
Practical Uncertainties in the Limited Predictability of the Record-Breaking
Intensification of Hurricane Patricia (2015)

ROBERT G. NYSTROM AND FUQING ZHANG
a

Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability

Techniques, The Pennsylvania State University, University Park, Pennsylvania

(Manuscript received 2 January 2019, in final form 24 June 2019)

ABSTRACT

Hurricane Patricia (2015) was a record-breaking tropical cyclone that was difficult to forecast in real time by

both operational numerical weather prediction models and operational forecasters. The current study ex-

amines the potential for improving intensity prediction for extreme cases likeHurricane Patricia.We find that

Patricia’s intensity predictability is potentially limited by both initial conditions, related to the data assimi-

lation, and model errors. First, convection-permitting assimilation of airborne Doppler radar radial velocity

observations with an ensemble Kalman filter (EnKF) demonstrates notable intensity forecast improvements

over assimilation of conventional observations alone. Second, decreasing themodel horizontal grid spacing to

1 km and reducing the surface drag coefficient at high wind speed in the parameterization of the sea surface–

atmosphere exchanges is also shown to notably improve intensity forecasts. The practical predictability of

Patricia, its peak intensity, rapid intensification, and the underlying dynamics are further investigated

through a high-resolution 60-member ensemble initialized with realistic initial condition uncertainties rep-

resented by the EnKF posterior analysis perturbations. Most of the ensemble members are able to predict the

peak intensity of Patricia, but with greater uncertainty in the timing and rate of intensification; somemembers

fail to reach the ultimate peak intensity before making landfall. Ensemble sensitivity analysis shows that

initial differences in the region beyond the radius of maximum wind contributes the most to the differences

between ensemblemembers in Patricia’s intensification. Ensemblemembers with stronger initial primary and

secondary circulations beyond the radius of maximum wind intensify earlier, are able to maintain the in-

tensification process for longer, and thus reach a greater and earlier peak intensity.

1. Introduction

Hurricane Patricia (2015) was an extraordinary storm

in the eastern North Pacific basin that underwent an

unprecedented rapid intensification (RI) process in

which it intensified from a tropical storm, withmaximum

wind speeds of 30ms21, to a category 5 hurricane, with

maximum wind speeds of 95m s21, in less than 36 h.

While tropical cyclone (TC) track forecasts have been

improving substantially over recent decades, and in-

tensity forecast have also improved some in recent years

(Cangialosi 2018), Hurricane Patricia set records for

maximum eastern North Pacific NHC official intensity

forecast errors at 12, 24, 36, and 48 h lead times

(Kimberlain et al. 2016). Additionally, no operation-

ally available dynamical or statistical guidance was

able to correctly forecast the peak intensity or rate of

intensification. In this study, we demonstrate methods

for improved prediction of Hurricane Patricia using a

cycling ensemble data assimilation system and also ex-

amine potential sources of model and initial condition

(IC) uncertainties that can limit the predictability of

intense tropical cyclones, even when the environmental

conditions are favorable.

Hurricane Patricia’s complete life cycle is well de-

scribed in Kimberlain et al. (2016), and the records that

Patricia set are listed in Rogers et al. (2017). Only a brief

summary will be provided here. Hurricane Patricia

developed into a tropical depression by 0600 UTC

20 October, as a result of a complex interaction between

large-scale forcing (e.g., rising branch of the Madden–

Julian oscillation and deep convection coupled with

a Central American gyre) and mesoscale processes
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including a localized gap wind event (Kimberlain et al.

2016; Bosart et al. 2017). Patricia reached tropical storm

intensity 18 h after becoming a tropical depression,

eventually becoming a hurricane 24 h later, near

0000 UTC 22 October. At this time, Patricia was located

in a very favorable environment with anomalously warm

ocean temperatures, weak vertical wind shear, and

moist atmospheric conditions (Kimberlain et al. 2016).

Undergoing a dramatic and record-setting RI of

54ms21 in a 24h period (Rogers et al. 2017), Patricia

reached its estimated peak intensity with wind speeds of

95ms21, less than 36h after being designated as a hur-

ricane. Hurricane Patricia, however, was not done set-

ting records as it rapidly weakened by 26ms21 in only

5 h—the most rapid overwater weakening rate on

record (Rogers et al. 2017)–prior to landfall along the

southwestern Mexico coast, shortly before 0000 UTC

24 October (Kimberlain et al. 2016).

One factor believed to have been especially important

in allowing Patricia to set records in terms of in-

tensification rate and peak intensity was the anoma-

lously warm sea surface temperatures (SSTs) present

along Patricia’s track (e.g., Foltz and Balaguru 2016;

Huang et al. 2017; Rogers et al. 2017; Fox and Judt

2018). Hurricane Patricia occurred during a strong El

Niño, in which SSTs were more than 18C warmer than

the climatological average (Foltz and Balaguru 2016)

and in the 99th percentile for all eastern North Pacific

hurricanes (Fox and Judt 2018).

