in Meng and

Zhang (2007, 2008a,b).

e. Sampling error, covariance inflation,
and localization

As a result of computational constraints, only a lim-

ited ensemble size can be afforded in the EnKF, which

will result in some sampling error especially in the

presence of model error and nonlinearity. The number

of members sufficient for the EnKF to minimize the

impact of sampling error still remains an open question.

Variables with a weaker correlation may be more vul-

nerable to sampling error (Barker 2005). Until now,

most published LAM EnKF studies use an ensemble

size between 30 and 100 (Barker 2005; Torn and Hakim

2008a; Zhang et al. 2009a). It is possible to artificially

augment the ensemble size and to alleviate sampling

error by including a series of perturbed state vectors

from each forecast run at time levels properly selected

around the analysis time as proposed by Xu et al. (2008).

Because of the limited ensemble size, the EnKF gener-

ically suffers from a rank deficiency problem with which

only part of the phase space can be spanned by the en-

semble. As a result, the ensemble spread tends to be

systematically underestimated.

1) COVARIANCE INFLATION

The underestimation of ensemble spread is commonly

treated by covariance inflation through multiplicative

(Anderson 2001; Whitaker and Hamill 2002) or additive

(e.g., Mitchell et al. 2002; Houtekamer et al. 2005) scaling,

or covariance relaxation (Zhang et al. 2004). Multiplica-

tive covariance inflation is achieved by multiplying

all ensemble perturbations before or after the EnKF

analysis with a constant slightly larger than 1 [e.g., 1.05 in

Whitaker and Hamill (2002)]. There are reported benefits

of using a time-dependent, but spatially invariant, in-

flating factor through matching the ensemble spread to

the forecast error in the LAM EnKF (Barker 2005;

Bonavita et al. 2008). However, multiplicative covariance

inflation with a spatially constant inflation factor may

cause a model to become unstable because of excessive

spread in data-sparse regions. Anderson (2009) proposed

a Bayesian algorithm that determines a spatially and

temporally varying adaptive inflation factor for each el-

ement of the model state vector. This method has been

shown to be effective in producing a smaller posterior

error and a more consistent variance with a dominating

sampling error and a variety of observation densities or

frequencies. The additive method, which was described in

section 3d, has not been widely used in the LAM EnKF

likely because of difficulties in constructing proper addi-

tive perturbations.

FIG. 4. The impact of using a multiphysics ensemble (EnKF_m; solid red) to account for model error originating from physical pa-

rameterization schemes on the performance of a WRF-EnKF in comparison to a single-physics ensemble (EnKF_s; dashed red,), 3DVar

(solid blue), and FNL_GFS (solid black) in terms of month-averaged RMSEs of 12-h forecast of (a) horizontal wind speed, (b) tem-

perature, and (c) water vapor mixing ratio for the entire month of June 2003 [adapted from Meng and Zhang (2008b)].
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The covariance relaxation method proposed by Zhang

et al. (2004) avoids overinflation of the covariance

through relaxation of the final analysis perturbations (xa)9

to the prior forecast perturbations (xb)9:

(xa
new)9 5 (1 2 a)(xa)9 1 a(xb)9, (6)

where a is the covariance relaxation coefficient. For ex-

ample, a 5 0.5 means 50% of the analysis perturbation is

directly from the perturbations of the prior forecast en-

semble. The inflation results from a generally larger en-

semble spread of forecast than analysis. This method only

inflates those grid points that are updated by observation,

thus avoiding the overinflation deficiency of the conven-

tional inflation method. Though the relaxation method is

ad hoc and likely violates the dominant balances in the

system, it has been found useful in properly alleviating

the inbreeding problem. Meng and Zhang (2007, 2008a,b)

and Zhang et al. (2009a) used a 5 0.7 for real-data

applications. This covariance relaxation method was

also used in Torn and Hakim (2008a) for their quasi-

operational LAM-EnKF system.

Localized covariance inflation may also be achieved

through either an additive or multiplicative method by

inflating only the areas updated by observations (Tong

and Xue 2005) or only adding random perturbations to

the affected areas (Caya et al. 2005; Dowell and Wicker

2009). Note that noise sometimes introduced through

the multiplicative or additive methods to avoid filter di-

vergence may degrade the analysis if it interferes with the

dynamic balance of the ensemble perturbation (Peña et al.

2010).

