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An adaptive background error inflation (ABEI) method is proposed for assimilating
all-sky satellite brightness temperatures with an ensemble Kalman filter. This empir-
ical cloud-scene-dependent covariance inflation method is designed to mitigate the
model’s difficulties in initiating convection in the observed cloudy regions where the
background prior estimated from the ensemble mean incorrectly simulates clear-sky
conditions. This new approach calculates a spatially varying, flow-dependent, mul-
tiplicative ensemble covariance inflation factor based on error statistics produced
by a well-constructed, off-line observing system simulation experiment (OSSE) that
assimilates similar all-sky radiance observations but were generated by the model, in
which case the truth is known for all the state variables and the assimilated radiances.
The adaptive inflation factor is a linear function of a cloud parameter which is only
applied to the observed cloudy regions where there are less or no cloud in the prior
ensemble mean estimates. The performance of ABEI is evaluated through assimilat-
ing synthetic and real-data all-sky radiance experiments from the Advanced Baseline
Imager on board GOES-16 for Hurricanes Karl of 2010 and Harvey of 2017. Assimi-
lation experiments with ABEI allow adaptive inflation of the ensemble covariance in
the model-simulated clear-sky regions when there are observed clouds while avoid-
ing unnecessarily large ensemble spread in other cloud scenarios. This new approach
alleviates the difficulty in estimating the appropriate inflation factors in the model
state space using the innovation statistics in the observation space (radiance) with a
highly nonlinear observation operator. It serves as an alternative to existing methods
using spatially varying adaptive inflations; their relative performance and potential
combinations are to be further assessed in the future.
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1 INTRODUCTION

The ensemble Kalman filter (EnKF) has been used for data
assimilation in high-dimensional, multi-variable geophysi-
cal applications. The EnKF estimates the flow-dependent
background error covariance through a short-term ensemble,
whose accuracy may be subject to various sources of uncer-
tainties such as from using an insufficient ensemble size,
inadequate representation of model errors, and the linear
assumptions of the forecast model and forward observation
operators which are usually nonlinear. If the ensemble spread
underestimates the prior uncertainty, the filter may give too

high a weight to the prior state, which can degrade the filter
performance and potentially lead to filter divergence.

Covariance inflation is often designed to mitigate the incon-
sistent relationship between ensemble spread and the devi-
ation of their mean from the true state. The multiplicative
type of covariance inflation linearly increases the distance of
the ensemble state from its mean by multiplying by a spe-
cific factor (Anderson, 2007; 2009; Li et al., 2009; Gharamti,
2018). The additive covariance inflation adds climatological
background perturbations into the ensemble prior estimates.
Some studies indicated that multiplicative inflations are more
suitable to deal with the assimilation errors related to the
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observation networks, while the additive inflations can better
mitigate model errors (e.g. Mitchell and Houtekamer, 2000).

Alternatively, there are methods to increase the posterior
ensemble spread by relaxing the posterior perturbations to
prior perturbations (i.e. relaxation-to-prior-perturbations, or
RTPP: Zhang et al., 2004; Ying and Zhang, 2015), or to
prior spread (i.e. relaxation-to-prior-spread method, or RTPS:
Whitaker and Hamill, 2012). Because the EnKF posteriors are
updated with statistical correlations without explicit dynam-
ical constraints, RTPP is reported to be able to restore the
dynamical balance by mixing posterior perturbations with
prior perturbations, which are constrained by the dynamics
of the forecast models (Zhang et al., 2004; Ying and Zhang,
2015).

Although inflations can be effective in maintaining the
ensemble spread, tuning various parameters in the filter
configurations through trial-and-error can be very costly.
To avoid this costly process, various adaptive methods
to estimate the parameters within each data assimila-
tion cycle have been explored, often using the innovation
(observation-minus-background, or O−B) statistics calcu-
lated in the observation space (Dee, 1995; Desroziers et al.,
2005; Li et al., 2009). These adaptive inflation methods were
further extended from estimating temporally varying optimal
inflation factors to those including spatial variations. Ander-
son (2009) proposed an adaptive covariance inflation (ACI)
method that uses a Bayesian approach to estimate tempo-
rally and spatially varying multiplicative covariance inflation
factors. Similarly, spatially varying adaptive relaxation meth-
ods have also been explored through utilizing the ensemble
spread reductions as a spatial mask for inflation (Whitaker and
Hamill, 2012; Ying and Zhang, 2015; Kotsuki et al., 2017).
The underlying premise of these spatially varying covari-
ance inflations is to estimate an optimal inflation factor in
densely observed regions, which are often associated with
a large ensemble spread reduction, while managing to keep
the less-observed regions uninflated. To a varying degree of
effectiveness, these aforementioned spatially varying infla-
tion methods such as ACI, RTPP and RTPS may mask out
the unobserved regions under the unevenly distributed obser-
vation networks, while inflating the regions with too large a
spread reduction.

All-sky satellite observations can potentially bridge the
physical gaps of those irregular observation networks, since,
in particular, geostationary satellites have a contiguous spatial
and temporal coverage. There is ongoing research report-
ing the promising potentials of assimilating all-sky satel-
lite radiances in improving numerical weather predictions
(Bauer et al., 2006; 2011; Otkin, 2010; 2012; Auligné et al.,
2011; Zhang et al., 2016; Honda et al., 2018; Minamide and
Zhang, 2018). For example, Jones et al. (2013; 2014) and
Otkin (2010; 2012) conducted observing system simulation
experiments (OSSEs) with simulated Geostationary Oper-
ational Environmental Satellite Advanced Baseline Imager
(GOES-R ABI) infrared radiances that found positive impacts

of assimilating these radiances under both clear and cloudy
sky scenes, especially for upper-level clouds. Zhang et al.
(2016) applied the assimilation of all-sky infrared satellite
radiances onto the tropical cyclones (TCs) inner-core initial-
ization with a convection-permitting model for the first time;
they demonstrated the potential impacts of all-sky radiance
assimilation in capturing the TC inner-core structures over the
tropical ocean with sparse observation networks.

By classifying radiances into clear-sky and cloudy-sky in a
binary manner,1 the cloud scenes in assimilating all-sky radi-
ances can be classified into four categories. The first category
contains scenes in which both the observation and model prior
are classified as clear-sky, which includes studies that masked
out the cloud-affected observations and model priors (e.g.
Zou et al., 2013; 2015; Wang et al., 2015). The second cat-
egory contains scenes in which both observation and model
prior are cloudy. This scene involves the cloud-affected radi-
ance but with small to modest innovations (observation minus
background or O−B). The remaining two categories consist
of cases in which there is a mismatch between the observa-
tion and the model prior estimate. Given strong nonlinearities
in the radiative transfer models, a large O−B innovation due
to the mismatch can occur far more frequently than pre-
dicted by assuming a Gaussianity distribution. Although the
probability distribution of the O−B innovation statistics for
the cloud-affected radiances is reported to often follow a
Gaussian-like distribution within a range of two to three times
the observation error, those large innovations may also result
in fat-tailed probability distributions in the observation space
(Geer and Bauer, 2011; Okamoto et al., 2014; Harnisch and
Weissmann, 2016; Minamide and Zhang, 2017; Honda et al.,
2018). Moreover, these probability distributions in the obser-
vation space are reported not to always correspond to the
distributions in the model state space in the case of a highly
nonlinear observation operator (Minamide and Zhang, 2017).

