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ABSTRACT

An empirical flow-dependent adaptive observation error inflation (AOEI) method is proposed for as-

similating all-sky satellite brightness temperatures through observing system simulation experiments with

an ensemble Kalman filter. The AOEI method adaptively inflates the observation error when the absolute

difference (innovation) between the observed and simulated brightness temperatures is greater than the

square root of the combined variance of the uninflated observational error variance and ensemble-

estimated background error variance. This adaptive method is designed to limit erroneous analysis in-

crements where there are large representativeness errors, as is often the case for cloudy-affected radiances,

even if the forecast model and the observation operator (the radiative transfer model) are perfect. The

promising performance of this newly proposed AOEI method is demonstrated through observing system

simulation experiments assimilating all-sky brightness temperatures from GOES-R (now GOES-16) in

comparison with experiments using an alternative empirical observation error inflation method proposed

by Geer and Bauer. It is found that both inflation methods perform similarly in the accuracy of the analysis

and in the containment of potential representativeness errors; both outperform experiments using a con-

stant observation error without inflation. Besides being easier to implement, the empirical AOEI method

proposed here also shows some advantage over the Geer–Bauer method in better updating variables at

large scales. Large representative errors are likely to be compounded by unavoidable uncertainties in the

forecast system and/or nonlinear observation operator (as for the radiative transfer model), in particular

in the areas of moist processes, as will be the case for real-data cloudy radiances, which will be further

investigated in future studies.

1. Introduction

Assimilation of all-sky satellite-measured observa-

tions, including cloud-affected radiance, are still quite

limited, though usage of clear-sky satellite observa-

tions has been widely spread and has greatly improved

the accuracy of numerical weather predictions. Geer

and Bauer (2011, hereafter GB11) attributed part of

the difficulty in assimilating cloudy-affected microwave

radiances to their boundedness and heteroscedasticity, as

well as strong nonlinear relationship to atmospheric states.

These characteristics can severely degrade the impacts of

data assimilation, by causing systematic errors, bias, rep-

resentative errors, and errors inmodeling convective-scale

phenomena through forecasting models as well as micro-

scale characteristics of clouds through forwarding models

(Pires et al. 2010). Further difficulty in all-sky assimilation

lies in the discontinuity between clear- and cloudy-sky

radiances. Predicting the exact location of clouds is chal-

lenging because of either practical or intrinsic limits of at-

mospheric predictability (Lorenz 1969, 1982, 1996; Zhang

et al. 2002, 2003, 2007). Practical predictability refers to the

limit of prediction given the current realistic uncertainties

in either the initial conditions or forecast model while in-

trinsic predictability refers to the fundamental limit in the

atmospheric prediction with a nearly perfect model and

nearly prefect initial conditions (Lorenz 1996; Melhauser

and Zhang 2012; Tao and Zhang 2015; Sun and Zhang

2016). Large departures between the clear-sky surface

temperature and cloud-top temperature can occur far

more frequently than predicted by assumingGaussianity in

the background and observation error covariance. Many

researchers reported that mismatches of the sky type (i.e.,

clear or cloudy) between the first guesses and observations

often leads to a fat-tail distribution in the first-guess de-

partures (e.g., GB11; Tavolato and Isaksen 2015).Corresponding author e-mail: Fuqing Zhang, fzhang@psu.edu
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Nevertheless, there are great potentials of assimilating

cloudy-radiance observations for numerical weather pre-

diction. For example, Otkin (2010, 2012) showed that di-

rect assimilation of infrared cloudy radiances can improve

prediction of convective-scale severe storms through strict

quality control. Tavolato and Isaksen (2015) assessed the

methodology to give relatively smaller weight to the

observations with larger first-guess departures, and/or

by inflating the observation errors. Though large ob-

servation errors may artificially suppress the analysis

increments, they showed that the incremental accu-

mulation of those small impacts can be large enough to

make a distinguishable improvement from not using

the cloudy radiances at all.

GB11 demonstrated that satellite radiance observa-

tions have apparent heteroscedasticity, which means

that the errors are not universal but vary spatially and

among different variables. It is evident that there are

more uncertainties in dealing with cloudy radiances

than their clear-sky counterparts, but errors might also

vary under different atmospheric flow conditions (e.g.,

clear-sky radiance observation can result in large first-

guess departures if the model forecasts a cloudy sky). A

common way to estimate observation error variances is

to use a statistical relation (Parrish and Derber 1992;

Dee 1995):

d,dT 5B1R , (1)

where d is the innovation vector (i.e., the first-guess de-

parture), B is the background variance, and R is the ob-

servation error. Using Eq. (1) and the cloud amount,

GB11 formulated climatological observation errors.As an

extension of GB11, Okamoto et al. (2014), and Harnisch

et al. (2016) proposed the use of a climatological error

model for infrared radiances as a function of different

cloud-affected parameters.

In this study, we assess the impacts of an adaptive

observation error inflation (AOEI) technique for as-

similating all-sky satellite brightness temperatures with

the ensemble-based data assimilation framework first

introduced in Zhang et al. (2016, hereafter ZMC16).

Since the inner-core regions of tropical cyclones are

mostly covered by clouds, existing studies on assimi-

lation of satellite radiances for tropical cyclones have

been mostly focused on the clear-sky observations

away from the tropical cyclone cores (e.g., Wang et al.