Recent works investigating the practical and intrinsic

predictability of TCs (e.g., Sippel and Zhang 2008;

Hakim 2013; Brown and Hakim 2013; Kieu and Moon

2016; Judt et al. 2016; Torn 2016; Finocchio and

Majumdar 2017) have not only greatly increased our

understanding of their chaotic dynamic processes and

helped lead to improved intensity prediction, but also

indicated that TCs may have higher predictability in

certain regimes (e.g., Zhang and Tao 2013; Tao and

Zhang 2014). Zhang and Tao (2013) demonstrated using

idealized simulations of TCs under various vertical wind

shear conditions that TCs under weak vertical wind

shear are more intrinsically predictable than TCs under

moderate vertical wind shear. Additionally, Tao and

Zhang (2014) demonstrated that TCs in the presence of

warmer ocean waters intensified earlier and exhibited

greater intrinsic predictability of RI compared to TCs

over cooler ocean waters. Weak vertical wind shear

and a warm ocean surface well describe the environ-

mental conditions present when Patricia rapidly in-

tensified, as the average along-track SSTs and vertical

wind shear were in the 99th and 17th percentile, re-

spectively, for all eastern North Pacific hurricanes (Fox

and Judt 2018). Based on this we may expect an

increased predictability of Patricia’s RI relative to other

RI events and indeed this is speculated by Fox and Judt

(2018), where they demonstrate small changes to RI

forecasts of Patricia when very small perturbations are

applied to a control simulation. Additionally, Qin and

Zhang (2018) also hypothesized that favorable large-

scale environmental conditions may have made

Patricia’s intensification more predictable. However,

the substantial gap between the expected high intrinsic

predictability—given the favorable environmental con-

ditions—and the actual low practical predictability of

Patricia’s intensity from operational real-time forecasts

presents an apparent contradiction and will be explored

within this study.

Given the large errors by all forecastmodels in Patricia’s

intensification and peak intensity, and given the large di-

vergence among operational forecast guidance, the cur-

rent study focuses on key uncertainties that may have

limited the practical aspects of the predictability of

Patricia–despite favorable environmental conditions that

may potentially allow high intrinsic predictability. Key

limiting factors potentially include but are not limited to:

data assimilation methodology and the availability and

quality of observations (e.g., Zhang et al. 2004; Torn and

Hakim 2009; Weng and Zhang 2012; Majumdar et al.

2013; Zhang and Pu 2014; Poterjoy et al. 2014; Aberson

et al. 2015; Zhang and Weng 2015; Poterjoy and Zhang

2016), model resolution and physics (e.g., Davis et al.

2008; Jin et al. 2014; Judt et al. 2016; Torn 2016;Melhauser

et al. 2017; Qin and Zhang 2018), the underlying inner-

core TC dynamics (e.g., Van Sang et al. 2008; Hakim 2013;

Brown and Hakim 2013; Torn and Cook 2013; Judt et al.

2016; Emanuel and Zhang 2016; Kieu and Moon 2016;

Torn 2016; Finocchio and Majumdar 2017; Nystrom et al.

2018), and the environmental conditions (e.g., Torn and

Cook 2013; Judt et al. 2016; Emanuel and Zhang 2016;

Torn 2016; Nystrom et al. 2018).

In this study we focus on just a few factors from the

above list, which were identified as key factors limiting

the practical predictability of Patricia. First, we are

particularly interested in the impact of realistic IC un-

certainties represented by posterior analysis perturba-

tions resulting from a state-of-the-art ensemble data

assimilation system on Patricia’s prediction. Second,

given the observed small inner core of Patricia, we ex-

amine the implications of the model horizontal resolu-

tion, which is often limited by computational cost, on the

accuracy and predictability of Patricia’s intensification.

Last, motivated by the large uncertainty in the physics

related to the air–sea fluxes at high wind speeds (e.g.,

Powell et al. 2003; Hsu et al. 2017), we examine the

impact of surface flux parameterization uncertainty on

the prediction of Patricia’s intensification.
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The remainder of the paper is organized as fol-

lows. Section 2 will describe the methodology used.

Section 3 will present the main findings from data as-

similation experiments, high-resolution ensemble fore-

casts, and potential model errors that were found to

meaningfully impact the practical predictability. Section

4 will provide the concluding discussions.

2. Methodology

a. Cycling PSU WRF EnKF data assimilation system

In this study, we utilize a modified version of the PSU

WRF EnKF real-time system for hurricane analysis and

prediction (Zhang and Weng 2015; Weng and Zhang

2016), utilizing WRF version 3.5.1 (Skamarock et al.

2008), to investigate the potential for improving pre-

diction of Hurricane Patricia (2015). The initial and

boundary conditions of the 60-member ensemble were

interpolated from the Global Forecast System (GFS)

operational analysis at 0000 UTC 21 October, with

added ensemble perturbations generated by the back-

ground error covariance (CV3 option) (Barker et al.

2004). The ensemble is then run for 12 h to spin up the

flow-dependent ensemble background error covari-

ance at the convection-permitting resolution. The cy-

cling ensemble data assimilation begins at 1200 UTC

21 October. Two EnKF analysis experiments are per-

formed in this study. The first, ‘‘CONV,’’ assimilates

hurricane position and intensity (HPI) observations and

all conventional observations in the Global Telecom-

munication System (GTS) data stream (available from

the NCAR RDA). The second, ‘‘Airborne1CONV,’’

assimilates airborne radial velocity super observations,

similar to Weng and Zhang (2012), in addition to the

observations in CONV. Super observations are created

in real time at the NOAAHurricane Research Division

based on the methodology described inWeng and Zhang

(2012, 2016). Briefly, super observations are created by

averaging radial velocity observations, obtained from

forward and backward scans from the NOAA P-3 Tail

Doppler Radar, within a trapezoid that is 5 km in the

radial direction by 58 in the azimuthal direction.