Although both of the mismatched scenes (i.e. where the
background prior estimated from the ensemble mean (incor-
rectly) simulates clear-sky conditions or cloudy conditions)
can have similarly large O−B innovations, studies have indi-
cated that there are asymmetric features between these two
scenes (Vukicevic et al., 2004; Errico et al., 2007; Bauer
et al., 2010). For example, Vukicevic et al. (2004) showed that
assimilation of infrared brightness temperatures (BTs) from
the 10.7 μm channel on GOES-9 can effectively eliminate
spuriously modelled clouds, but has difficulty in developing
clouds in spuriously modelled clear-sky regions. Errico et al.
(2007) attributed such difficulties in developing cloud and
precipitation properties in the clear sky to the “zero-gradient”
problem, which means the Jacobian of the observation

1Strictly speaking, the binary classification does not accurately represent the
physical conditions, because radiances (and associated brightness tempera-
tures) are continuous variables gradually changing from high (∼ clear-sky)
values to low (∼ high clouds) values. The method to deal with this continuity
is discussed in section 3.1.



MINAMIDE AND ZHANG 3

operator may become zero when the observable is zero. The
different characteristics of these four types of scene contribute
to developing heteroscedasticity (i.e. flow-dependent spatial
variation) of the innovation statistics.

In this study, we explore how these innovation statistics
change among different cloud scenes and propose a new
inflation method to deal with the asymmetry among cloud
scenes. We propose to empirically obtain an optimal multi-
plicative inflation factor using the output of observing system
simulation experiments (OSSEs). The performance of this
newly proposed inflation method with cloud-scene-dependent
adaptive background error inflation (hereafter called ABEI)
is demonstrated through both OSSEs and real-observation
assimilation experiments.

2 MODEL CONFIGURATION AND
EXPERIMENTAL DESIGN

To test the new inflation algorithm, we design cycling data
assimilation experiments using the ensemble Kalman filter
(EnKF) data assimilation system developed at the Pennsylva-
nia State University (PSU) (Zhang et al., 2009; 2011; 2016;
Weng and Zhang, 2012; 2016), which is built around the
Advanced Research Weather Research and Forecasting model
(WRF-ARW: Skamarock et al., June 2008) version 3.6.1,
and the Community Radiative Transfer Model (CRTM: Han
et al., 2006; 2007; Weng, 2007). For all experiments, we use
three two-way nested domains for WRF simulations (with
grid sizes of 27, 9 and 3 km). The WRF single-moment
6-class mixed-phase microphysics scheme (WSM6: Hong and
Lim, 2006), the Yonsei University planetary boundary-layer
scheme (Hong et al., 2006), and the Rapid Radiative Transfer
Model (RRTM) long-wave and short-wave radiation schemes
(Iacono et al., 2008) are applied for all domains. The cumu-
lus parametrization scheme of Tiedtke (1989) is only applied
to the coarsest (D1) domain. The BTs are simulated with the
Successive Order of Interaction (SOI) forward solver (Hei-
dinger et al., 2006) with the OPTRAN code from CRTM. The
standard profiles for the tropical region defaulted in CRTM
are used above the model top.

For the assimilation strategy, we assimilate the BTs from
one water vapour channel of GOES-16 ABI (channel 8: wave-
length is 6.19 μm), which is sensitive to upper-tropospheric
moisture content. BTs are assimilated with the succes-
sive covariance localization (SCL) method proposed by
Zhang et al. (2009), which is designed to capture both
convective-scale and large-scale structures with a combina-
tion of small and large covariance localization distances.
Similar to Zhang et al. (2016) and Minamide and Zhang
(2017), 30 km and 200 km localization radii are used for
the observations thinned every 12× 12 km and 18× 18 km,
respectively. No vertical covariance localization is used in this
study. To account for large representativeness errors in assim-
ilating all-sky BTs, we employ the Adaptive Observation

Error Inflation (AOEI) method, whose effectiveness and
justification for all-sky BT assimilation were explored in
detail by Minamide and Zhang (2017). The AOEI method
is designed to adaptively inflate the observation error vari-
ance when the squared innovation is greater than the com-
bined variance of uninflated observational error variance and
ensemble-estimated background error variance. For using
both AOEI and ABEI, the observation error variance is likely
to be further inflated with AOEI where innovation is large
since the background variance may still be small after apply-
ing ABEI.

To derive the inflation magnitude and to explore the
impacts of the new inflation method, we first conduct
the perfect-model observing system simulation experiments
(OSSEs) using the same 60 initial ensemble perturbations and
the reference truth for Hurricane Karl of 2010 as in the OSSE
of Zhang et al. (2016) and Minamide and Zhang (2017),
which is hereafter referred to as “Karl-OSSE”. Both the
ensemble and reference truth simulations use three two-way
nested WRF domains with grid spacing of 27, 9 and 3 km
that contain 199× 149, 201× 150, and 255× 255 grid points,
respectively. All model domains use 61 levels with the model
top at 50 hPa in a stretched vertical grid. We compute the
synthetic observations of the GOES-R ABI channel 8 (wave-
length 6.19 μm) brightness temperature (BT) from the refer-
ence truth by adding random errors with a standard devia-
tion of 3 K, which are assimilated hourly from 2200 UTC
16th to 2200 UTC 17 September 2010. Assimilated together
is the tropical cyclone minimum sea-level pressure (SLP)
observed at the simulated centre of the hurricane. All experi-
ments employ the covariance relaxation to prior perturbation
(RTPP) method of Zhang et al. (2004). Because the model
error is not explicitly accounted for in this perfect-model
OSSE framework, a relatively small value of 0.5 for the RTPP
relaxation coefficient is applied for Karl-OSSE. A benchmark
experiment only employs RTPP to maintain the ensemble
spread, hereafter referred to as “CNTL”. The second exper-
iment employs the new ABEI method together with RTPP,
hereafter referred to as “ABEI”. ABEI will be compared to
CNTL to highlight the potential impacts of the new inflation
method.