2) COVARIANCE LOCALIZATION

Besides the underestimation of ensemble spread, sam-

pling error in the EnKF may also cause unphysical, distant

correlations and subsequently spurious analysis increments

(Houtekamer and Mitchell 1998). The most commonly

used approach for reducing distant spurious correlations is

through the so-called covariance localization. Covariance

localization is often implemented using a Schur or Hada-

mard product (Gaspari and Cohn 1999; Houtekamer and

Mitchell 2001; Houtekamer et al. 2005) as

K 5 [rV + rH + (PbHT)][rV + rH + (HPbHT) 1 R]21,

(7)

where rV and rH are functions that decrease smoothly

from one at the observation point to zero at a certain

distance from the observation, according to the pattern

determined by the localization function. The indices V

and H mean vertical and horizontal and ‘‘+’’ denotes

entry-wise multiplication. The impact of an observation

is thus confined only within a limited distance. This

distance is usually called the radius of influence (ROI).

Localization may not only decrease spurious distant

correlation, but also reduce the computational cost and

alleviate the rank-deficiency problem because of the

limited ensemble size.

For real-data LAM applications, a horizontal ROI of

1000–2000 (60–150) km is often used for standard ra-

diosonde (surface) observations (e.g., Fujita et al. 2007;

Meng and Zhang 2008a,b; Torn and Hakim 2008a),

while a much smaller ROI (6–8 km) is used for radar

observations (e.g., Aksoy et al. 2009, 2010). However,

the selection of an optimum ROI remains an area of

active research. The ROI should depend on ensemble

size, observation type and density, model error and

resolution, as well as the characteristic scales of the

underlying dynamic system. For example, a smaller ROI

may be necessary for a smaller ensemble size and/or in

the presence of a more severe model error (Zhang et al.

2009b). Lorenc (2003) suggested that the ROI should be

2–3 times the forecast error scales. An optimum ROI for

the LAM EnKF may be harder to define because of the

complicated multiscale interactions.

A successive covariance localization (SCL) technique

was proposed by Zhang et al. (2009a) to assimilate dense

radar observations that contain information about the

state of the atmosphere at a wide range of scales. SCL

assumes that both large- and small-scale errors are si-

multaneously present and was designed to reduce com-

putational cost and sampling errors. This technique uses

the Gaspari and Cohn (1999) fifth-order correlation

function for covariance localization, but a different ROI

is used for different subsets of randomly grouped obser-

vations. First, one tries to remove dynamically important

aspects of the large-scale error by assimilating a relatively

small subset of observations with a large ROI. Next, the

ROI is made smaller, and higher-density observations are

used to constrain both smaller-scale errors and what re-

mains of the large-scale error. The process is repeated

until all scales resolved by the observational network

have been adequately dealt with. The SCL method has

some resemblance to the successive correction method

used in earlier empirical objective analysis schemes (e.g.,

Barnes 1964), though in the EnKF the same observation

are not used twice. Zhang et al. (2009a) showed clear

advantages of using the SCL method over using single

ROIs in the assimilation of dense radar observations for

a rapidly developing landfalling hurricane.

Though equally important, but possibly more difficult

to implement correctly, vertical covariance localiza-

tion has received much less attention as compared to

horizontal localization. The vertical ROI is sometimes set

to the depth of the atmospheric model for conventional
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observation assimilation (e.g., Meng and Zhang 2008a,b),

also using the Gaspari and Cohn (1999) covariance lo-

calization function. A much smaller vertical ROI is

sometimes used for assimilating radar observations at the

convective scales (e.g., Aksoy et al. 2009, 2010), while no

vertical covariance localization has been used for tropical

cyclones as in Zhang et al. (2009a). Vertical localization is

likely more of an issue when assimilating satellite radi-

ance observations. For example, Miyoshi and Sato (2007)

have shown that a channel-dependent vertical localiza-

tion may be effective in damping the sampling error.

Besides ROI, the selection of a covariance localiza-

tion function may also be important. The most widely

used covariance localization is the fifth-order correla-

tion function of Gaspari and Cohn (1999). The choice of

localization function may become more complicated

for observations that have complex spatial (such as the

heterogeneously distributed surface observations), tem-

poral and physical attributes, such as those without a

well-defined location, at a different time from the state

specification, or with an unknown relation with the state

variable. The importance of flow-dependent covariance

localization, which has been demonstrated in global

models (Anderson 2006; Bishop and Hodyss 2007), has

not been seen in literature for the LAM EnKF.