One modification to the PSU WRF EnKF real-time

system is that the data assimilation cycles are performed

at an hourly frequency in this study to limit the prior

position spread among the ensemble members that can

lead to an unrealistically weak storm in the (Eulerian)

ensemble mean, in particular since the inner core size

of Patricia is very small. More frequent EnKF cycling

has also been recommended by Chen and Snyder (2007)

and others, primarily to prevent the vortex position

spread from becoming too large such that background

errors likely become far from a Gaussian distribution, a

critical assumption of the EnKF method used for data

assimilation. Additionally, this study uses covariance

inflation through relaxation to prior perturbation

(Zhang et al. 2004), but a smaller alpha value of 0.5 is

used for the inner core region of the storm vortex (within

300 km of the best track center) than for the environ-

ment (greater than 600 km from the best track center),

where the alpha value is 0.75. A distance weighted linear

combination is used between 300 and 600 km to gradu-

ally transition from the inner-core alpha value to the

environment alpha value. The alpha equal to 0.5 used in

RTPPwithin 300 kmof the best track TC locationmeans

that we relax our posterior perturbations 50% toward

the prior perturbation, as compared with 75% in the

environment (beyond 600 km) where alpha is 0.75. This

results in smaller posterior ensemble spread within

300 km as opposed to using a uniform alpha of 0.75

everywhere. The difference in alpha values utilized be-

tween the region of the storm vortex and the environ-

ment is a result of the more rapid ensemble spread

growth within the inner core region, as a result of both

inner-core dynamical processes and ensemble position

spread with very tight gradients in many state variables

(e.g., winds and pressure).

The WRF Model for the cycling EnKF system is

configured otherwise similar to the real-time PSU

WRF EnKF system with three two-way nested do-

mains with horizontal grid spacing of 27, 9, and 3 km.

Domain configuration and parameterization schemes

are nearly identical to Zhang and Weng (2015), except

that the domains have been shifted to be focused over

the eastern North Pacific, where the outermost domain

covers a region from 108S–458N to;1508–508W, and the

surface flux parameterization for the air–sea enthalpy

and momentum exchange has been changed to that

fromChenet al. (2018), where the surface drag coefficient

decreases with wind speed for winds greater than hurri-

cane force (33ms21). The change to the surface flux pa-

rameterization is more consistent with recent modeling

advances (e.g., Chen et al. 2018), in which it is indicated

that the surface drag coefficient does not continue to in-

crease with wind speed beyond hurricane force.

Deterministic forecasts are initialized from the EnKF

analysis mean with an additional nested domain (297 3
297 grid points) centered on the storm with 1-km hori-

zontal grid spacing throughout the entirety of the

forecast. The deterministic forecasts thus utilize four

two-way nested domains in which the innermost three

domains follow the storm. Deterministic forecasts are

initialized every 6 h beginning at 1200 UTC 21 October–

1800 UTC 22 October, with an additional deterministic

forecast initialized at 2100 UTC 21 October imme-

diately following the first NOAA P-3 flight through
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Patricia. A total number of seven deterministic forecasts

are conducted for Patricia and each forecast is run

through 1200 UTC 24 October, which is ;12h after

Patricia’s landfall.

b. TCI dropsonde observations and best track
intensity and track verification

For verification of the EnKF analysis, as well as the

forecasts, both best track estimates for position and in-

tensity and high-density dropsonde observations from

the Tropical Cyclone Intensity (TCI) field experiment

(Bell et al. 2016; Doyle et al. 2017) are utilized. The best

track, from HURDAT2 and linearly interpolated to

hourly intervals, is used to verify the storm position,

maximum wind speed, and minimum central pressure.

The TCI dropsondes allow for the verification of the

EnKF analysis and model forecasted storm structure

using independent observations that are not assimilated.

The verification of the storm’s kinematic and thermo-

dynamic structure is conducted using the TCI drop-

sondes by analyzing the storm-relative azimuthally

averaged structure, or the observations within a storm-

relative radius/height framework.

Following Stern and Zhang (2016) and Munsell et al.

(2018), the dropsonde observations for a given flight are

binned by radii within 2-km-wide bins at each vertical

level, as the sonde descends, based on the NOAA

Hurricane Research Division wind center track at the

release time of each drop (http://www.aoml.noaa.gov/

hrd/Storm_pages/patricia2015/patricia.trak). A simple

cubic interpolation is utilized for any regions of missing

values and Gaussian smoothing is applied to remove

some of the noise.

c. Maximum potential intensity

In this paper, we calculate the maximum potential

intensity using the following:

V2
m 5

T
s

T
o

C
k
fV

m
g

C
d
fV

m
g(CAPE*2CAPE)j

m
, (1)

which is modified slightly from Emanuel (1995), where

Vm is the maximum gradient wind speed, Ts is the SST,

T0 is the outflow temperature, Ck is the enthalpy ex-

change coefficient and is now a function of Vm, Cd is the

drag coefficient and is also now a function of Vm,

CAPE* is the convective available potential energy of a

saturated parcel lifted from the surface, andCAPE is the

convective available potential energy of a parcel lifted

from the surface. The outflow temperature T0 is calcu-

lated here as the temperature at the level of neutral

buoyancy, where the level of neutral buoyancy is de-

termined by calculating the CAPEof a parcel lifted from

the surface. Using (1), the maximum theoretical poten-

tial wind speed is calculated for each point in domain 2,

using the Ck–Cd relationship used by the model during

forward integration, and is the average of the maximum

potential wind speed for all points within 50km of the

simulated storm’s position at a given forecast time. Be-

cause Ck and Cd change with the calculated Vm, an it-

erative method is used in whichCk andCd are calculated

based on Vm. This process is repeated until convergence

of Vm occurs. (Besides the modifications to Ck and Cd,

this calculation is identical to as done for the real-time

maps of potential intensity shown at http://wxmaps.org/

pix/hurpot.)

3. Results and discussion

a. Sensitivity of Patricia’s prediction to the
assimilation of airborne inner-core observations

Operational guidance, such as HWRF, and official

NHC forecasts for Hurricane Patricia had intensity fore-

cast errors in excess of 30ms21 (Figs. 1a–c)–including

official forecast errors that were the highest on record

for the eastern North Pacific basin (Kimberlain et al.