2015; Zou et al. 2013, 2015). The impacts of AOEI were

tested for the matured phase of Hurricane Karl (2010).

This article is organized as follows. Model and experi-

mental designs are described in section 2. The AOEI

method is formulated and discussed in section 3. The

performance of AOEI in comparison with existing

methodologies is given in section 4. Conclusions are

provided in section 5.

2. Model configuration and experimental design

As in ZMC16, we used the ensemble Kalman filter

(EnKF) data assimilation system (Zhang et al. 2009,

2011; Weng and Zhang 2012, 2016) developed at The

Pennsylvania State University (PSU), which is built

around the Weather Research and Forecasting (WRF)

Model (version 3.6.1) (Skamarock et al. 2008) and the

Community Radiative Transfer Model (CRTM). This

CRTM-integrated framework enables us to directly

assimilate multiple channel brightness temperatures

with high temporal and spatial resolution into PSU

WRF-EnKF. As in ZMC16, there are three two-way

nested model domains with grid spacings of 27, 9, and

3 km, respectively (refer to supplemental Fig. 1 of

ZMC16 for domain configuration; the finest 3-km do-

main is shown and examined in all subsequent figures).

All the domains used 61 levels with the model top at

50 hPa in a stretched vertical grid. For model physics,

we utilized the WRF single-moment 6-class mixed-phase

microphysics scheme (WSM6; Hong and Lim 2006), the

YonseiUniversity planetary boundary scheme (Hong et al.

2006), the Tiedtke cumulous parameterization scheme

(Tiedtke 1989), and the Rapid Radiative Transfer Model

(RRTM) longwave and shortwave radiation schemes

(Iacono et al. 2008). Cumulous parameterization was only

applied to the coarsest (27km) domain. Since nearly all

convective activities associated with Hurricane Karl was

within the finest (3km) domain, the choice of whether or

not using cumulous parameterization on the intermediate

resolution (9km) domain should not affect the results.

CRTM is a rapid forward model to calculate brightness

temperatures for the satellite data assimilation (Han et al.

2006, 2007; Weng 2007). The simulated brightness tem-

peratures were computed with the successive order of in-

teraction (SOI) forward solver (Heidinger et al. 2006)

using the OPTRAN code from CRTM. The standard

profiles for the tropical region defaulted in CRTM were

used above the model top.

We conducted the perfect-model observing system

simulation experiments (OSSEs) with the same 60 initial

ensemble perturbations and the reference truth Karl sim-

ulation as the perfect-model OSSEs of ZMC16 (see con-

figurations above). Hurricane Karl progressed westward

across the Bay of Campeche before making landfall on

17 September. We computed brightness temperatures for

hypothetical future GOES-R (now GOES-16) Advanced

Baseline Imager [water vapor channels: channels 8, 9, and

10, wavelengths are 6.19, 6.95, and 7.34mm, respectively;

and window channel: channel 14, wavelength is 11.2mm,
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refer to Schmit et al. (2005)] every 10min. Synthetic ob-

servations were created by combining those simulated

water vapor brightness temperatures (BTs) and assumed

Gaussian-distributed universal, constant observation error

with a standard deviation of 3K, which includes both in-

strumental and representativeness errors. Those synthetic

BT observations were thinned with the same channel se-

lection method as employed in ZMC16, which retains for

assimilation clear-sky radiances in all three water vapor

channels (8, 9, and 10) in the clear-sky region and only the

cloudy-sky radiances in channel 8. In addition to BTs,

synthetic tropical cyclone minimum sea level pressure

(SLP) observations available every hour were derived

from the truth simulation with an assumed observation

error of 3hPa. The experiment that assimilated BT with

AOEI and minimum SLP is hereafter called AOEI.

Slightly different from ZMC16, which employed a ra-

dius of influence of 30km for hydrometeors and 200km

for other variables, this study utilizes the successive co-

variance localization (SCL) method proposed by Zhang

et al. (2009), which allows better capturing convective-

scale structures with a smaller covariance localization ra-

dius while updating vortex-scale structure with a larger

covariance localization distance. Here the brightness

temperatures are assimilated every 12km by 12km with a

30-km radius of influence and every 18km by 18kmwith a

300-km radius of influence. No vertical covariance locali-

zation is used in this study and ZMC16, while the co-

variance relaxation method of Zhang et al. (2004) with

coefficient 5 0.5 is applied. The assimilation was initial-

ized at 2200 UTC 16 September and continued until

0600 UTC 17 September 2010 with brightness tempera-

tures assimilated every 10min and minimum SLP assimi-

lated every hour. Despite using different radii of influence

via SCL, the AOEI experiment performed very similarly

to the experiment of ZMC16 that showed great potentials

in assimilating all-sky radiance observations. The current

study focuses on the methodology and effectiveness of

using AOEI.

3. The adaptive observation error inflation (AOEI)
algorithm

a. Error distribution

Consistent with the well-established methodology in

estimating observation errors (Parrish and Derber 1992;

Dee 1995; Desroziers et al. 2005; GB11; Li et al. 2009),

the error statistics [Eq. (1)] in the EnKF framework can

be modeled as

d,dT5[H(x1 x0)2H(x1 x0)][H(x1 x0)

2H(x1 x0)]T1R , (2)

where H is the observation operator (linear or non-

linear) and x0 is the ensemble perturbation vector

of model state variables (Evensen 2003). Thus,

H(x1 x0)2H(x1 x0) is the ensemble perturbation vector

in the observation space.