While accounting for sampling error, covariance lo-

calization may also cause imbalance when one obser-

vation is selected to update the state vector at one grid

point, but not selected for a neighboring grid point.

Consequently, covariance localization may produce

analyses with weaker flow balance and stronger di-

vergence, which may result in inaccurately balanced

background error statistics. Methods used to reduce

imbalance in large-scale models such as applying a

digital filter (e.g., Lynch and Huang 1992; Huang and

Lynch 1993) or covariance localization performed in

the streamfunction-velocity potential rather than the

wind component space (Kepert 2009), have still not

been tested for the LAM EnKF.

f. Verification issues

Because of a lack of dense, conventional mesoscale

observations, verification of the LAM EnKF can be

more difficult than verification of larger-scale prediction

systems, especially for radar data assimilation. One way

is to compare the analysis and/or forecast error against

radar observations that are not assimilated, but saved

specifically for assessment (Zhang et al. 2009a).

To verify the result in terms of radar reflectivity, one

metric is the equitable threat score (ETS; Wilks 2006),

which has been widely used for precipitation verification.

However, this metric tends to be very sensitive to the

phase error and thus may be misleading sometimes. An

alternative metric that is more pattern based is the re-

flectivity correlation coefficient (Aksoy et al. 2010) between

the observed and simulated reflectivity in observation

space, which is similar to the centered anomaly correlation

(Wilks 2006).

For severe weather systems, such as hurricanes, how to

choose an appropriate error metric is still an open ques-

tion. Since a small displacement of a storm center may

result in a substantially large root-mean-square error

(RMSE) of wind, the gridpoint-based RMSE of the wind

fields integrated over the whole model domain may not be

adequate for assessing EnKF performance. In this case,

performance could be better assessed using feature-based

verification, such as RMSE comparison for hurricane in-

tensity and center position for individual members (e.g.,

Torn and Hakim 2009a; Zhang et al. 2009a).

4. Intercomparison and hybrid with variational
schemes

Despite many of the challenging issues discussed in

the previous section, there are several appealing ad-

vantages of the EnKF in comparison to the variational

data assimilation techniques. These advantages include

the following: 1) the background error covariance is flow

dependent, which reflects the error of the day; 2) the

model and observation operator can be nonlinear; 3) it

provides not only the best estimation of the state, but

also the associated flow-dependent uncertainty; there-

fore, it can be seamlessly coupled with ensemble fore-

casting; 4) there is no need to code a tangent linear or

adjoint model; 5) it is easier to account for model error

because of its use of an ensemble forecast; and 6) the

ensemble members can be run simultaneously, making it

easy to parallelize (e.g., Evensen 2003; Hamill 2006;

Zhang and Snyder 2007).

Nevertheless, the variational data assimilation tech-

niques have been predominantly used at several opera-

tional NWP centers around the globe. Though the EnKF

has many advantages over the variational method, a

widespread operational implementation has yet to be

achieved. A global (regional) scale EnKF has been put

into operational practice at the Canadian Meteorological

Centre (Italian Weather Service). There are a few quasi-

operational LAM-EnKF systems such as those per-

formed at the University of Washington (UW), the

Pennsylvania State University (PSU), and NCAR. The

operational implementation of the EnKF may be affected

by the following factors: 1) the EnKF needs almost as

much computer resources as does 4DVar. Some weather

centers currently relying on 3DVar systems may not be

able to afford the cost. 2) Most centers have established

a variational system. It is likely more attractive to set up
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a hybrid system instead of establishing a brand new

standalone EnKF system. However, it remains to be seen

whether the EnKF approach will supersede the varia-

tional methods or whether the hybrid approaches will

prevail. This section reviews recent advances in the in-

tercomparison and hybridization between these two

state-of-the-art data assimilation approaches from the

aspect of limited-area model applications.

a. Intercomparison between the EnKF
and 3DVar/4DVar

Similar to the results obtained from a global-scale

perspective (Whitaker et al. 2004, 2008; Houtekamer

et al. 2005; Miyoshi and Yamane 2007; Szunyogh et al.