2016). Ensemble data assimilation experiments are

conducted to investigate potential improvements from

assimilation of conventional observations (CONV) and

airborne radial velocity observations (Airborne1CONV).

For each cycling ensemble data assimilation experiment,

observations are assimilated hourly between 1200 UTC

21October and 1800UTC 22October and deterministic

forecasts with 1-km horizontal grid spacing are ini-

tialized from the EnKF analysis mean every 6h or

immediately following assimilation of airborne radial ve-

locity observations (2100 UTC 21 October). Following

assimilation of airborne radial velocity observations,

the ensemble spread in initial minimum central pressure

and maximum surface wind speed is reduced by 2.1 hPa

and 2.4m s21 (;50%), relative to CONV (not shown).

Both the 1-km deterministic intensity forecasts from

CONV (Figs. 1d–f) and Airborne1CONV (Figs. 1g–i),

outperform the operational intensity guidance and

official forecasts (Figs. 1a–c). This is likely from a

combination of improved ICs, resulting from im-

proved data assimilation, and reduced model errors,

including model horizontal resolution and/or differences

in model dynamics and physics. While both CONV and

Airborne1CONVdemonstrate substantial improvement

over NHC operational guidance in terms of captur-

ing the record observed peak intensity, the timing of

reaching the observed peak intensity is much improved

in Airborne1CONV (e.g., within 1h for forecast initial-

ized from 2100 UTC 21 October) as compared to CONV
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(e.g., 15h delayed for forecast initialized from 2100 UTC

21October), likely a result of the improved analysis of the

structure of Patricia as will be further discussed.

There is a large overprediction in maximum sur-

face winds after ;1800 UTC 23 October for many of

the deterministic forecasts because the landfall tim-

ing is delayed relative to observations, but once the

correct landfall timing is more accurately captured (e.g.,

1800 UTC 22 October), the timing of rapid weakening

is also better captured. We speculate that the ob-

served secondary eyewall (Rogers et al. 2017)—which is

simulated in some of our deterministic forecasts (not

shown)—may also have contributed to the weakening of

the storm prior to landfall. Additionally, Martinez et al.

(2019) suggest that eddy mixing processes may have

been a primary cause of Patricia’s rapid overwater

weakening.

To examine the reasoning for the improved de-

terministic forecasts in Airborne1CONV, the struc-

ture of the EnKF analysis mean from CONV and

Airborne1CONV from 2100 UTC 21 October and

1800 UTC 22 October are each examined and compared

with high density dropsonde observations from the TCI

field campaign (Doyle et al. 2017) obtained between

1855 and 2040 UTC 21 October and 1746 and 1945 UTC

22 October that were not assimilated. The EnKF anal-

ysis from Airborne1CONV results in a considerably

improved structure compared to CONV and a better

match to these independent observations (Figs. 2 and

3a–c). As seen in the observations near 2100 UTC

FIG. 1. (top)Real-time operational guidance, HWRF (dashed) andNHCofficial forecasts (solid), (middle) deterministicWRF forecasts

from assimilation of conventional observations only, and (bottom) deterministic WRF forecasts from assimilation of conventional ob-

servations plus P-3 Doppler radial velocity super observations. Both sets of deterministic WRF forecasts utilize 1 km horizontal grid

spacing for the innermost domain. TheWRF forecasts initialized immediately following P-3 flights through Patricia (2100UTC 21Oct and

1800UTC 22Oct) appear as thicker lines. Solid gray horizontal lines on the correspondingmaximumwind speed panels denote the cutoffs

on the Saffir–Simpson hurricane wind scale. (left) Markers on the track lines denote position every 6 h and (middle) ‘‘L’’s on intensity

forecast denote landfall timing. Red and blue shaded periods denote the time periods of P-3 and TCI observations, respectively.
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21 October, a vortex with wind speeds greater than

20ms21 is captured inAirborne1CONVand a radius of

maximumwind (RMW) near 50 km is also seen, which is

not the case for CONV (Figs. 2a–c). Similarly, for the

analysis at 1800 UTC 22 October the Airborne1CONV

analysis better matches with the TCI dropsondes than

that of CONV (Figs. 3a–c).

After 21 h into the deterministic forecasts from the

2100 UTC EnKF Analysis, which is in the middle of RI,

the TC in Airborne1CONV is stronger in terms of

maximum wind speed, has a smaller RMW (;15km),

and is more similar to TCI dropsonde observations–in

terms of the maximum wind speed, RMW, and overall

vertical structure of the TC–than CONV (Figs. 2d–f). At

47 h, shortly (;8h) after the peak estimated intensity,

both Airborne1CONV and CONV result in very strong

storms, but Airborne1CONV is still stronger than

CONV (Figs. 2g–i). Similar results are seen for the

forecasts initialized from the 1800 UTC 22 October

analysis (Figs. 3d–f). Additionally, Airborne1CONV

has a broader wind field than CONV and is more similar

to observations–in terms of the radial structure–

especially beyond 50km from the storm center (Figs. 2

and 3). Airborne1CONV also develops a secondary

eyewall, similar to what is seen in observations, un-

like CONV (not shown). Overall, while differences be-

tween dropsonde observations and the deterministic

forecasts initialized at 2100 UTC 21 October and

1800 UTC 22 October exist, the forecasts initialized

from the Airborne1CONV EnKF analysis have a

FIG. 2. Comparison of storm-relative radius–height structure of wind speed in m s21 between (left) TCI dropsonde observations from

NASA WB-57, (middle) Airborne1CONV EnKF analysis mean or forecast, and (right) CONV EnKF analysis mean or forecast from