Secondly, we conduct the observing system experiments
(OSEs) that assimilates hourly the real-data observations of
GOES-R ABI channel 8 BTs and the minimum SLP in the
Tropical Cyclone Vital Database (TCvitals) at the estimated
centre of Hurricane Harvey of 2017 from 1200 UTC 23rd
to 1200 UTC 24 August 2017 (this experimental framework
is hereafter referred to as “Harvey-OSE”). For Harvey-OSE,
we employ the model configurations similar to the PSU
WRF-EnKF real-time Atlantic hurricane forecast and analy-
sis system (Zhang et al., 2009; 2011; Weng and Zhang, 2012;
2016). We used the three two-way-nested domains with hori-
zontal grid spacings of 27, 9 and 3 km containing 378× 243,
297× 297, and 297× 297 grids points, respectively. A moving
nest strategy is used for the finer two domains (D2 and D3)
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(a) (b)

(c) (d)

FIGURE 1 The prior and posterior biases of brightness temperatures of GOES-16 ABI (a,b) channel 8 and (c,d) channel 10 as a function of asymmetric
cloud effect parameter CA, with the standard deviation of the biases among different data assimilation cycles (error bar) from first 12 h of CNTL experiment
of (a,c) Karl-OSSE and (b,d) Harvey-OSE

to follow the centre of the tropical cyclone vortex. All the
domains use 41 vertical levels with the model top at 10 hPa
in a stretched vertical grid; this new configuration is to be
consistent with our real-time system instead of Karl-OSSE
(we do not expect this will substantially affect the perfor-
mance of ABEI). As in Karl-OSSE, the experiment that only
applies RTPP is served as the benchmark, and the second
experiment applies both RTPP and ABEI, which are again
referred to as CNTL and ABEI, respectively. To account
for the model error in the real-data applications, a larger
RTPP coefficient of 0.75 is applied for Harvey-OSE, as is the
default in the PSU WRF-EnKF real-time system (Weng and
Zhang, 2016).

In addition to these two experiments, we also conducted
another experiment using the covariance inflation method
to adaptively estimate the multiplicative inflation factor pro-
posed by Li et al. (2009) (hereafter referred to as “shACI” that
represents the spatially homogeneous Adaptive Covariance
Inflation). The shACI method calculates a domain-averaged
multiplicative inflation factor at every assimilation cycle
using the innovation statistics in the observation space. To
alleviate the sampling error in estimating inflation factor
from a limited number of observations, we further relax the
current-cycle estimated inflation factor to that from the previ-
ous cycle with 37.5% from the current cycle and 62.5% from
the previous cycle, following Li et al. (2009); the variance
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(a) (b)

(c) (d)

FIGURE 2 (Line-plot) The prior consistency ratio of brightness temperatures of GOES-16 ABI (a,b) channel 8 and (c,d) channel 10 as a function of the
asymmetric cloud effect parameter CA, with the standard deviation among different data assimilation cycles plotted as the error bar, from the first 12 h of
assimilation experiments. (Bar-plot) The number counts of cloud scenes represented by the asymmetric cloud effect parameter CA during 0–1 h versus
10–11 h. Plots are from CNTL experiments of (a,c) Karl-OSSE and (b,d) Harvey-OSE

of the estimated inflation factor in the current cycle is set to
1.0 as in Li et al. (2009) and the lower limit of the variance
of the estimated inflation factor in the previous cycle is set
as 0.6 similar to the fixed variance used in Gharamti (2018).
We acknowledge that these values are empirical in nature, and
may not necessarily be optimal for the case studied.

For Harvey-OSE, ABEI will be compared to CNTL and
shACI to show the performance of the new inflation method-
ology with real-data all-sky radiance observations, as well
as to highlight the difficulty in estimating the appropriate
inflation factors in the model state space using the innova-
tion statistic in the observation space with a highly nonlinear
observation operator. In this study, the only difference among
experiments CNTL, shACI and ABEI is their covariance
inflation methodology, to highlight the effectiveness of
using ABEI.

3 THE ADAPTIVE BACKGROUND ERROR
INFLATION (ABEI)

3.1 Asymmetric cloud effect parameter

To examine how the filter performance and innovation statis-
tics change among cloud scenarios, we utilize the cloud effect
parameter introduced by Okamoto et al. (2014) that quanti-
fies the impacts of cloud on BT value in infrared BT space,
which was originally proposed in Geer and Bauer (2011)

for microwave radiances. The cloud effect parameters for
observation and EnKF prior are formulated as follows2:

CO = |yo − hclr(xb)|, (1)

CM = |h(xb) − hclr(xb)|, (2)

where h(xb) is model prior simulated BT calculated from the
EnKF prior mean xb, yo is the observed BT, and hclr(xb) is
the model simulated prior BT without cloud-scattering and
cloud-emission calculation as if clouds are removed. Both
CO and CM increase with the presence of higher clouds,
and approach zero in clear-sky regions. Following Geer and
Bauer (2011) for microwave radiances, Okamoto et al. (2014)
proposed to take an average of CO and CM to construct a
“symmetric” cloud effect parameter for the infrared radiances
which is neither biased toward the observation-based nor the
model-based evaluation.

The purpose of the current study is to evaluate the
“cloud-scene-dependent” background error inflation, in par-
ticular with regard to the impacts of match/mismatch between

2To be consistent with definition in the original Okamoto et al. (2014) paper,
we used the absolute difference to calculate the cloud effect parameter CO

and CM in this study. However, practically in the vast majority of cases,
hclr(xb) is greater than yo and h(xb). Thus, the calculations of CO and CM

are approximately the same as if simply subtracting yo or h(xb) from hclr(xb),
and the asymmetric cloud effect parameter CA is almost identical to the B-O
innovation, as shown in Figure 1.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3 The prior consistency ratio of (a) zonal wind, (b) meridional wind, (c) atmospheric water vapour mixing ratio, (d) temperature, (e) vertical wind
and (f) liquid rain hydrometeors as a function of the asymmetric cloud effect parameter CA, normalized by the domain-averaged consistency ratio at the
corresponding time calculated from the CNTL experiment of Karl-OSSE, with the standard deviation plotted as the error bar. The dashed-line represents the
linear inflation factor coefficient used in this study

observation and model on the bias, filter performance and
innovation statistics. Here we define an “asymmetric” cloud
effect parameter, CA, by taking the difference between them:

CA = CO − CM. (3)

When CA is close to zero, the cloud scene matches well
between the model and observation (i.e. either both clear, or
both cloudy with similar cloud height). CA becomes positive
when cloudy-sky is observed but clear-sky is modelled, and
negative when clear-sky is observed but cloudy-sky is mod-
elled. This formulation allows us to quantify the degree of
mismatch of cloud patterns by a continuous parameter. We
use this asymmetric cloud effect parameter, CA, as a predic-
tor for the following adaptive inflation strategy. Because the

prior mean remains unchanged both in model and observation
spaces after applying the inflation in this study, the usage of
asymmetric cloud effect parameter does not directly change
the innovation statistics (histogram).