2008), the LAM EnKF generally compares favorably

with 3DVar. Meng and Zhang (2008a,b) compared

a WRF-based EnKF with 3DVar in a mesoscale con-

vective vortex (MCV) case for a month-long experiment

in which standard radiosonde observations were ingested

every 12 h (Fig. 4). The results showed that the EnKF

generally outperformed 3DVar for the time period of

interest. The 12-h forecasts from the EnKF analysis also

outperformed the 12-h forecasts initiated from the FNL/

NCEP analyses that assimilated many additional obser-

vations, including satellite radiances. In the case study of

Zhang et al. (2009a), a WRF-based EnKF assimilating

coastal Doppler radar observations was capable of sim-

ulating a rapidly intensifying landfalling hurricane, while

the WRF-3DVar configuration, assimilating the same

observations, failed almost completely.

The LAM EnKF also compares favorably with 4DVar.

A cloud-model-based EnKF was shown to have a larger

error than 4DVar at the beginning, but started to produce

better analyses than 4DVar after several assimilation

cycles, especially for model variables not functionally

related to the observations (Caya et al. 2005). This time-

dependent-relative performance is consistent with what

has been observed in comparisons between EnKF and

4DVar using an operational global model (Buehner et al.

2010a,b), where a better (worse) forecast initialized from

the ensemble mean analysis for the EnKF was produced

in the medium (short) range. The forecast may initially

suffer from the imbalance due to the ensemble averaging

but recover gradually over time. Zhang et al. (2011)

compared the forecast error of a WRF EnKF with WRF

4DVar and WRF 3DVar for a 1-month period (Fig. 5). It

was found that the advantage of the EnKF over both

3DVar and 4DVar becomes very evident after the 36-h

forecast time for all prognostic variables examined, while

the EnKF moisture forecast field is superior to both

3DVar and 4DVar at all lead times despite fitting less

closely to the observations at the analysis time. This result

is consistent with the time dependency of the relative

performance of 4DVar and EnKF in previous works

(Caya et al. 2005). It is rather remarkable that the 72-h

forecast error of the EnKF is comparable in magnitude to

the 48-h error of 3DVar and 4DVar, a gain of nearly

1-day lead time in forecast accuracy.

b. Hybrid of the EnKF with 3DVar/4DVar

Given the disadvantage of using static, mostly iso-

tropic background covariance, there are increasing ef-

forts to introduce the flow-dependent error statistics

estimated from short-term ensemble forecasts into a var-

iational data assimilation technique. Results show that

3DVar may benefit from using a homogeneous back-

ground error covariance calculated from an ensemble at

either the initial time only or evolving with time (Buehner

2005; Meng and Zhang 2008a).

Lorenc (2003) proposed an extended control variable

method using an ensemble based background error co-

variance in the background term of a variational analysis

scheme. Another approach to ingest an ensemble back-

ground error covariance into a variational method is by

directly combining the two error covariances (Hamill and

Snyder 2000). The extended control variable and direct

covariance combination approaches have been proven

to be theoretically equivalent by Wang et al. (2007). As

an extension of Lorenc (2003), C. Liu et al. (2008, 2009)

designed an ensemble-based, four-dimensional varia-

tional algorithm for both a 1D shallow-water model and

WRF by calculating the gradient of the cost function

using an ensemble background covariance in the obser-

vation space. This avoids the use of a tangent linear and

adjoint model. This method quickly converges to the true

solution and can produce results that are comparable to

4DVar, but at far less computational cost in its minimi-

zation.

Why is a flow-dependent background error covariance

beneficial for data assimilation? Zhang (2005) examined

the dynamics and structure of the mesoscale error co-

variance of a snowstorm that occurred along the U.S. east

coast in 2000, using an ensemble forecast in the perfect-

model context. The error covariance valid at different

times showed dramatic differences in magnitude, struc-

ture, and sign. The initial smaller-scale, uncorrelated,

mostly random perturbations evolved into larger-scale,

quasi-balanced disturbances with coherent structures

within 12–24 h (also in Meng and Zhang 2007). This up-

scale spreading of error was also clearly demonstrated in

the power spectrum analysis of the total difference en-

ergy for the same case in Zhang et al. (2003). Further-

more, the structures of the quasi-balanced disturbances

starting from a different set of initial perturbations were

found to be qualitatively similar, although details could

differ. A highly flow-dependent covariance was also
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observed in cloud models (e.g., Snyder and Zhang 2003;

Tong and Xue 2005), indicating that the true error co-

variance is likely flow dependent and ultimately determined

by the underlying governing dynamics. Consequently, the

use of a more realistic estimation of the background error

covariance could be the reason why the EnKF compares

favorably with variational methods.