2100 UTC 21 Oct. Dropsonde trajectories are shown by gray lines on the plot of dropsonde wind speeds. The RMW is denoted by the

dashed black line.
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much-improved representation of the size and intensity

evolution of Patricia than CONV.

b. Sensitivity of Patricia’s rapid intensification to
realistic initial condition uncertainties

To better assess the practical predictability of and

processes important in Patricia’s RI, a 60-member en-

semble forecast with 1-km horizontal grid spacing was

conducted from the Airborne1CONV EnKF analysis

perturbations at 2100 UTC 21 October. The 2100 UTC

21 October initialization was chosen because this anal-

ysis time had assimilated all observations from the first

NOAA P-3 flight and the deterministic forecast cap-

tured Patricia’s RI timing and peak estimated wind

speed. The 60-member ensemble forecast has many

members that successfully capture the peak intensity, in

terms of maximum wind speed and the timing and rate

of intensification (Fig. 4). On the other hand, a notable

number of other members either intensify the storm

;12h delayed or even worse, fail to intensify. Addi-

tionally, uncertainty in the timing of landfall appears to

result in large intensity uncertainty beyond ;42 h.

To examine the predictability of the simulated maxi-

mum intensity more quantitatively, probability density

functions (PDFs) and cumulative density functions

(CDFs) are estimated from the ensemble distributions

of peak lifetime maximum wind speed (Fig. 5a) and

maximum wind speed at the time of observed maximum

wind speed (39 h; Fig. 5b). An extreme value distribu-

tion function is fit to the data for the PDF of peak life-

time maximum wind speed and maximum wind speed at

39 h. The observed maximum wind speed of 95m s21 is

near the peak of the PDF for both the peak simulated

maximum wind speed and the maximum wind speed at

39 h, demonstrating both the peak observed intensity

and timing are captured near the center of the ensemble

envelope. Additionally, the CDF of simulated peak

maximum wind speed indicates a 60% chance of

reaching at least the observed maximum wind speed

during some period of the forecast, although the en-

semble spread in the timing of peak simulated wind

speed is 7.5 h. The ensemble probability of reaching the

observed peak intensity within 6h of the correct time is

reduced by nearly 20% in comparison to the probability

of reaching the observed peak wind speed at any time

during the forecast. This indicates that the timing of

peak intensity was considerably less predictable than the

peak intensity itself. We also note that the time of sim-

ulated peak lifetimewind speed is delayed relative to the

time observed.

In addition to the record-breaking peak intensity

reached, which was well captured within the ensemble

forecast envelope, Patricia also underwent an un-

precedented 24 (12) h intensification period where its

maximum surface wind speed increased by an estimated

54 (33) ms21 (Rogers et al. 2017). The observed 12 and

FIG. 3. As in Fig. 2, but for the 1800 UTC 22 Oct EnKF analysis.
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24h maximum intensification rates were captured within

the ensemble envelope and aGaussian PDFwas fit to the

ensemble distribution of intensification rate (Figs. 5c,d).

The observed maximum 12h intensification rate is very

near the ensemble mean 12h maximum intensification

rate (peak of the Gaussian fit PDF; Fig. 5c). The esti-

mated probability of an intensification rate of at least

33ms21 in a 12h period is 37%. The observed 24h in-

tensification rate is also captured by the ensemble but

with less confidence and is to the right of the peak in the

PDF (Fig. 5d). The ensemble estimated probability of an

intensification rate of at least 54ms21 in a 24h period is

13%. The reduced ensemble probability of the observed

24h intensification rate, relative to the 12h intensification

rate, indicates that the intensification rate becomes in-

creasingly less predictable with the length of the in-

tensification period, likely a result of internal dynamics or

environmental conditions that can disrupt the rapid in-

tensification process.

As a result of the uncertainty in the timing of in-

tensification and, to lesser extent, the peak intensity

across the ensemble, the cause of this uncertainty is

examined by separating the ensemble members into two

groups based on the maximum wind speed at the time of

observed peak intensity (39 h); the 20 strongest ensem-

ble members (20-Strong) and the 20 weakest members

(20-Weak). The weakest member (member 31), that

fails to intensify much at all, is also highlighted to un-

derstand why this member failed to intensify. This

methodology is similar to many previous studies in-

cluding Sippel and Zhang (2008), Nystrom et al. (2018),

and others. The initial maximum 10-m wind speed and

minimum central pressure is similar across the ensemble

(Figs. 4b,c) and is not well correlated to the maximum

forecast intensity (not shown). Additionally, all mem-

bers have less than 10m s21 of deep layer vertical wind

shear (most less than 5ms21), high midlevel relative

humidity, and very warm SSTs in excess of 308C (not

shown). While the environment of individual ensemble

members is generally favorable for intensification, var-

iability in environmental wind shear may partially be

responsible for the differing intensity evolutions across

the ensemble. However, ensemble correlations between

environmental wind shear and peak intensity (not

shown) are notably weaker than correlations between

initial TC structure and peak intensity. Additionally,

small SST variability across the ensemble (;0.58C) may

have partially influenced the peak simulated intensity

and intensification rate, although SST differences here

appear less important than differences in initial TC

structure (not shown).