3.2 Cloud-scene-dependency of innovation statistics

To show the cloud-scene dependency of filter performance,
we firstly compare the bias of the EnKF prior and posterior
for GOES-R ABI channel-8 and channel-10 brightness tem-
peratures as a function of CA from the CNTL experiment
of Karl-OSSE and Harvey-OSE (Figure 1). In addition to
the assimilated channel 8, we also show channel 10 (wave-
length 7.34 μm), which is not assimilated but sensitive to the
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FIGURE 4 The spatial distribution of (a) GOES-16 observation, (b) EnKF prior mean, (c) ensemble prior standard deviation, (d) asymmetric cloud effect
parameter CA, (e) calculated cloud-scene-dependent multiplicative inflation factor, and (f) the ratio between the absolute difference between the observation
and prior estimate and ensemble standard deviation. All figures are for brightness temperature channel 8 verified at 1200 UTC 23 August 2017. The ensemble
priors are from ABEI experiment of Harvey-OSE [Colour figure can be viewed at wileyonlinelibrary.com].

moisture content at different heights, as independent verifica-
tions. By design of the asymmetric cloud effect parameter CA,
the prior bias (dashed line in Figure 1) almost perfectly corre-
sponds to CA for both channels 8 and 10 in both Karl-OSSE
and Harvey-OSE. When the filter properly reduces the prior
error, the posterior bias (solid line in Figure 1) approaches
closer to zero than the corresponding prior bias. For negative
CA, the negative prior biases are effectively corrected by the
filter in which the spuriously prior-estimated clouds can be
mostly removed, resulting in a much-reduced posterior bias.

However, the improvements are severely limited for the
positive CA. The posterior bias curve in positive CA is approx-
imately parallel to those of the prior, and deviates farther away
from zero with increased values of CA. Physically, fixing the
negative bias in negative CA scene amounts to removing spu-
riously modelled or overestimated clouds, while fixing the
positive bias in positive CA scene represents the development
of clouds in spurious clear-sky or underestimated cloudy-sky
regions. Figure 1 is consistent with an early study of Vukice-
vic et al. (2004) that reported the difficulty of developing
clouds in spuriously modelled clear-sky regions compared to
removing spuriously modelled clouds.

To investigate the source of this asymmetry, we calculate
the consistency ratio (CR) in the BT observation space as a
function of CA (Figure 2). Here, CR is defined as the ratio
of the square-root of the subset-averaged squared error (i.e.
root mean square error or RMSE) over the square-root of the

subset-averaged ensemble variance. Choice of subset can be
arbitrary, but we want it to consist of samples that share the
same cloud scene. In this study, domain 3 of the CNTL exper-
iments from Karl-OSSE is divided into bins with a 2 K CA

interval. Each bin is composed of one subset, and CRs are cal-
culated for each subset independently. CR in the observation
space (referred to as CRy) can be formulated as follows for
any subset:

𝐶𝑅y =

⎧⎪⎪⎨⎪⎪⎩

√
1

Sn

∑Sn
s=1 {yo,s−h(xb,s)}2−𝜎2

o√
1

Sn

∑Sn
s=1 𝜎h(xb.s)

2
, (for OSEs)

√
1

Sn

∑Sn
s=1 {h(xt,s)−h(xb,s)}2√
1

Sn

∑Sn
s=1 𝜎h(xb,s)

2
, (for perfect − model OSSEs)

(4)
where h is the observation operator, x is the model state
variables, y is the observed variables, subscripts o, t, b are
observation, truth and EnKF prior, respectively, 𝜎yb

(= 𝜎h(xb))
is the prior ensemble standard deviation in the observation
space from the mean of ensemble members in the observa-
tion space, 𝜎o is the observation error standard deviation and
Sn is the number of the state variables classified for a par-
ticular subset. Because perfect observations (i.e. observations
without observation errors) can be obtained in perfect-model
OSSEs, the formulations are different between OSEs and
OSSEs. Ideally, CR should be designed for the ensemble
spread to accurately represent the prior error. The CR value
becomes smaller than one with an over-dispersive situation,

http://wileyonlinelibrary.com
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(a)

(b)

FIGURE 5 Probability distribution functions (PDF) of cloud scenes
represented by the asymmetric cloud effect parameter CA during the 18 to
24 h assimilation cycles from the experiments of Karl-OSSE for CNTL
versus ABEI. (a) Channel 8, (b) channel 10

while larger than one with an under-dispersive situation. If
CR is larger than one, the filter over-trusts the background
estimation, reduces the analysis increments and analyses the
posteriors with larger errors than the theoretical expectations,
which could lead to filter divergence.

Figure 2 shows CR calculated with a constant of 3 K as
𝜎o. For both channels 8 and 10, and both for Karl-OSSE
and Harvey-OSE, CRy increases as CA deviates from zero
(Figure 2), even for negative CA whose prior bias can be bet-
ter corrected by the filter (Figure 1). The ensemble has larger
spread than RMSE only around −6 K≤CA ≤ 6 K for channel
8, and −10 K≤CA ≤ 10 K for channel 10 in the observation
space, which indicates that these experiments may suffer from
a severely under-dispersive ensemble in large portions of the
domain. The asymmetry between negative and positive CA

also exists in CRy. For positive CA, CRy deviates from 1.0
more rapidly than in negative CA. CRy values reach as high
as 3.7 for channel 8 with CA = 20 K, which means the prior
error is larger than that estimated by the ensemble spread by
a factor of 3.7, which highlights the difficulty in keeping the
appropriate amount of background spread through assimilat-
ing observations with a nonlinear observation operator. These
high CRy values will be further discussed later in this section,
together with CR in the model state space.

Despite the large temporal variability of domain-averaged
CRy (which will be shown in section 4 with Figures 7 and 12),

CRy values at each CA scene do not vary considerably during
data assimilation cycles as shown as the error bar in Figure 2.
Note that the temporal variance of CRy from Karl-OSSE is rel-
atively larger than Harvey-OSE, likely because of its smaller
sample size. Due to smaller model error in perfect-model
OSSEs, the occurrence of extreme CA scenes is much less fre-
quent, which in turn results in noisier CR lines. For example,
the CRy values for channel 8 in the real-data experiment
for Harvey are often around 3.3 at CA = 20 K (Figure 2b).
Rather, the time dependency can be seen in their number dis-
tribution. The bar plot in Figure 2 shows that the occurrence
of positive (and negative, too, for channel 8) CA becomes
more frequent in later assimilation cycles. The increase of
high (or low) CA regions with large CRy will potentially
cause filter divergence and degrade the overall filter perfor-
mance. Furthermore, given that the asymmetry of posterior
bias, asymmetric increase of positive or negative CA sce-
narios may also serve as a source of overall bias. The CRy
curves from Karl-OSSE are noisier than from Harvey-OSE,
in particular in positive CA, but they overall show consistent
features. Thus, Figures 1 and 2 indicate that the innovation
statistics, such as the prior and posterior bias and the consis-
tency ratio, for each CA scene are relatively constant among
assimilation cycles, but their distribution of occurrence
changes, which might potentially introduce bias or cause filter
divergence.