Both the EnKF and variational method have their

own advantages and disadvantages. The EnKF benefits

from its flow-dependent background error covariance

but suffers from rank deficiency, while the variational

technique has advantages in its analysis algorithm, pro-

cessing complex observations and applying physical

constraints but suffers from the static and homogeneous

initial background error covariance (Zhang et al.

2009b). Instead of settling on one particular method,

more and more efforts are devoted to the hybridization

of the two approaches. Wang et al. (2008a,b) proposed

and tested one such hybrid system of ETKF 3DVar for

both OSSE and real-data scenarios using the extended

control variable method (Lorenc 2003). The hybrid

algorithm provides a more accurate analysis than

3DVar, especially in data-sparse areas. Another exam-

ple is a dual-resolution 3DVar-EnKF hybrid method

(J. Gao 2010, personal communication), which uses a

high-resolution 3DVar to provide analyses for a low-

resolution EnKF, while the low-resolution EnKF provides

flow-dependent ensemble covariance for the 3DVar to

adjust the static error covariance. This method can re-

duce the computational cost of a regular 3DVar-EnKF

hybrid without significantly reducing the quality of the

analysis.

A hybrid of EnKF with 4DVar is regarded as one of

the most advanced and most promising (as well as most

computationally and technically demanding) data as-

similation methods in both the research and operational

communities. The EnKF was first coupled with 4DVar

in the Lorenz-96 model under both perfect- and imperfect-

model assumptions (Zhang et al. 2009b). The fully

coupled assimilation scheme benefits from using the

state-dependent uncertainty provided by the EnKF,

while taking advantage of the 4DVar, which prevents

the EnKF from diverging: the 4DVar analysis produces

posterior maximum likelihood solutions by minimizing

a cost function about which the ensemble perturbations

are transformed. The hybrid system shows better perfor-

mance and is less sensitive to ensemble size, assimilation

window length, and model error than the stand-alone

4DVar and EnKF systems. A similar EnKF-4DVar cou-

pled system has been recently implemented in WRF that

was shown to outperform both the standalone WRF EnKF

and WRF 4DVar (Zhang 2010). However, a hybrid system

will likely inherit issues or complexity from the component

systems such as the rank deficiency problem in the EnKF

FIG. 5. Comparison between WRF-based EnKF, 3DVar, and 4DVar in terms of domain-averaged RMSEs averaged over all 59 WRF

forecasts from June 2003 for each DA experiment at forecast lead times from 0 to 72 h evaluated every 12 h for (a) U (m s21), (b) V

(m s21), (c) T (K), and (d) Q (g kg21) [adapted from Zhang et al. (2011)].
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and the use of an outer-loop in 4DVar. One approach to

deal with the rank deficiency problem in the hybrids of

4DVar and EnKF is through combining (or adding) the

ensemble covariance with the static background error co-

variance, as implemented in the hybrid method of Zhang

et al. (2009b), Zhang et al. (2011), and Zhang (2010). This

is to some extent similar to using additive covariance in-

flation for the EnKF as proposed in Hamill and Whitaker

(2005). For the outer-loop iteration issue in the hybrid/

coupled systems, it is possible to use Kalman smoothing in

the EnKF component and/or use relinearization of the

dynamic model with an improved prior in 4DVar. More

efforts are needed to tackle these issues in the future.

Considering the encouraging results obtained by cou-

pling the EnKF with variational methods, several major

operational NWP centers have already started testing or

implementing such approaches in their global data as-

similation systems such as Environment Canada (Buehner

et al. 2010a,b), Méteo-France (Berre and Desroziers 2010),

ECMWF, the Met Office, and NCEP. Similar efforts for

limited-area data assimilation systems have not been re-

ported.

The EnKF may also be coupled with the nudging

method (L. Lei 2010, personal communication), for

which the nudging coefficients are calculated using the

EnKF error covariance. It may allow the Kalman gain

matrix to be applied gradually in time, thus potentially

leading to better intervariable consistency and retention

of observational information than the EnKF.