Figure 1c shows an example of the spatial distribution of

the diagonal term (variance) of the ensemble-estimated

forecast error covariances for the simulated brightness

temperatures if observed by GOES-16 ABI channel 8

(6.19mm) for Hurricane Karl at 2200 UTC 16 September

(the verifying truth at this same time is shown in Fig. 1a

just before the start of the initial EnKF assimilation of

brightness temperature). The flow dependency of error

distribution can be evidenced from Fig. 1b, which shows

the squares of the first-guess departure (or innovation 5
observation2 prior): the regions with larger departures,

such as the rainbands in the northwest quadrant of the

domain, are corresponding to regions with large back-

ground error variances (Fig. 1c). Figure 1d shows that

the difference between the observed innovation square

(d2) and the summation of observation and forecast er-

ror variances (s2
o 1s2

H(xb)
) indicating that an optimum

statistical relationship in Eq. (2) is likely not satisfied,

especially over the cloud-affected areas. As discussed in

GB11, such discrepancies that are currently treated in

different data assimilation approaches as the observa-

tion errormay be coming from representativeness errors

in either the forecast model and/or from the observation

itself. The AOEI method proposed here is trying to

mitigate such discrepancies through inflating the ob-

servation error as detailed below.

b. Observation error with a nonlinear observation
operator

Figure 2 shows the ensemble distribution of the

simulated BTs forGOES-16ABI channel 8 (6.19mm),

column-integrated total hydrometeors, column-integrated

total water vapor, and 10-m meridional wind at the se-

lected locations marked in Fig. 1. The thermodynamic

variables of hydrometeors and water vapor are more

sensitive to the infrared brightness temperature mea-

surements than the 10-m wind speed. The four points

(A–D) sampled exemplify for the hurricane outside-of-

core, eye, primary rainband, and eyewall regions, re-

spectively. At point A, both the observation and the prior

were categorized as in the clear-sky area. The truth is well

within one standard deviation from the ensemblemean of

BTs and themodel state variables at point A (Figs. 2a–d).

At the edge of the primary rainband where the ensemble

members tend to diverge, the ensemble forecastedBTs in

point B displayed a bimodal distribution with one peak

typical of (low) cloudy-sky radiance and the other peak

typical of (high) clear-sky-regime BT while the ensemble
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mean is close to the observation (Fig. 2e). Nevertheless,

the true amount of water vapor mixing ratio and 10-m

meridional wind are away from the range of values sim-

ulated by many ensemble members (Figs. 2g,h). Point C

represents the hurricane eye (Figs. 2i–l), where the en-

semble members are often forecasted as cloudy sky be-

cause of the difficulty in precisely capturing the location

of the cloud-free (or cloudless) hurricane center in the

truth simulation. Correspondingly, many of ensemble

members forecasted a much lower BT with a larger

amount of hydrometeors than the observation (Fig. 2e).

However, though not perfect, the distributions of other

model state variables did encompass the truth well ap-

proximately within their respective 1s distribution

ranges. Within the eyewall region (point D) where both

model and observation tend to simulate strong clouds, the

BT was better captured by the ensemble (Fig. 2m) com-

pared to the primary rainband or eye region, but the en-

semble distribution of model state variables in the eyewall

are not necessarily consistent with BT (Figs. 2n–p). In

particular, the true value of hydrometeors was considerably

larger than the ensemble mean (Fig. 2n).

A common practice in treating the inconsistency

between the innovation and the prior ensemble spread

is to inflate the ensemble covariance. However, the

covariance inflation for the prior ensemble state vari-

ances may not necessarily inflate properly the ensem-

ble spread in observation space when the observation

operators are more nonlinear, which can be further

complicated by the rank deficiency due to a limited

ensemble size. Because large departures in the obser-

vation space do not necessarily correlate with large

errors in the model state space, it might be advanta-

geous to treat such uncertainties as part of the obser-

vation error for the lack of representativeness, rather

than as part of the background error. It is clear that

these representative errors may exist even if the fore-

cast model is perfect, without considering errors in

either the forecast model (WRF) and/or the radiance

forward model (CRTM).

Nonlinearity and rank deficiency can also lead to

erroneous analysis increments in a limited-size EnKF

data assimilation system. The necessity of dealing

with large departures in the observation space can be

FIG. 1. (a) Simulated brightness temperature from GOES-16 ABI channel 8, (b) the innovation square (d2),

(c) ensemble variance, and (d) the difference between the observed innovation square (d2) and the summation of

observation and forecast error variances (s2
o 1s2

H(xb)
), verified at the initial assimilation time at 2200 UTC 16 Sep.

Star, circle, square, and triangle markers represent the points shown in Figs. 2 and 8.
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exemplified in the following thought experiment.