Taking the advantage of the truth run in the OSSE frame-
work, Figure 3 compares CR as a function of CA similarly to
Figure 2 but for the model state variables normalized by the
domain-averaged CR at the corresponding time to illustrate
the different behaviours of CRs among various CA scenes
(hereafter, CRs in the model state space are referred to as
CRx). All state variables in Figure 3 show a clear asymmetric
pattern that consistently exists during the entire data assim-
ilation cycle despite considerable temporal variability in the
domain-averaged CRs (which will be discussed in detail in
section 4). CRx is slightly smaller than or around one in neg-
ative CA, but significantly larger than one in positive CA for
all state variables, which is different from CRy. This asym-
metry of CRx can explain the asymmetric filter performance
shown in Figure 1. Because we update the state variables by
the EnKF, the prior bias in negative CA can be fixed rela-
tively easily because the state variables have enough spread
to cover the error. Meanwhile, the filter faces more diffi-
culty in correcting the positive prior bias in positive CA,
because most of the state variables are under-dispersive in
this scene. Although the CRx curves follow the similar asym-
metric pattern for all state variables, the magnitude varies
among different state variables depending on their respective
sensitivities to BT calculation. Most of the CRx of dynamic
and thermodynamic model state variables including zonal
and meridional wind, moisture and temperature range around
1.0–1.8 at CA = 20 K (Figure 3a–d), while they reach as
high as 3–4 for vertical wind and hydrometeors, which is the
same order as CRy (Figure 3e–f). Comparing Figures 2 and
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(a) (b) (c)

(d) (e) (f)

FIGURE 6 Temporal evolution (2200 UTC 16th–2200 UTC 17 September 2017) of domain-averaged EnKF background RMSEs (solid) and standard
deviations (dashed) from CNTL (grey) and ABEI (black) for (a) zonal wind, (b) meridional wind, (c) atmospheric water vapour mixing ratio, (d) temperature,
(e) brightness temperatures of GOES-16 ABI channel 8 and (f) channel 10,

3, CRs are shown to act differently in observation space and
model state space. In positive CA, CRy is similar to CRx of
vertical wind and hydrometeors, which are the model state
variables directly and indirectly sensitive to radiative transfer
simulations through convective activity, but is greatly exag-
gerated compared to other state variables. For CA close to
zero, CRy is much smaller than one, but CRx of most of
the state variables is around one. In negative CA, the CRy is
larger than one, which indicates under-dispersive, while CRx
is mostly around or slightly smaller than one, which indi-
cates marginally over-dispersive situations. Thus, for radiance
assimilation, diagnosing the innovation statistics only in the
observation space and directly applying them into the model
state space (such as in estimating the multiplicative covari-
ance inflation) may potentially cause severe filter deficiency.

3.3 Cloud-scene-dependent empirical formulation
of ABEI

The small variability of CRx among different assimilation
cycles at each CA scene indicates the potential in using CA

as a predictor for the multiplicative covariance inflation fac-
tor. Multiplicative inflation is a method to linearly increase

the distance (ensemble perturbation) between the EnKF prior
mean and each ensemble member for the kth state variable
(for k= 1, 2, 3, … , K; K is the dimension of the state vector):

x′k,new = 𝜆kx′k, (5)

where x and x′ represent EnKF prior mean and perturba-
tion, respectively. The degree of inflation is controlled by the
inflation factor, denoted as 𝜆. Following the well-established
innovation diagnosis (Parrish and Derber, 1992; Dee, 1995;
Desroziers et al., 2005), the expected innovation statistics
satisfy the following equation:

⟨d, dT⟩ = ⟨[h(xb + x′b ,new)− h(xb)]

[h(xb + x′
b ,new)− h(xb)]T⟩ + R , (6)

where d denotes the innovation vector (i.e. the first-guess
departure), R the observation error, and pointy brackets the
expectation operator. Thus, the value of 𝜆 is calculated to sat-
isfy this equation. In the framework of perfect-model OSSEs
where the observation operator is assumed as the identity
matrix, we can directly estimate 𝜆, which corresponds to
CRx for the sth state variable (s= 1, 2, 3, … , Sn; Sn is the
total number of the state variables classified into a particular
subset) by averaging the diagonal terms of Equation 6 under
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(a) (b) (c)

(d) (e) (f)

FIGURE 7 As in Figure 6 but for the consistency ratio

the assumption that the state variables in a particular subset
share the same innovation statistics:

1
Sn

Sn∑
s=1

(xt,s − xb,s)2 = 1
Sn

Sn∑
s=1

⟨𝜆⟩2𝜎xb,s

2 + 0,

⟨𝜆⟩2 =
∑Sn

i=1 (xt,s − xb,s)2∑Sn
i=1 𝜎xb,s

2
= CRx

2. (7)

Using the normalized CRx
2 values, i.e. CRx

2 defined in
Equation 7 divided by domain-averaged CRx

2 as shown in
Figure 3, we formulate the spatial variations of inflation fac-
tors as a function of CA by a linear model as shown as the
dashed black line in Figure 3, for simplicity and easiness of
implementation:

𝜆(CA) =
⎧⎪⎨⎪⎩

𝜆max, if 𝜆max−1

𝛾
≤ CA

𝛾CA + 1, if 0 ≤ CA ≤
𝜆max−1

𝛾

1, if CA ≤ 0.

(8)

The 𝛾 value controls the increase of 𝜆(CA) with positive CA,
which may or may not vary among the state variables. This
formulation keeps the ensemble spread unchanged for neg-
ative CA, while the inflation factor increases linearly with
positive CA. To avoid assigning too large inflation factors,

the maximum value (𝜆max) is set to be 1.4 in this study. Note
that by using the normalized CRx

2 values for the formulation,
ABEI is designed to allow simultaneous application of other
covariance inflation methods, such as RTPP in this study, or
any other adaptive inflation methods that further control the
domain-averaged CRx

2. Because the CRx values are similar
among the state variables of horizontal wind, moisture and
temperature, whose initializations are known to have larger
impacts on forecast than those of vertical wind or hydrom-
eteors, we apply the same 𝛾 for all state variables, which
may help to lessen the degree of dynamical imbalance in the
cloud-scene-dependent inflation. The values of 𝛾 is derived
from calculating the slope of linear regression line in positive
CA for horizontal wind components, moisture and tempera-
ture fields (i.e. state variables in Figure 3a–d). Because we
use CA as a predictor to estimate how much the state vari-
ables are constrained by assimilating a particular observation
network, we expect the values of 𝛾 to mainly depend on the
sensors and the observation network, together with model
configurations. For example, in this study which assimilates
all-sky infrared BTs and minimum SLP, the calculated val-
ues of 𝛾 are 0.015, 0.012 and 0.009 for the GOES-16 ABI
channel 8, 9 and 10, respectively. Because the original cloud
parameter (Okamoto et al., 2014) was designed for the global
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FIGURE 8 The ensemble standard deviation of simulated brightness temperatures of GOES-16 ABI channel 8 (colour-shaded) and asymmetric cloud effect
parameter CA (contoured with red lines for positive values and blue lines for negative values, every 10 K) at (a–c) 1800 UTC 23rd (after 6 h assimilation
cycle), (d–f) 0000 UTC 24th and (g–i) 0600 UTC 24 August 2017 from the (a,d,g) CNTL, (b,e,h) shACI and (c,f,i) ABEI experiment of Harvey-OSE [Colour
figure can be viewed at wileyonlinelibrary.com].

application, we expect the values of 𝛾 to be the same glob-
ally, the applicability of which would be further investigated
in future studies. We further spatially smooth the inflation fac-
tors by using the localization function to suppress the model
imbalance and adjustment as suggested by Anderson (2009).