5. Applications of the LAM EnKF beyond
assimilation and forecasting

Since the EnKF naturally combines ensemble forecasts

and data assimilation, it may be useful in many other

applications besides state estimation. Currently, the

LAM EnKF has been adapted for model error correc-

tion, sensitivity analysis, and observation targeting, etc.

a. Parameter estimation

As mentioned above, the parameterization of subgrid

physical processes is a major source of error in numerical

prediction. One important reason for this error is that

almost all parameters of subgrid physical parameteriza-

tion schemes are empirical because of a lack of direct

observations, and could therefore have large and un-

known uncertainties. The EnKF can be used to estimate

these parameters by the maximum likelihood method

(Mitchell and Houtekamer 2000) or the state augmen-

tation method (Anderson 2001; Annan et al. 2005; Aksoy

et al. 2005). This technique, usually called parameter es-

timation, may help improve the performance of the

EnKF via a model error correction. Here we mainly focus

on the results of parameter estimation obtained with

limited-area models.

Since there are no direct observations or physical evi-

dence describing the variability of various parameters, the

generation of a realistic initial ensemble for the estimated

parameter is even more difficult than for standard state

variables. A common practice is to simply use random

perturbations from an arbitrary distribution. To maintain

the ensemble spread of the estimated parameter, a con-

ditional covariance localization method has been pro-

posed, based on the rescaling of spread to a predefined

value (Aksoy et al. 2005).

Not all parameters can be successfully estimated. The

performance of a parameter estimation algorithm is de-

termined by the degree to which a parameter is identifi-

able, which depends on the correlation between the

parameter and model variables. There could be strong

nonlinearity between the parameters and the model state

variables. The feasibility with which a parameter can be

identified is closely related to the EnKF configuration,

such as observation type and location, ROI, ensemble

size, and realizations of the initial perturbation for both

the estimated parameter and model variables (Aksoy

et al. 2005; Tong and Xue 2008a,b). For example, by

assimilating simulated radiosondes and surface observa-

tions, the vertical-eddy-mixing coefficient of the fifth-

generation PSU–NCAR Mesoscale Model (MM5) could

nicely converge to the true value (Aksoy et al. 2006a).

Conventional and polarimetric radar measurements were

found to be beneficial for microphysical parameter esti-

mation as well (Tong and Xue 2008a,b; Jung et al. 2010).

Parameter estimation performance using the EnKF is

also closely associated with the number of simultaneously

estimated parameters. It was found that the estimation

of a single imperfect parameter is very effective at draw-

ing the model variables close to the respective perfect-

parameter case with a 2D sea-breeze model (Aksoy et al.

2006b) and with an MM5-based (Aksoy et al. 2006a)

EnKF in an OSSE context. Increasing the number of

estimated parameters inevitably leads to a decline in the

improvement from parameter estimation, but still has an

overall advantage over the imperfect case without pa-

rameter estimation in terms of the error statistics. The

benefits of single-parameter estimation were also found

in a PBL-model-based EnKF (Hacker and Snyder 2005)

and a cloud-scale EnKF (Tong and Xue 2008a,b).

In addition to all of the above OSSE studies, Hu et al.

(2010) reported a successful parameter estimation study

with assimilating real-data observations into a LAM EnKF

to estimate uncertain parameters in the Asymmetrical

Convective Model, version 2 (ACM2) PBL parameteriza-

tion scheme. As shown in Fig. 6, the simultaneous state and
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parameter estimation with the EnKF (SSPE) produces a

smaller forecast error and bias than the EnKF without pa-

rameter estimation (NoPE), both of which outperform de-

terministic forecasting without data assimilation (NoDA).

These results indicate that parameter estimation is helpful

not only in improving state estimation, but also in pro-

ducing a better performing PBL scheme. It was also found

that a better wind profile could be achieved by parameter

estimation, through the correction of a near-surface cold

bias and momentum mixing in the boundary layer.

b. Ensemble sensitivity analysis and
observation targeting

Ensemble sensitivity analysis examines how small

changes in the initial field may affect subsequent forecasts.

The response of both a chosen metric and/or full state

variables to a given initial perturbation or observation can

be predicted (Ancell and Hakim 2007; Hakim and Torn

2008; Torn and Hakim 2008b, 2009b; Torn 2010; Sippel

and Zhang 2010). As mentioned in section 3a, the en-

semble is usually initialized by perturbing the initial field

with fixed covariance perturbations randomly drawn from

the default background covariance of an existing 3DVar

system. Torn and Hakim (2008b) found sensitive regions

for sea level pressure and precipitation forecast metrics by

examining the climatological forecast sensitivity and the

impact of observations.