The azimuthally averaged storm-relative structure is

examined to understand how uncertainty in the initial

structure of the TC impacted the intensification process

and ultimately the peak intensity. At the initial time, the

60-member storm-relative ensemble mean maximum

FIG. 4. The 60-member ensemble forecast with 1-km horizontal

grid spacing of (a) position, (b) maximum 10m wind speed, and

(c) minimum central pressure. Forecasts were initialized from the

Airborne1CONV EnKF analysis at 2100 UTC 21 Oct. Ensemble

members are colored relative to their intensity at the time of peak

estimated intensity (39 h, time marked with a vertical gray dashed

line) with warmer colors being stronger ensemble members at this

time and cooler colors being weaker ensemble members. The best

track is shown as the black curve.
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tangential wind speed is 20–25ms21 with a standard

deviation of 2m s21 and RMW near 50km at 1-km

height (Fig. 6a), in good agreement with the total wind

speed and RMW estimated from the TCI dropsonde

observations (Fig. 2a). The initial primary circulation of

20-Strong (Fig. 6b) and 20-Weak (Fig. 6c) is similar to

the ensemble mean near the RMW, but the tangential

wind decreases more rapidly with radius beyond the

RMW in 20-Weak. The weakest ensemble member has

a similar RMW and maximum wind speed as the en-

semble mean, but has a shallower primary circulation

and has tangential wind speeds that are weaker than

the rest of the ensemble beyond 50km (Fig. 6d). Overall,

the biggest differences between the strongest and weak-

est ensemble members’ primary circulation appear to be

beyond;100km (;2 times ofRMW), with the 20-Strong

generally having a stronger primary circulation at outer

radii. In regards to the secondary circulation, the full

ensemble mean has initial low-level inflow in excess

of 6m s21 within the lowest 1 km and upper-level out-

flow in excess of 8m s21 near 15 km (Fig. 6e). Similar

to the primary circulation, 20-Strong (20-Weak) has

an initially stronger (weaker) secondary circulation

(Figs. 6f,g) and the weakest member has the weakest

inflow within the boundary layer and outflow in the

upper troposphere (Fig. 6h). Directly related to the

stronger primary circulation, 20-Strong has greater an-

gular momentum beyond the RMW than 20-Weak, and

the weakest member has the smallest angular momen-

tum beyond the RMW (Figs. 6i–l).

By 21h into the ensemble forecast, the difference

in the maximum surface wind speed is evident (Fig. 4b).

At this time, the full ensemble storm-relative mean

depicts a primary circulation with maximum tangential

wind speeds of 45–50ms21 and anRMW less than 20km

(Fig. 7a), similar to that depicted by TCI dropsonde

observations (Fig. 2d). As seen at the initial time (Fig. 6),

20-Strong has a stronger primary and secondary circu-

lation than 20-Weak and the weakest member vortex

still appearsmuchmore shallow andweaker overall than

20-Weak (Fig. 7).

Returning to the differences in the ICs that appear to

have most significantly impacted the intensification

process, storm-relative correlations are calculated be-

tween model state variables at the initial time and

minimum central pressure at 39 h, the time of observed

FIG. 5. Ensemble histogram (gray shaded bars), estimated probability density function (red curve), and estimated

cumulative density function (blue curve) for (a) forecast peak maximum wind speed, (b) maximum wind speed at

the time of time of observed peak intensity (39 h), (c) maximum 12 h, and (d) 24 h intensification rate simulated by

the 1-km ensemble forecast shown in Fig. 4. The observed maximum wind speed and intensification rate are de-

picted by vertical black dashed lines.
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peak estimated intensity. The largest statistically sig-

nificant negative correlations between the initial tan-

gential wind speed and theminimum central pressure do

not occur at the RMW, but rather in the outer portions

of the primary circulation beyond 100 km from the storm

center and everywhere below ;10 km (Fig. 8a). This

indicates that ensemble members with a stronger pri-

mary circulation beyond the RMW are more likely to

have a lower minimum central pressure at 39 h. Addi-

tionally, large correlations appear between the initial

secondary circulation and the minimum central pressure

at 39h (Fig. 8b). Positive correlation, greater than 0.4,

between the initial radial wind in the lowest ;1km be-

yond ;80km and the minimum central pressure at 39h

indicates that stronger initial low-level inflow is associ-

ated with a stronger TC at 39h. Similarly, negative cor-

relation, less than 20.4, between the radial wind above

12km and minimum central pressure at 39h indicates

that ensemblemembers with stronger initial outflowwere

more likely to have a stronger TC at 39h. Statistically

significant negative correlations between initial water

vapor mixing ratio (QVAPOR) and minimum central

pressure at 39 h indicate that inner-core moisture may

also have played some role in the forecast uncertainty

(Fig. 8c), consistent with many previous studies (e.g.,

Rotunno and Emanuel 1987; Tao and Zhang 2014;

Emanuel and Zhang 2017; Nystrom et al. 2018). How-

ever, differences here appeared minimal compared to

differences in the primary and secondary circulations

(not shown) and a moisture swap experiment in which

the initial QVAPOR of a bad member (member 31)

and the analysis mean are swapped does not mean-

ingfully change the forecast intensity of either (not

shown). Finally, a radius–time Hovmöller of ensemble

correlation between azimuthal mean 10-m tangential

wind speed and the minimum central pressure at 39 h

(Fig. 8d) displays strongest negative correlations that

propagate inward with time, indicating that initially

greater angular momentum available beyond the

RMW may have been advected radially inward, help-

ing to spin up the TC.