Hypothetically, the analysis increments with assimi-

lating one observation through the EnKF update is

modeled as follows in a scalar form:

x
a
2 x

b
5

s
xb
s
H(xb)

corr[x
b
,H(x

b
)]

s2
o 1s2

H(xb)

[ y
o
2H(x

b
)] , (3)

where x denotes any variable to be updated whose prior

standard deviation is sxb (subscripts a and b denote

analysis and background, respectively), yo is a BT ob-

servation with an assigned random error (so) of 3K, and

H(xb) is the simulated observation with the ensemble-

estimated standard derivation of sH(xb). Let x be the sea

level pressure (SLP) at a model grid point, hypotheti-

cally but realistically, sxb be 5hPa, sH(xb) be 5K, and the

correlation between SLP and BT corr[xb, H(xb)]5 0:5.

If because of the representativeness error there is a

mismatch between the cloudy and clear-sky regions

for the observed versus simulated BTs (which can

be quite common) that leads to a large innovation

[ yo 2H(xb)]5 40K. Assimilation of this particular

observation can result in a SLP analysis increment of

15 hPa. Because of the nonlinearity and sampling er-

ror, such innovation and ensemble correlation and

the resultant large analysis increment can be highly

unrepresentative, which can lead to large imbalance in the

EnKF update. The AOEI is designed to limit such rep-

resentativeness errors in the EnKF analysis increment.

FIG. 2. Prior ensemble distributions of the (a),(e),(i),(m) brightness temperature; (b),(f),(j),(n) column-integrated hydrometeors;

(c),(g),(k),(o) column-integrated vapor mixing ratio; and (d),(h),(l),(p) the 10-m surface meridional wind. The sky-blue box shows the

ensemble distribution, the blue line shows the estimated first-guess distribution based on Gaussian assumption, and the red star shows

the verifying truth, for points A, B, C, and D marked in Fig. 1.
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c. Adaptive estimation of observation error variance
(AOEI)

More generally, observation error R may include in-

strumental noiseO and representative error F, the latter

of which can result from inaccurate interpolation, mis-

matched scales, and imperfectness in the observation

operator (e.g., modeling atmospheric radiative transfer

process by CRTM in this study), as well as error due to

the nonlinearity of the dynamics and rank deficiency of

using a small-size ensemble, that potentially prevent the

ensemble (mean and spread) to properly represent the

observed phenomena. GB11 reported that the repre-

sentative error can bemuch larger than the instrumental

noises in satellite BTs. Typical value of instrumental

noises is in the order of 1–2K, while representative er-

rors can be as large as 20K or bigger.

The empirical AOEI method we proposed can be

modeled in the following scalar form for any given BT

observation:

s2
o 5maxfs2

ot, [yo 2H(x
b
)]22s2

H(xb)
g, (4)

where sot represents the uniform-distributed obser-

vation error composed of instrumental noise [refer to

Eq. (2), the diagonal term of O] and flow-independent

component of representative error (sot 5 3K in this

study). Thus, s2
o 2s2

ot represents the diagonal term of

the flow-dependent F in Eq. (2). We set sot as the

empirical lower bound of the observation error since

the total observation error variance would not be

smaller than that in O. With AOEI, the observation

error was inflated adaptively when the innovation was

too large to be covered by the background variances.

The summation of the background and observation

error variances will approach the square of the in-

novation by design, which is a desirable relationship

according to Eq. (2).

AOEI is intended to suppress erroneous analysis

increments that are induced by the representative and

sampling errors, which may also allow gradual transi-

tion between clear- and cloudy-sky regions. For ex-

ample, the large analysis increment in SLP for the

hypothetical BT observation in section 3b (with a large

first-guess departure) will be limited to only 0.3 hPa

with AOEI (instead of 15 hPa without AOEI). This

much-reduced analysis increment is likely to maintain

better balance, regardless of whether the forecasted

sky conditions (clear or cloudy) match with the ob-

servation. Although it is expected and unavoidable that

sometimes the use of AOEI may artificially suppress the

‘‘valid’’ analysis increments, this disadvantage may be

partially compensated by assimilating large volumes of

satellite radiance observations that will be available from

GOES-16.

d. The alternative Geer–Bauer observation error
inflation (GBOEI) method

To further demonstrate the effectiveness of AOEI,

we compared the EnKF analysis using the newly pro-

posed technique to those using two other types of ob-

servation error representation. The first is to assume

observation error was constant (sot 5 3K) everywhere

including both the clear-air and cloudy/rainy-sky re-

gions with no observation error inflation (hereafter the

experiment is referred to as ‘‘noOEI’’). In the second

experiment, the observation error is assumed to be an

empirical function of the observed brightness tem-

perature (and thus indirectly clouds) derived from a

‘‘climatological’’ all-sky error distribution using the

methodology proposed by GB11 (hereafter the ex-

periment is referred to as ‘‘GBOEI’’). GB11 argued

that heteroscedasticity (i.e., dependence of errors on

one or more parameters) of the observation error,

which is a part of the representativeness error, can be

empirically modeled as a function of cloud amount

(which was represented by the horizontally polarized

37-GHz microwave BTs for their study). Their for-

mulation of the observation error used a so-called

‘‘symmetric’’ cloud amount, which is an average of the

cloud amount in terms of brightness temperature

computed from the observation and the model prior or

first guess. The use of symmetric cloud amount will

lead to a small observational error where both the

observation and the first guess are in clear-sky regime

but the observational error increases when either of

them is cloud affected.