In addition to examining the response of a forecast

metric to currently available observations, as done in

ensemble sensitivity analysis, the EnKF can also be

used to locate the region where new observations

should be added (usually called a ‘‘sensitive area’’) to

minimize targeted forecast uncertainty (Hamill and

Snyder 2002). This approach is often referred to as

targeted or adaptive observation. Wu et al. (2009) com-

pared several approaches for observation targeting for

tropical cyclones in the western North Pacific and found

that the ETKF provides a similar sensitive area as the

adjoint-derived sensitivity steering vector. Stuart et al.

(2007) examined the effect that the targeted air quality

observations may have on forecasts from a 2D sea-breeze-

model-based EnKF and found that the sensitive area was

similar before and after the assimilation of regular network

observations.

The EnKF is also used to examine predictability of

mesoscale systems such as hurricanes and MCSs. Error

growth features in the mesoscale model were found to be

predominantly guided by the underlying balanced dy-

namics and moist convection (Zhang 2005). In compari-

son with smaller, marginally resolvable scales, larger-scale

error could be reduced more effectively by the EnKF

(Zhang et al. 2006), and even more so in the presence of

model error (Meng and Zhang 2007). In addition, the

presence of deep moisture and high CAPE in the initial

conditions could be the two most important factors for

tropical cyclone genesis (Sippel and Zhang 2010).

6. Summary and conclusions

Since the first application to a cloud model in Snyder

and Zhang (2003), great progress has been made in

various aspects of limited-area ensemble-based data as-

similation. This article reviewed recent advances and

challenges in the development and applications of the

EnKF, including its comparison and hybridization with

variational methods, and the use of limited-area models

that resolve weather systems from convective to meso-

and regional scales.

FIG. 6. Real-data application of a LAM EnKF in parameter es-

timation (PE) via assimilating wind profiler observation during

29 Aug–2 Sep 2006 in Texas [adapted from Hu et al. (2010)]. Two

parameters of the ACM2 PBL scheme implemented in WRF are

estimated; namely p, an exponent affecting the magnitude and

vertical distribution of eddy diffusivity within the unstably strati-

fied PBL, and Rc, a critical Richardson number determining the

transition between relatively large and small values of eddy diffu-

sivity. Four experiments were performed including SSPE, NoPE,

NoDA, and the deterministic forecast with estimated p and Rc

from SSPE (NoDAnew). (a) The time evolution of the mean bias

and RMSE of the 2-m temperature (T2) with respect to the un-

assimilated hourly observations at the 204 National Weather Ser-

vice and Federal Aviation Administration (NWS/FAA) sites for

the four experiments. The estimated p and Rc by SSPE are plotted

in red solid lines in (b) and (c) with the blue dashed lines repre-

senting their respective default values. The red dashed lines in (b)

and (c) denote the standard deviation of the estimated parameter.
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As an approximation to the classic Kalman filter and

as an emerging data assimilation technique, the EnKF

unavoidably faces many challenging issues, for LAMs

and convective/mesoscale systems in particular. How to

generate perturbations to form the initial and boundary

ensemble remains a difficult issue for the LAM EnKF

systems, mostly due to the lack of error statistics. The

ideal method would be to use a consistent global en-

semble forecast system to directly provide the initial and

boundary perturbations. When such a global ensemble

model is not available, the initial and boundary pertur-

bations can be generated by randomly sampling from

a climatology-based background error covariance with

proper tuning for regional scales, or by adding random

uncorrelated noise to a horizontally homogeneous

background for cloud-scale modeling. There is some

evidence suggesting that using the latter methods cause

noticeably larger error only near the boundary relative

to using a global ensemble system.

Surface, radar, and satellite observations are three

data sources that contain more mesoscale information

relative to radiosondes, although satellite radiance as-

similation is still in its infancy. There are many open

questions in surface observation assimilation such as the

mismatch between observed and model terrain height,

the heterogeneous distribution, and the related de-

termination of the radius of influence. Radar radial ve-

locity has been shown to have more of a positive impact

than reflectivity. Some special or synthetic observations

such as vortex position/intensity/size have also been

found to have apparent positive effects on the perfor-

mance of the LAM EnKF.