The ensemble filter algorithm with spatially varying ABEI
proceeds as follows:

1. The prior ensemble estimates are averaged to calculate the
ensemble prior mean.

2. The first estimation of the multiplicative inflation factor
(referred to as 𝝀) is set as one.

3. The multiplicative inflation factor field 𝝀 is serially
updated by processing each radiance observation yo, i (for
i= 1, 2, 3, … , p; p is the number of radiance observa-
tions):

3.i. calculate the corresponding asymmetric cloud effect
parameter CA, i, using the observation and ensemble
prior mean;

http://wileyonlinelibrary.com
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FIGURE 9 As in Figure 8 but for the ensemble standard deviation of sea-level pressure (colour-shaded) [Colour figure can be viewed at
wileyonlinelibrary.com].

3.ii. obtain the empirical multiplicative inflation factor
𝜆(CA,i), using Equation 8;

3.iii. assume that the correlation of inflation parameters has
the same structures as the localization function for the
corresponding state variables:

corr(𝜆k,Hi𝝀) = 𝜌k,i, (9)

where 𝜌k, i is the same localization function as what will be
used to update the state vector element k by observation
yo, i in step Equation 5 of the EnKF analysis, Hi is the
interpolating semi-observation operator that maps 𝝀
defined on the state space to the locations of yo, i;

3.iv. update the “observed” multiplicative inflation factor
field:

𝜆k,new = 𝜆k + 𝜌k,i[𝜆(CA,i) − Hi𝝀] (10)

As defined in step (2), initially, 𝝀= 1 (i.e. 𝜆o
k = 1 for k = 1,

2, 3, … ,K; K is the dimension of state vectors). 𝝀 is
serially updated through processing each observation.
Thus, 𝜆k, new updated by ith observation will be served as
the 𝜆k for (i+ 1)th observation.

4. Inflate the prior ensemble for each state vector component
by the corresponding multiplicative inflation factor:

http://wileyonlinelibrary.com
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FIGURE 10 The simulated brightness temperature for GOES-16 ABI channel 8 of (a,e,i) EnKF prior mean, (b,f,j) EnKF prior mean error, (c,g,k) EnKF
posterior mean error and (d,h,l) EnKF mean analysis increment, from (a–d) CNTL, (e–h) shACI and (i–l) ABEI experiment of Harvey-OSE, verified at 0600
UTC 24 August 2017 [Colour figure can be viewed at wileyonlinelibrary.com].

x′b,k,inf = 𝜆kx′b,k. (11)

5. Complete the EnKF analysis update for the state vector
with the observations at this time.

Figure 4 exemplifies the spatially varying inflation fac-
tor field from Harvey-OSE prior at the initial assimilation
cycle. The EnKF background mean estimate roughly cap-
tures the distribution of convective activity over the Gulf
of Mexico associated with a large prior ensemble spread,
but the prior estimate does not capture the strong convec-
tion along the northwest coastline of the Yucatan Penin-
sula, nor over the Gulf of Mexico located around 90.5◦W,
22.5◦N (Figure 4a–c). Reflecting the scene in which clear
sky is incorrectly estimated by the prior ensemble mean
while the observations indicate the cloudy conditions, CA

becomes positive in the corresponding regions (Figure 4d),
for which the multiplicative inflation factors will be applied
(Figure 4e). Figure 4f shows the distribution of individual CRy

(i.e. (
√
(y0 − h(xb))2 − 𝜎2

o)∕𝜎h(xb)) if it were to be calculated

independently for each grid. Consistent with Figure 2, CRy

are greater than one in both positive and negative CA regions.
The proposed ABEI method will inflate the regions with
the lack of observed convection (i.e. with a positive CA).
This is one of the advantages of using an off-line method
to calculate the inflation factors instead of estimating them
individually for each observation in the observation space,
because CRy is largely exaggerated from CRx in the nega-
tive CA regions likely due to the strong nonlinearity in the
observation operator. Note that ABEI is designed to improve
the innovation statistics in the model state space and not
always in the observation space, so that large CRy values
may still exist after applying ABEI. Thus, we will benefit
from the simultaneous usage of ABEI and heteroscedas-
tic modelling of observation error inflation, such as AOEI,
by alleviating the different innovation statistics in model
state and observation spaces. Another advantage of using
the empirically derived inflation factors through ABEI is
its ability to keep the negative CA regions uninflated (with-
out being contaminated by high CRy values). The clear-sky

http://wileyonlinelibrary.com
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scenario that is inaccurately estimated in the observed cloudy
regions is shown to be under-dispersive only in the radi-
ance observation space (Figure 2) and not in the model state
space (Figure 3). These snapshots exhibit the potential of our
empirical ABEI method to calculate cloud-scene-sensitive
multiplicative inflation factors which can better detect the
under-dispersive regions without unnecessary inflation.

4 POTENTIAL IMPACTS OF ABEI

4.1 Observing system simulation experiment:
Hurricane Karl of 2010

We first compare the performance of ABEI in Karl-OSSE.
Figure 5 compares the distribution of CA between CNTL
with and without application of ABEI. According to Figure 2,
which indicated that the under-dispersive ensemble is caused
by the transition to high or low CA scene rather than the
change of CR within each CA, Figure 5 compares the proba-
bility distribution with respect to CA among the experiments.
For both channels 8 and 10, ABEI decreases the occurrence
of positive CA scenes compared to CNTL after 18 cycles of
hourly EnKF assimilation, which indicates that ABEI is able
to maintain the ensemble spread to avoid severe mismatched
scenes where the observed cloudy region is inaccurately esti-
mated by the ensemble mean prior as clear sky. The distribu-
tion patterns in negative CA are similar between CNTL and
ABEI, because ABEI does not perform any additional infla-
tion with negative CA. Since there is an asymmetry in the
performance (i.e. reduction of the error), the increased asym-
metry of CA scenes contributed to reducing the overall bias
(not shown).