Here, similar to GB11, we take the BTs of observed

and prior simulated BTs to make a symmetric predictor

of the cloud-affected radiances for each channel:

C
A
5

jB2B
clr
j1 jO2B

clr
j

2
, (5)

where B is first-guess (prior) simulated and O is ob-

served GOES-16 ABI BT, and Bclr is the first-guess

(prior)-simulated BTwithout cloud scattering and cloud

emission. We calculated synthetic observations for 1000

times, each with added random observation error, and

compared them to the hourly outputs of no-DA (data

assimilation) experiment (i.e., 1-day deterministic fore-

cast from the initial ensemble prior mean without any

data assimilation) to obtain the error function. The

method we adopted here is also similar to that pro-

posed in Okamoto et al. (2014), which defined a param-

eter to formulate cloud impacts on various channels.
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They calculated a symmetric difference between the BTs

with and without cloud-scattering and cloud-emission

calculation, and showed that this parameter can well de-

scribe the variations of first-guess departures statistics.

The so-derived climatological error (in standard de-

viation; absolute value of first-guess departures) modeled

as a function of symmetric cloud effects parameter CA is

shown in Figs. 3a, 3c, and 3e. We can see a similar de-

pendence of the observation error on CA to the de-

pendence on the symmetric cloud amount as shown in

Fig. 8 of GB11 and Fig. 7 of Okamoto et al. (2014). A

small value of CA means that both the first-guess prior

and the observation are categorized as clear sky, which is

generally associated with a smaller observation error.

The error peaks at around CA 5 20K and gradually de-

creases with higherCA. This pattern is quite reasonable in

the sense that the largest errors tend to occur when

there is a mismatch of sky types between observation

and prior (large first-guess departure), which would fall

into the bins for in-between clear and cloudy skies

around CA 5 20K. FollowingGB11 andOkamoto et al.

(2014), we prepared a lookup table for the error func-

tion g, gLUT, with the bin size of 2K in CA, and total

observation error was calculated as follows:

g(C
A
)5maxfg

LUT
(C

A
),s

clr
g (6)

and

s2
o 5s2

clr 1 fg2(BT
14
)2g2(BT

14
j
clr
)g , (7)

where s2
clr is the default constant observation error

variance in the clear-sky region (which is assumed the

FIG. 3. (a),(c),(e) The Geer–Bauer observational error models for the BTs in GOES-16 ABI (a) channel 8,

(c) channel 9, and (e) channel 10 used in experiment GBOEI. The standard deviation of first-guess departures is

shown by a red solid line, which is modeled as a function of symmetric cloud effect parameter CA, derived from

a 1-day dataset of the no-DA experiment. The gray box shows the number of observations classified into each bin.

(b),(d),(f) Innovation statistics, normalized by the summation of background variance and prescribed observa-

tion errors using AOEI (blue), GBOEI (red), and noOEI (green), forGOES-16ABI (b) channel 8, (d) channel 9,

and (f) channel 10 (solid line). The dashed line is the targeted perfect Gaussian distribution.
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same as s2
ot, based on the assumption that the sources of

the observation error in the clear-sky region exist uni-

formly in the domain). For CA outside the range of the

training dataset, we applied the value of g(CA) at max-

imum CA, though the maximum rarely occurred.

Figures 3b, 3d, and 3f compare distributions of the

first-guess departures among AOEI, GBOEI, and no-

OEI computed from each of the 60 ensemble members,

all of which are normalized by the square root of the

sum of the prior ensemble variance plus the observa-

tion errors assumed in each of the respective experi-

ments. Both AOEI and GBOEI approached a more

Gaussian-shaped distribution than by no-OEI. GBOEI

fits better to the Gaussian distribution for large nor-

malized first-guess departures (with an absolute value

greater than 3) while AOEI overall has a better fit

for relatively small normalized first-guess departures

(approximately 22 to 2).

Figure 4 compares the spatial distribution of inflated

observation errors so for GOES-16 ABI channel 8

between AOEI and GBOEI at selected times. The

observation errors using AOEI are more localized and

larger in magnitude in regions with strong, smaller-

scale convection such as those to the southeast of Karl

(Fig. 4a), on the edge of the rainbands (Figs. 4a,c,e),

and to the outer edge of the eyewall (Figs. 4c,e). On the

other hand, by design, large values of inflated obser-

vation errors are almost everywhere in this model do-

main for GBOEI except for a few small areas that have

clear sky in both the prior estimate and in the obser-

vations (e.g., to the northeast corner of the domain).

The biggest difference between AOEI and GBOEI lies

in the cloudy regions estimated by the prior, where

either the innovation is small and/or the ensemble

spread is already very large, both of which cases will

have inflated observation error by GBOEI but not by

AOEI. The inflated observation error structures for

GOES-16 ABI channels 8 and 9 are quite similar to

channel 8. Results shown in Figs. 3 and 4 suggest that

AOEI is likely to be more flow dependent and could be

more effective in controlling large innovations than

GBOEI, both of which may improve in the innovation–

error relationship [Eq. (2)] over the no-OEI approach

assuming a constant observation error everywhere.