To further analyze the impact of IC differences within

the outer circulation of the storm across the ensemble, as

well as environmental IC differences, spatial relaxation

FIG. 6. Comparison of the initial (0 h) storm-relative radius–height structure of (a)–(d) tangential wind speed in m s21, (e)–(h) radial wind

speed inm s21, and (i)–(l) angularmomentum in (103)m2 s21. (a),(e),(i) 60-member ensemblemean (shaded) and ensemble standard deviation

(contoured). (columns 2–4) Differences (shaded) between (b),(f),(j) initial mean of the 20 strongest members at 39 h, (c),(g),(k) initial mean of

the 20 weakest members at 39 h, and (d),(h),(l) the initial structure of the weakest ensemble member at 39 h and initial 60–member ensemble

mean. Also shown in columns 2–4 is the mean quantity of the ensemble subset (contoured) and (top) the RMW (black dashed line).
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experiments were conducted. These experiments spa-

tially relax either the ICs of the weakest member (31) to

the EnKF analysis mean (CNTL) or the EnKF analysis

mean (CNTL) to the weakest member (31). The spatial

IC relaxation is done through a distance weighted linear

combination in which, over a distance of 100km, ICs of

all model state variable are linearly transitioned from

member 31 (CNTL) to CNTL (member 31). The re-

laxation is done within three radii ranges from the TC

center: 100–200, 300–400, and 500–600km. For instance,

when ICs from member 31 are linearly transitioned to

CNTL from 500 to 600 km (r600mean), the ICs within

500km are entirely from member 31, the ICs beyond

600km are entirely from CNTL, and the ICs between

500 and 600 km are a linear distance weighted combi-

nation of the two. Two main differences exist between

member 31 and CNTL. First, member 31 has greater

environmental vertical wind shear than CNTL, defined

here as the 850–200 hPa vertical wind shear averaged

within an annulus between 200 and 800 km from the

storm center, peaking near 9m s21 at 18 h into the

forecast (Figs. 9a,d). Second, the 10-m tangential wind

speed within the outer primary circulation, beyond

;75km from the storm center, decreases more rapidly

with radius in member 31 compared with CNTL. The

initial maximum tangential wind speed is actually a bit

greater and the RMW smaller for member 31 compared

with CNTL (Figs. 9b,e).

As the environment becomes more and more like

CNTL (e.g., r600mean, r400mean), the vertical wind

shear decreases by ;5m s21, the storm undergoes a

more rapid and earlier intensification and reaches a

greater peak intensity (Figs. 9a,c). However, even

when the environment, beyond 400 km from the TC

center, is from CNTL and the vertical wind shear

is decreased to ;4m s21, the intensification is still

delayed compared to CNTL and the peak maximum

wind speed is ;15m s21 less than CNTL, indicating

that while the increased vertical wind shear in the

environmental ICs for member 31 was detrimental

to the intensification process it cannot fully explain why

the maximumwind speed of this member was;50m s21

weaker than CNTL. When the outer TC circulation

of member 31 is gradually relaxed to CNTL between

100- and 200-km radii, the tangential wind speeds are

increased within these radii (Fig. 9b) and the intensifi-

cation timing, rate, and peak intensity are nearly iden-

tical to CNTL (Fig. 9c). This result indicates that the

breadth and strength of the initial vortex can potentially

inhibit the rapid intensification process or, at the very

least, delay it–even when environmental conditions are

favorable for intensification. This may explain why some

FIG. 7. As in Fig. 6, but for forecast hour 21.
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members failed to achieve the observed peak intensity

despite being embeddedwithin a favorable environment

with some of the lowest vertical wind shear among the

ensemble (not shown).

To further examine the potential interplay between

the structure of Patricia’s outer vortex and an un-

favorable environment, experiments are also conduct-

ed in which a good vortex (CNTL) is gradually relaxed

to a bad environment and outer TC circulation

(member 31). When the environment ICs from CNTL

are replaced by those of member 31 (e.g., r600bad and

r400bad) the vertical wind shear is increased to

;8m s21 at its peak (Fig. 9d), but the associated fore-

casts still reach a peak maximum wind speed nearly

identical to CNTL, despite a brief interruption in the

rapid intensification from 18 to 24 h—roughly coinci-

dent with the peak in vertical wind shear (Figs. 9d,f).

When the outer circulation of CNTL is gradually

relaxed to member 31 from 100 to 200 km radii

(r200bad) the tangential wind speeds in this region are

decreased (Fig. 9e) and the forecasted peak maximum

wind speed is ;40m s21 less than CNTL (Fig. 9f). The

strength of the outer TC circulation beyond the RMW

and the environmental vertical wind shear both play

important roles in the intensification process and the

peak intensity variability across the ensemble.

Furthermore, the negative correlation (;20.5) be-

tween the initial maximum radius of tropical storm

force winds and the minimum central pressure at 39 h

indicates a rather robust relationship across the en-

semble, where ensemble members with larger outer

primary circulations are associated with a more intense

storm at the time of peak observed intensity. The en-

semble correlation between vertical wind shear and

minimum central pressure at 39 h is much weaker at all

forecast times (maximum of ;0.25 from 18 to 36 h; not

FIG. 8. Ensemble storm-relative radius–height correlations of initial (a) tangential wind speed, (b) radial wind

speed, and (c) vapor mixing ratio (QVAPOR) to the minimum central pressure at 39 h, the time of peak estimated

intensity. (d)Radius–timeHovmöller of ensemble correlation between azimuthalmean 10-m tangential wind speed

and minimum central pressure at 39 h; the azimuthal mean 10-m tangential wind speed is also contoured every

10m s21 (gold). Stippling denotes regions where the statistical significance exceeds the 99% confidence interval and

dashed line in (a),(d) denotes the RMW.
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shown), implying that the differences in the size of the

TC circulation may determine the amount of vertical

wind shear that prevents the TC from rapidly in-

tensifying. A broader and stronger vortex is able to

undergo a more Patricia-like intensification, even if

embedded within 6–10m s21 vertical wind shear, while

a smaller and weaker vortex is unable to rapidly in-

tensify like Patricia, even if embedded within 4m s21

vertical wind shear. We hypothesize that the stronger

tangential winds beyond the RMW are important for

the intensification of Patricia for at least two reasons.