The presence of model errors can often result in a large

bias of the ensemble mean and too little spread, which

can ultimately cause the ensemble forecast to fail (filter

divergence). Model uncertainties can be accounted for by

perturbing the forecast field or the model itself. Random

model errors can be treated by covariance inflation with

an adaptive inflating factor or relaxation of analysis per-

turbation to the forecast perturbation, while model bias

correction or parameter estimation may be needed in

order to account for systematic model uncertainties.

Another promising alternative approach for taking into

account model uncertainties is through the use of multi-

model or multiphysics forecast ensembles, which has

been shown to be more effective in improving the analysis

of thermodynamic variables via bias correction and im-

proving the background error covariance structure.

As a result of computational constraints, sampling

error may result from the use of a small and insufficient

ensemble size, more so in the presence of model error

and nonlinearity. Sampling error in the EnKF can result

in underestimation of analysis ensemble spread and

unphysical, distant correlations that generate spurious

analysis increments. Such errors can be respectively al-

leviated through additive or multiplicative covariance

inflation or relaxation methods and via covariance lo-

calization, which constrains the impact of an observation

to a certain distance (ROI) from the observation using

an imposed localization function. It may also be bene-

ficial to use an adaptive ROI and covariance localization

function.

Many efforts have been made concerning the inter-

comparison between the LAM EnKF and 3DVar/4DVar.

Generally speaking, the LAM EnKF compares favorably

with both 3DVar and 4DVar, though larger errors may

occur early on in the EnKF configuration, likely due to the

imbalance issue as a result of using the sample covariance

to mimic the classical background error covariance. The

slightly higher performance of the EnKF over variational

methods is likely due to its more realistic flow-dependent

background error covariance. Many studies have clearly

demonstrated the benefit of including the ensemble-based

background error covariance into variational methods. In-

stead of choosing one approach, future data assimilation

may rely on a hybrid of the two methods, with the EnKF

benefiting from the dynamical constraints enforced by the

variational method and the variational schemes adopting

flow dependence in their background error covariance

from ensembles.

In addition to state estimation, the EnKF has been

applied to estimate parameters in certain physical pa-

rameterization schemes, to examine the predictability of

certain weather phenomena, and to predict the response

of certain forecast metrics to initial perturbations or

observations. Parameter estimation is an effective way

of accounting for model error for data assimilation. En-

semble sensitivity analysis can be used for observation

targeting, which is aimed at finding a location to add extra

observations in order to minimize a targeted forecast

uncertainty or to better design an observing network.

There are many foreseeable improvements for the

LAM EnKF. The most important, and difficult, im-

provement is better treatment of model error. An effort

must be made to examine why the multiphysics en-

semble method is effective and how it can be improved,

as well as how parameter estimation can be performed

in the presence of model error. Another aspect that is

also very important is how to better deal with sampling

error. Localization in terms of scale, variables, and ob-

servations and its deleterious impact on desired balance

needs to be examined for optimality. The assimilation of

satellite radiances is another issue that requires deep con-

sideration, since the extent to which vertical localization

should be applied, bias correction and data thinning are all

open questions. Much more attention should be focused on
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surface assimilation to improve mesoscale weather pre-

diction, because surface data contain rich information on

mesoscale phenomena. Improving computational effi-

ciency is also an important issue concerning the great op-

erational potential of the EnKF.

Errors in convective-to-mesoscale systems depicted in

LAMs may be more nonlinear and non-Gaussian. Though

the EnKF can be used in nonlinear and non-Gaussian

systems, the performance of the EnKF may be affected

and ultimately limited by these two characteristics. Vari-

ants of algorithms for highly nonlinear and non-Gaussian

systems have been proposed for simple models such as the

particle filter (Snyder et al. 2008; Lei et al. 2010) and

a morphing method (Beezley and Mandel 2008; Lawson

and Hansen 2005). Currently, it is very hard to apply these

filters to high-dimensional atmospheric models. How to

construct proper algorithms to deal with high nonlinearity

and non-Gaussianity awaits further efforts.

Finally, as summarized in the previous section, cou-

pling the EnKF with the variational method seems to be

a promising endeavor. Large efforts are being made on

this subject in several major weather forecast centers

such as Environment Canada, Méteo-France, NCEP,

ECMWF, and the Met Office for global models. A hy-

brid between the EnKF and the variational method may

become the prospective form of operational data as-

similation algorithms in both global and limited-area

data assimilation in the foreseeable future.
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