4. Potential impacts of AOEI

a. EnKF assimilation of all-sky radiance with
different observation error representation

The truth versus posterior-simulated brightness tem-

peratures of GOES-16 ABI channel 14 (11.2mm), 10-m

wind speed, water vapor mixing ratio, and SLP at 0, 3,

and 6h with the EnKF assimilation of the BTs and

minimum SLP are shown (see Figs. 6–8) by applying

three different representations of observation error:

AOEI, GBOEI, and no-OEI. As an independent ver-

ification (i.e., these observations are not assimilated),

we utilized simulated BT from channel 14, which is

sensitive to cloud distribution. Experiment AOEI is

almost the same as the perfect-model experiment,

which assimilated both BTs and minimum SLP in

ZMC16 except for using the SCL method for radius of

influence (refer to section 2 and ZMC16). The impact

of assimilating all-sky GOES-16 radiances has been

clearly demonstrated in ZMC16 in terms of the accu-

racy of both the EnKF analysis and forecasts in com-

parison to experiment that only assimilated minimum

SLP but not brightness temperatures. Here we com-

pare the effectiveness and performance of the EnKF

using two different observation error inflation methods

(AOEI and GBOEI) as well as the one without obser-

vation error inflation (no-OEI).

Right after the initial assimilation cycle at 2200 UTC

16 September, the EnKF-analyzed BT field captured

well the main characteristics of Hurricane Karl in the

truth simulation, including both the primary eyewall

and the outer rainbands (Figs. 5a–d). Continuous as-

similations of BTs from channels 8–10 further im-

proved the representation of the storm (Figs. 5f–h,j–l)

and compared well with the verifying truth: by 0400 UTC

17 September, the EnKF analysis captured well the de-

tailed structures of the clear region of the hurricane eye,

the primary rainbands, as well as most of the individual

convective clouds in the outer rainbands. While the

analyzed BTs are overall similar among all three OS-

SEs (with flow-dependent adaptive observation error

inflation), the analyzed 10-m wind speed and water

vapor mixing ratio with AOEI and GBOEI are con-

siderably smaller and more smoothed than no-OEI,

though the overall patterns including the maximum

in the eyewall and the highly asymmetric secondary

maximum associated with the primary rainband are

similar (Figs. 6 and 7).

b. Vertical error structure with different observation
error representations

To further investigate the effectiveness of AOEI, we

compare the impacts of using the three different repre-

sentations of observation error in assimilating of a sin-

gle cloudy radiance observations from GOES-16 ABI

channel 8 on theEnKFanalysis. The vertical distributions

of the analysis error (at the observation grid) after each

assimilation of the observations (points B andCmarked in

Fig. 1, respectively) that have a relatively large first-guess

departure are shown inFig. 8 as an example. The values for
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CA, first-guess departures, prior ensemble standard de-

viation in observation space, and the inflated observation

errors with AOEI and GBOEI are listed in Table 1. Both

points were assigned the same observation error according

to climatology using GBOEI, while AOEI inflates the

observation error differently for these two points given

different first-guess departures and different ensemble

spreads.

At point B, because the ensemble spread is compa-

rable to the first-guess departure, its observation error

FIG. 4. The inflated observation error (K) forGOES-16ABI channel 8 from (a),(c),(e)AOEI

and (b),(d),(f) GBOEI, contour shows symmetric cloud effects parameterCA (contoured every

5K), verified at (a),(b) 2200 UTC 16 Sep; (c),(d) 0100 UTC 17 Sep; and (e),(f) 0400 UTC 17 Sep.
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was slightly inflated using AOEI (and remains the same

as in no-OEI). A smaller observation error (more ac-

curate) and a larger first-guess departure will lead to

larger analysis increments; with GBOEI, the analysis

increments are much reduced and the analysis error

remained large with the observation error inflation

based on the simulation-derived climatology that mimics

the approach in GB11 (Figs. 8a–c).

At point C, since the first-guess departure is much

larger than the ensemble spread, the observation er-

ror is significantly inflated in AOEI, and thus the

analysis increments with no-OEI, which are spuri-

ously large for meridional wind, are effectively sup-

pressed. The observation error is also inflated in

GBOEI though to a lesser extent and thus the analysis

increments remained considerably larger than those

in AOEI but significantly smaller than those in

no-OEI (Figs. 8d–f). Comparing with the verifying

truth, these proof-of-concept single-observation as-

similation experiments of the cloudy radiance ob-

servations at these two points exemplify the potential

advantages of using AOEI over GBOEI and no-OEI

given its use of situation-dependent observation error

inflation. On the other hand, the impacts of a truly

accurate observation and accurate correlation will

likely be much reduced if the observation error is ar-

tificially inflated.

The relevance of these single-observation assimi-

lation experiments is demonstrated through Fig. 9,

which shows the comparison of the vertical distribu-

tion of the horizontal domain and temporally aver-

aged root-mean-square error (RMSE) for the EnKF

analysis of selected variables for each of the three

OSSEs assimilating the all-sky radiances but with

FIG. 5. The simulated brightness temperatures ofGOES-16ABI channel 14 at (a)–(d) 2200 UTC 16 Sep, (e)–(h) 0100 UTC 17 Sep, and

(i)–(l) 0400 UTC 17 Sep from the (a),(e),(i) verifying truth; (b),(f),(j) OSSE with AOEI; (c),(g),(k) OSSE with GBOEI; and

(d),(h),(l) OSSE with no-OEI.
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different representation of observation error. Over-

all, the RMSE both with AOEI and GBOEI are no-

ticeably smaller than no-OEI (Figs. 9a–e), except for

the hydrometeors, which is more directly connected

to observed variables and, thus, is likely to have less

representativeness error (Fig. 9f). The RMSEs with

AOEI and GBOEI are mostly similar, but AOEI

(GBOEI) slightly better analyzed lower (upper) tro-

posphere. Comparison of the cloudy-affected and

other indirectly affected variables further supports

the potential effectiveness of inflating observation

errors to deal with the representativeness error.