Figure 6 compares the temporal evolution of the square
root of domain-averaged square error (as known as root mean
square error, or RMSE) of the prior and EnKF analysis, and
square root of domain-averaged ensemble variance of the
EnKF prior for selected variables. The differences in RMSEs
are small between CNTL and ABEI for the first 12 h, but the
RMSEs of ABEI starts to become slightly smaller than CNTL
after around 12 h, in particular for the wind and BT fields.
Although overall difference in RMSEs is small between
CNTL and ABEI, the ensemble spread clearly exhibits the
advantage of using ABEI. For all state variables and BTs,
the ABEI experiment shows a larger ensemble spread that is
closer to the corresponding RMSE. The temporal evolutions
of CRs are shown in Figure 7. For the meridional wind and
mixing ratio, ABEI is able to maintain the CR around 1.0
after 12 h of assimilation, while CR of CNTL keeps increas-
ing (Figure 7b,c). For the zonal wind and temperature, CR
is marginally higher than 1.0, staying around 1.1–1.2, but
again significantly smaller than CNTL (Figure 7a,d). ABEI is
also able to maintain CR of BTs slightly smaller than CNTL
(Figure 7e,f), but those CRy values are around 1.4–1.6, which
are much larger than other state variables. This is consistent
with our findings in the previous section that the CR in the

(a)

(b)

FIGURE 11 As in Figure 5, but for Harvey-OSE

radiance observation space may be exaggerated compared to
CR in the model state space. Worth noting is that the filter
performances at each CA scene shown in Figures 1 and 2 (i.e.
the prior and posterior bias and the consistency ratio) do not
change by using ABEI (not shown), but the changes in the
distribution of the occurrence of each CA scene (Figure 5)
improve the CR and RMSEs. These results indicate that,
although the CRy itself does not always correspond to CRx,
ABEI that empirically connects the observed BT and CRx
can contribute to maintaining the ensemble spread at a more
desirable value (closer to 1.0).

4.2 Real-data GOES-R observation assimilating
experiment: Hurricane Harvey of 2017

Given the promising performance of ABEI in Karl-OSSE,
we further investigate the potentials of ABEI for analysing
and forecasting Hurricane Harvey of 2017 by applying it
with real-data all-sky radiance observations from GOES-R.
In addition to CNTL and ABEI experiments as in Karl-OSSE,
we conduct an additional experiment that adaptively estimates
a spatially homogeneous inflation factor in the observation
space, referred to as “shACI”, to exemplify the potential
issues in estimating proper inflation factors from only the
innovation statistics in the observation space.

Figure 8 exhibits the temporal evolution of the spatial dis-
tribution of CA and BT ensemble spread. At 1800 UTC 23
August 2017, after 6 hourly assimilation cycles, both CNTL
and ABEI have similarly large ensemble spread of BTs over
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(a) (b)

(c) (d)

FIGURE 12 (a,b) As in Figure 6e,f, and (c,d) as in Figure 7e,f, but for Harvey-OSE

the Gulf of Mexico with both positive and negative CA val-
ues (Figure 8a,c). After 12 and 18 h of assimilation, ABEI is
able to better analyse a smaller area of negative CA, which is
shown to be under-dispersive, than CNTL in particular over
the Yucatan Peninsula at 0000 UTC 24th (Figure 8d,f) and
over the Gulf of Mexico in the centre of the simulation domain
at 0600 UTC 24 August 2017 (Figure 8g,i). This difference
suggests that ABEI effectively inflates the spread in these
observed cloudy regions with enhanced convective activity,
while CNTL struggles to produce convection in the corre-
sponding regions. Other parts of the model domain outside of
the convective regions, such as the west side of the domain at
0000 UTC 24 August 2017, are quite similar between CNTL
and ABEI, as is expected by the formulation of ABEI that
only inflates where the background prior estimated from the
ensemble mean simulates (incorrectly) clear-sky conditions.

Meanwhile, a large ensemble variance with negative
CA scenes are widely spread out in shACI for the first
12 h that contributes to produce convection all across the
domain (Figure 8b,e). Although shACI appears to capture
the observed convection with reasonable ensemble spreads
and small CA values after 18 h of assimilation at 0600 UTC
24 August 2017 (Figure 8h), the model state space exhibits
its deficiency. Figure 9 compares the similar CA fields as
in Figure 8 but for ensemble spread of the sea-level pres-
sure (SLP). The shACI unphysically grows its ensemble
SLP standard deviation around the convective centre. Its
maximum value reaches 7 hPa, which is much larger than

the corresponding values in ABEI and CNTL. Meanwhile,
CNTL severely shrinks the ensemble spread, whose standard
deviation becomes smaller than 1 hPa across most of the
domain. This small ensemble spread severely limits the ability
of EnKF to develop new convection. ABEI is able to main-
tain larger ensemble spread across the domain while avoiding
unnecessarily large spread at the convective region around the
centre of the domain.

To further examine the impacts of ABEI, Figure 10 com-
pares the performances of each inflation strategy after 18 h
of EnKF assimilation valid at 0600 UTC 24 August 2017,
when the organized strong convection was actively devel-
oping around 92◦W, 23◦N. The EnKF prior of CNTL con-
tains the developing convection in the centre of the domain
(Figure 10a), but it is clearly smaller than the observed regions
of clouds, resulting in a ring-shaped large positive prior error
(Figure 10b). Because of the difficulty in developing convec-
tion in these regions where clear sky is spuriously forecasted
outside of the primary convection, most of these positive
errors remain in the EnKF posterior (Figure 10c) with a
limited analysis increment (Figure 10d). CNTL is also char-
acterized by a small coverage of negative prior error, likely
because of the accumulative impacts of the asymmetric per-
formance of CNTL’s filter that corrects mostly the negative
errors. The shACI appears to be able to develop organized
convection with size comparable to the observation. The pos-
itive and negative errors in the prior in the observation space
are well handled with the EnKF by shACI’s large spread that
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(a) (b) (c)

(d) (e) (f)

FIGURE 13 Time evolution of tropical cyclone intensity in terms of (a–c) minimum sea-level pressure and (d–f) maximum 10 m wind speed for best-track
dataset and different Harvey-OSE analysis and forecast (colour-coded). Results for the (a,b) CNTL, (b,e) shACI and (c,f) ABEI experiment [Colour figure can
be viewed at wileyonlinelibrary.com].

overwhelms almost the entire domain (Figure 8e–h). Simi-
larly, although ABEI leaves some positive posterior errors
around the southwest edge of convection (and the analysis
errors are not as small as shACI), ABEI is also able to better
correct most of the prior errors than CNTL.

Similar to Figure 5, the distribution of CA is compared in
Figure 11. Consistent with the Karl-OSSE, applying ABEI
greatly suppresses the occurrence of positive CA scenes,
while the negative CA scenes do not differ as much as positive
CA between CNTL and ABEI. Different from Karl-OSSE, the
occurrence of low negative CA scenes with ABEI becomes
more frequent in Harvey-OSE, potentially due to large model
error only existing in the real-data assimilation experiment.
Because of the chaotic nature of moist convection, the devel-
oped convection will not be always able to “hit” the observed
convection, but be rather dislocated from observation, which
may happen more frequently with an imperfect model, result-
ing in an increasingly negative CA scene. Meanwhile, ABEI
clearly decreases the occurrence of positive CA scenes.
The shACI behaves similarly to ABEI in positive CA by

decreasing the occurrence of scenes where clear sky is inac-
curately estimated in the observed cloudy regions. There is
clear difference between shACI and ABEI in negative CA

scenes. The shACI increases the occurrence of negative CA,
likely because shACI uniformly inflates the domain with the
exaggerated multiplicative factor estimated in the observa-
tion space. This spreads out convection all across the domain,
which in turn increases the occurrence of scenes where cloudy
sky is inaccurately estimated in observed clear-sky regions.
This further highlights the advantage of ABEI to only inflate
the empirically under-dispersive situations.