c. Temporal error growth with different observation
error representations

More quantitatively, Fig. 10 shows the comparison

of the time evolutions of the domain-averaged RMSE

of the prior estimate and EnKF analysis of selected

variables. The difference in RMSEs among three all-

sky OSSEs are small for cloud-affected variables

(Figs. 10f,h,i) but large for other indirectly affected

variables (Figs. 10a–e,g), which is consistent with

Figs. 5–7 that compared brightness temperatures,

10-mwind speed, water vapor mixing ratio, and SLP. The

RMSEs of in particular indirectly affected variables

with AOEI are slightly smaller than those in GBOEI,

possibly by pulling more information from observa-

tions through overall smaller observation errors while

suppressing potentially ‘‘erroneous’’ analysis in-

crements through larger observation errors in localized

area as shown in Fig. 4. Both AOEI and GBOEI are

considerably smaller than no-OEI likely by limiting

the analysis increments where there are large repre-

sentative errors. Moreover, at most of the assimilation

time, the EnKF updates with AOEI and GBOEI im-

proved all variables from prior to analysis except for

FIG. 6. As in Fig. 5, but for the 10-m surface wind speed (color shading) and sea level pressure (contoured every 5 hPa).
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water vapor mixing ratio (which is likely due to more

small-scale clouds influences and thus more represen-

tative error in the RMSE), while those with no-OEI

often worsened the analysis of indirectly affected var-

iables over prior, suggesting the accuracy of the sam-

pling correlation between the BT observation and

water vapor may be low especially under clouds while

there are large representativeness errors in either BTs

and/or water vapor fields.

To further explore the impact of AOEI, we also

conducted another experiment using the method

proposed by Li et al. (2009) that simultaneously esti-

mates both the observation error and a multiplicative

inflation factor. Following Li et al. (2009), the range of

inflation factor was set between 0.9 and 1.2. After each

assimilation cycle, we estimated the observation error

and the inflation factor for BTs, both of which are

assumed to be uniform within the entire domain 3

(without any consideration of heteroscedasticity).

These estimated values will be applied for the sub-

sequent assimilation cycle. The temporal evolution of

RMSEs for this additional experiment are also shown

in Fig. 10 as black lines (denoted as ‘‘simultaneous_

est’’). RMSEs with the Li et al.’s simultaneous esti-

mation method were similar to those from the no-

OEI experiment, but were noticeably larger than

both the AOEI and GBOEI experiments, high-

lighting the merit of modeling heteroscedasticity

and representativeness error by either GBOEI

or AOEI.

To demonstrate the influence of small-scale structures

and their associated representative error, we conducted

two-dimensional (2D) Fourier decomposition on the

prior estimate and EnKF analysis of the horizontally

detrended selected variables to divide Fig. 10 into

scales with 2D horizontal wavelengths larger than

FIG. 7. As in Fig. 5, but for the vertically integrated water vapor mixing ratio (color shading).
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300 km (Fig. 11) and smaller than 300 km (Fig. 12).

AOEI showed some advantage over GBOEI in up-

dating cloudy-affected variables at larger scales

(Figs. 11f,h,i), possibly because AOEI modeled

smaller observation error variance for most of the

domain as shown in Fig. 4, while GBOEI better an-

alyzed smaller-scale structures (Figs. 12f,h,i), with

relatively smaller observation error variances in the

regions where AOEI locally has large observation

error inflation. The RMSEs are overall similar among

three OSSEs for other indirectly affected variables in

large scales (Figs. 11a–e,g), but distinguishably

smaller for AOEI and GBOEI compared to no-OEI

for indirectly affected variables in small scales

(Figs. 12a–e,g), in particular for temperature and the

mixing ratio. Moreover, the analysis RMSEs most of

the time became larger than the prior for no-OEI,

but they are noticeably suppressed for both AOEI

and GBOEI. Results shown in Figs. 10–12 further

suggested the potentials of AOEI to better control

the erroneous analysis increments through assimi-

lating brightness temperatures, which are likely due

to representative error and sampling issues mainly

in small-scale structures. Figure 4 further indicates

FIG. 8. Vertical distribution of the prior error (gray shading), and posterior error for the EnKF analyses assimilating only one obser-

vation on each grid using AOEI (blue), GBOEI (red), and no-OEI (green), compared with different observation error representations at

(a)–(c) point B and (d)–(f) point C marked in Fig. 1.

TABLE 1. Values (K) for BT14, first-guess departures, prior ensemble standard deviation, and the inflated observation errors with AOEI

and GBOEI as well as for no-OEI.

CA yo 2H(xb) sb so (AOEI) so (GBOEI) so (no-OEI)

Point B (primary rainband) 10.6 10.4 9.7 4.0 13.6 3.0

Point C (TC eye) 18.2 31.4 10.4 29.6 14.9 3.0
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the potential advantages of AOEI over GBOEI,

both of which will lead to much smaller RMSEs than

no-OEI for variables that do not directly affect or

are not directly affected by the radiance being

assimilated.

d. Dynamical imbalance

To further estimate the potential imbalance induced

by EnKF data assimilation cycle, Fig. 13 compared the

second derivative of surface pressure at each time step

during the first 1-h integration of the deterministic

forecasts from EnKF analysis mean. The domain root-

mean-square (RMS) of ›2ps/›t
2 grossly represents the

gravity wave activity and serves as an indicator of

imbalance and adjustment (Greybush et al. 2011;

Houtekamer and Mitchell 2005; Poterjoy and Zhang

2014). RMS ›2ps/›t
2 is largest for no-OEI followed by

AOEI and GBOEI, indicating less mass adjustment

occurred with AOEI than with no-OEI, and further

less with GBOEI, potentially due to inflated observa-

tion errors (and thus smaller analysis increments) as

shown in Figs. 4b, 4d, and 4f. The comparison of the

flow imbalance with these three different representa-

tions of observation error further suggests the effec-

tiveness of inflating observation errors to deal with the

imbalance with assimilating brightness temperatures,

likely by suppressing the influences of unrepresentative

observation errors caused by nonlinearity in the

FIG. 9. Vertical distribution of the square root of the domain-averagedEnKF analysis errors averaged over all hourly analysis times with

AOEI (blue), GBOEI (red), and no-OEI (green) during 2200 UTC 16 Sep–0400 UTC 17 Sep for (a) zonal wind, (b) meridional wind,

(c) temperature, (d) vertical wind, (e) mixing ratio, and (f) all hydrometeors.
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observation operator and/or by sampling due to limited

ensemble size.

5. Conclusions

An empirical flow-dependent adaptive observation

error inflation (AOEI) method is proposed in this

study for assimilating all-sky satellite data under the

EnKF framework. We assessed the potential usage of

ensemble-based flow-dependent covariance structures

on the estimation of adaptive observation error. The

observation error was inflated if the square of the in-

novation (first-guess departure) exceeds the summa-

tion of background variance and original observation

error variance. We have shown that the satellite radi-

ances can have much larger representative error than

the instrumental noises, either due to the strong non-

linearity in the observation operator and/or in the

sampling error because of limited ensemble size. It

can also be due to the strong nonlinearity and vari-

ability, and limited predictability, for the moist at-

mosphere where the radiances are affected by clouds.

Those large representative errors are shown to exist

even under a perfect-model scenario without any

model error. The AOEI method is designed to limit

unrepresentative innovations, inaccurate sampling

correlation, and the associated large but potentially

erroneous analysis increments. The potential impacts

FIG. 10. Temporal evolution of domain-averaged EnKF RMSEs with AOEI (blue), GBOEI (red), no-OEI (green) and simultaneous

estimationmethod (black) for (a) zonal wind, (b)meridional wind, (c) temperature, (d) vertical wind, (e) water vapormixing ratio, (f) sum

of mixing ratio for all hydrometeors, (g) sea level pressure, (h) brightness temperature of GOES-16 ABI channel 14, and (i) brightness

temperature of GOES-16 ABI channel 8.
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of AOEI were investigated through a series of

convection-permitting perfect-model observing sys-

tem simulation experiments using the PSU WRF-

EnKF system, in comparison with experiments using

an alternative empirical observation error inflation

method proposed by Geer and Bauer (2011) as well as

the experiments with a constant radiance observation

error everywhere. Both methods with observation

error inflation have shown to perform similarly and

effectively in suppressing potentially large, erroneous

analysis increments that will help to mitigate un-

physical flow imbalance induced by the EnKF analy-

sis, comparted to experiment using a constant

observation error without inflation. There may be

some potential advantages of the newly proposed

AOEI method over the Geer–Bauer method in better

updating some state variables at large scales and in

better maintaining flow balance likely because of

its flow- and situation-dependent observation error

modeling. The AOEI method is also easier and more

readily applied in the ensemble data assimilation

framework that does not need to have climatological

error distribution statistics. Preliminary results using

the above methods to assimilate real-world observa-

tions (not shown) are also promising, and are consis-

tent with results from the perfect-model OSSEs

presented in this study. Future work will further ex-

amine the effectiveness of the proposed AOEI

method for real-data observations that have more

complex sources of errors likely not being sufficiently

represented in this study.

One of the key assumptions made in this study is the

ability of the ensemble to accurately represent the

background uncertainty (spread) and correlations.

FIG. 11. As in Fig. 10, but for the horizontal scales larger than 300 km.
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Since the ensemble spread is also used here to esti-

mate the flow-dependent observation error, an in-

sufficient ensemble spread due to model error, limited

ensemble size, and/or filter-divergence, may lead to

weighting the observation inappropriately small and

the underuse of otherwise more accurate observa-

tions. The evaluation of the amount of ensemble

spread and correlations, as well as the methodology to

improve them would be required in future study that

includes, but is not limited to, the adaptive estimation

of inflation factor (e.g., Li et al. 2009; Ying and Zhang

2015), variable covariance localization (e.g., Zhang

et al. 2009; Zhen and Zhang 2014), more realistic and

complicated errors in the forecast and forward

models, to make further advances in fully utilized all-

sky satellite radiances. More systematic evaluations

of the proposed adaptive method, its variants, and

sensitivity, in comparison with alternative methods,

will be performed in the future for a large number

of cases, and for different platforms of satellite

measurements.
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