Figure 12 compares the temporal evolutions of RMSE,
ensemble spread and consistency ratio in the radiance obser-
vation space. The usage of background error inflation in both
ABEI and shACI results in smaller RMSEs than CNTL in
the late stage of the cycling experiments, in particular after
18 h of assimilation (after 0600 UTC 24th; Figure 12a,b). In
CNTL, the improvement at each assimilation cycle gradually
decreases, which likely reflects the situation that the prior
error is gradually dominated by positive errors that are

http://wileyonlinelibrary.com
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difficult to correct. The shACI shows the largest prior and
smallest posterior errors for most cycles. Due likely to
over-inflation in the entire domain, the prior of the shACI is
overwhelmed by clouds that cause a large prior error, while
these observed clear-sky regions which are inaccurately esti-
mated as cloudy-sky by the model ensemble prior can be
corrected. This feature might result in small errors for EnKF
posteriors. CRy of ABEI is overall closer to one than CNTL,
which is consistent with Karl-OSSE (Figure 12c,d). The CRy

values of shACI are the closest to an optimum value of 1.0 for
the assimilated channel 8, which is expected because its infla-
tion factor is estimated from the observation space, while it
does not significantly differ from ABEI for the independent
verification channel 10.

Given that the analyses in the observation space are not
always informative enough to evaluate the filter performance,
we compare the temporal evolution of the EnKF analysis
and forecast of tropical cyclone intensity in Figure 13. The
filter-divergence is clearly seen in CNTL due to the lack of
sufficient ensemble spreads (Figure 8, left panels). After 18 h
of assimilation, the ensemble members of CNTL EnKF start
to deviate far from the best-track intensity. The EnKF ensem-
ble mean of CNTL (brown “x” marks in Figure 13c,d) is
remarkably more intense than best-track data at 1200 UTC 24
August 2017 by approximately 20 hPa or 15 m/s. The ensem-
ble estimates are also biased high to the more intense side.
The shACI is able to avoid the filter divergence and to anal-
yse the EnKF mean field to have comparable intensity to
the best-track. The forecast from shACI at 1200 UTC 24
August 2017 (after 24 h of assimilation) well captures the
rapid intensification of Harvey.

However, ensemble spread keeps increasing in shACI, with
the strongest member reaching even category 4 intensity when
the EnKF mean and the best-track are still at the tropical storm
(TS) category. This again highlights the difficulty in estimat-
ing the inflation factor in the observation space, due to the
inconsistency between the CR in the observation and the CR
in model state space with a nonlinear observation operator.
The radiance observation operator exaggerates CRy compared
to the actual CRx values in the model state space, which in
turn unnecessarily inflates the ensemble spread. The applica-
tion of ABEI is able to provide more reasonable multiplica-
tive inflation factors to constrain the ensemble members and
mean around the best-track intensity. Furthermore, all fore-
casts after 12 h of assimilation almost well capture the rapid
intensification, the peak intensity and the rapid decay of Har-
vey, which suggests a better analysis of the tropical cyclone
convective structures with ABEI. The initial imbalance and
adjustment with ABEI are overall smaller than both shACI
and CNTL, which indicates that the improved initial condi-
tions and consistency ratio contributed to reducing the imbal-
ance induced by EnKF update (figures not shown). These
results further highlight the advantage of ABEI through better
analysing clouds while avoiding localized filter divergence.

5 CONCLUDING REMARKS

An empirical cloud-scene-dependent ABEI method is pro-
posed for assimilating all-sky satellite brightness tempera-
tures with an ensemble Kalman filter. This study assesses
the potentials of using the output of OSSEs to empir-
ically derive the spatially and flow-dependently varying
multiplicative covariance inflation factors for various cloud
scenes. Filter performance is found to vary among dif-
ferent cloud scenes. Incorrectly modelled clouds are rel-
atively easy to remove because they are shown to be
associated with a sufficiently large spread. Meanwhile, an
incorrectly modelled clear-sky condition is shown to suf-
fer from insufficient spread to develop clouds. The newly
proposed cloud-scene-dependent covariance inflation method
only inflates where the background prior estimated from
the ensemble mean incorrectly simulates clear-sky conditions
in observed cloudy regions, which are shown to be climato-
logically under-dispersive. We propose the method to empir-
ically calculate the inflation factor by using the cloud scene
as a predictor. The empirical method is employed to estimate
the consistency ratio (CR) in the model space which alleviates
the difficulty in a largely exaggerated CR in the observation
space due to strong nonlinearity in the observation operator
and the indirect nature of satellite measurements. The impact
of this new ABEI method is assessed by assimilating syn-
thetic all-sky radiances in OSSEs for Hurricane Karl of 2010,
and real-data observations of all-sky BTs from GOES-R ABI
in OSEs for Hurricane Harvey of 2017, in comparison to
the method to adaptively estimate the spatially homogeneous
inflation factor (shACI). The shACI method is able to main-
tain good RMSE and CR values in the observation space, but
the ensemble spreads in the model state space are extremely
over-inflated. With ABEI, the EnKF analysis of tropical
cyclones, as well as the intensity forecast initiated from the
EnKF analysis, are shown to be greatly improved. The ABEI
method effectively avoids potential local filter divergence
without introducing unnecessarily large spread, which con-
tributes to stabilizing the filter performance through long
cycling assimilation experiments.

While the ABEI empirically derives the spatial distribu-
tions of inflation factors, other methods utilize the spread
reduction to obtain the spatial variability, such as those of
Anderson (2009), Whitaker and Hamill (2012), Ying and
Zhang (2015) and Gharamti (2018). For example, the adap-
tive RTPP method by Ying and Zhang (2015) directly detects
the spread reduction, and the adaptive covariance inflation
method by Anderson (2009) assumes the inflation factors and
state variables have the same spatial correlation structures,
which can also compensate for the spread reduction. Thus,
our new inflation method may be regarded as computing
the spatially varying “observed” inflation factors, except
for accounting for different sources of uncertainty. In this
study, the mean of squared difference between the simpli-
fied linear inflation model of ABEI and actual CRx values
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are approximately 0.01, which can potentially be used as
the uncertainty of the estimated inflation factors by ABEI.
Although we directly apply these “observed” inflation factors
to focus on the potentials of the new method in this study,
the estimated inflation factors can potentially be further com-
bined with other adaptive algorithms in the ensemble data
assimilation and in assimilating highly nonlinear observations
such as the all-sky microwave radiances. These potentials will
be further investigated in future studies, together with more
systematic evaluations of the proposed empirical inflation
method for different satellite platforms with a large number
of cases, in comparison and potentially combining with other
existing spatially varying adaptive inflation methods.
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