First, the additional angular momentum beyond the

RMW can be advected radially inward near the surface

and converted into kinetic energy through conserva-

tion of angular momentum (e.g., Smith et al. 2009).

Second, in agreement with Reasor et al. (2004),

broader TCs are believed to be more resilient to ver-

tical wind shear as a result of increased inertial

stability.

This ensemble sensitivity analysis also helps to explain

the main benefits from the assimilation of airborne ra-

dial velocity observations in improving the forecasts of

Patricia’s intensification process, compared to the assimi-

lation of conventional observations alone. The assim-

ilation of airborne radial velocity helps to better

constrain and initialize the structure of the primary

and secondary circulation of Patricia at all radii, which

allowed the intensification process, timing, and peak

intensity to be better predicted than operational models

and CONV.

c. Sensitivity of Patricia’s forecasts to model
resolution and surface physics parameterization

In this subsection, we would like to provide some brief

commentary on the impact of model error on the pre-

diction of Patricia’s intensification. In particular, we focus

on the impacts of model horizontal grid resolution and

the parameterization of the ocean–atmosphere exchange

of enthalpy and momentum, which we found to be par-

ticularly important in capturing Patricia’s intensification.

High-resolution operational guidance available to fore-

casters for real-time prediction of Patricia (e.g., HWRF)

utilized horizontal grid spacing of—at best—;3km

(Tallapragada et al. 2015), while forecasts shown thus far,

on the other hand, have utilized horizontal grid spacing of

1-km for the innermost domain. To investigate the impact

of this decreased horizontal grid spacing on the predicted

intensity and simulated TC structure, forecasts with 3-km

horizontal grid [i.e., without the inner 1-km nested domain

(D04)], are initialized from the same Airborne1CONV

EnKF analysis mean as before and at two times immedi-

ately following the assimilation of airborne radial velocity

observations (Figs. 10a,b, 11a–f, and 12a–f). The peak

maximum wind speed from the forecast with 3-km hori-

zontal grid spacing is ;16ms21 less than with 1-km hori-

zontal grid spacing for the forecast initialized from

FIG. 9. (a),(d) Deep layer vertical wind shear through 39 h, (b),(e) radial profiles of 10m tangential wind speed at the initial time, and

(c),(f) simulated maximum 10m wind speed throughout the forecast period. (top) Sensitivity experiments for gradually changing initial

conditions from the worst ensemble member (031) to the analysis mean initial conditions (CNTL). (bottom) Sensitivity experiments for

gradually changing initial conditions from the analysis mean (CNTL) to initial conditions from the worst ensemble member (031). The

best track maximum wind speed is shown as the black curve.
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2100 UTC 21 October and ;8ms21 less for the forecast

initialized from 1800 UTC 22 October (Fig. 10a).

For the 3-km forecast from 2100 UTC 21 October, the

RMW is increased by as much as 5km, the primary and

secondary circulations are visibly weakened, and the

eyewall appears to slope more outward with radius,

compared with the 1-km forecast (Figs. 11a–f). The 3-

and 1-km forecasts initialized from 1800 UTC 22

October exhibit smaller differences in the maximum

surface wind speed (Fig. 10a), tangential wind speed

throughout the troposphere, and the RMW (Figs. 12a–c),

than the forecast initialized from 2100 UTC 21 October

(Figs. 11a–c). However, the RMW is still generally

smaller for the 1-km forecast than the 3-km forecast for

both initialization times. Differences in the secondary

circulation appear more complex in the later forecasts,

as the primary differences in the radial inflow at 6 h

(Fig. 12d) and 12 h (Fig. 12e) into the forecast appear

to be the result of slight differences in the RMW and

therefore the location where the boundary layer radial

inflow converges and rises within the eyewall. At 24 h

into the forecast, the boundary layer inflow is stronger in

the 3-km simulation than the 1-km simulation and dif-

ferences of more than 5m s21 are also apparent within

the upper-level outflow (Fig. 12f), indicating more of the

kinetic energy might have been transported to the pri-

mary circulation versus the secondary circulation in the

1-km forecast, since tangential wind speeds are greater

in 1 km than 3km. Overall, the increased horizontal

resolution appears important in order to capture Patricia’s

observed maximum wind speed and small and compact

inner core with very tight radial gradients, in agreement

with Fox and Judt (2018) and Qin and Zhang (2018).

Additionally, the effect of the different horizontal res-

olutions appears here to be greater for the forecast ini-

tiated near the beginning of RI (2100 UTC 21 October)

versus the forecast initialized in the middle of the RI

(1800 UTC 22 October).

FIG. 10. Deterministic intensity forecasts of (a),(c) maximum wind speed and (b),(d) minimum central pressure initialized from the

Airborne1CONV analysis mean at 2100 UTC 21Oct and 1800 UTC 22Oct for (top) innermost domain horizontal grid spacing of 1 km (solid)

and 3 km (dashed) and (bottom) surface flux parameterization from CY (solid) and GZ (dashed). The best track is shown as the black curve.
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In addition to the impact of model horizontal resolu-

tion, forecasts are conducted from the Airborne1CONV

EnKF analysis mean with 1-km horizontal grid spacing

for the innermost domain, but with two different pa-

rameterizations for the ocean–atmosphere exchange of

enthalpy and momentum. The main difference between

FIG. 11. Storm-relative radius–height difference between (a)–(f) forecasts with 1 and 3 km horizontal grid spacing and (g)–(l) CY and

GZ surface flux parameterization are shaded for forecasts initialized from 2100 UTC 21 Oct Airborne1CONVEnKF analysis mean. The

radius–height structure of the 1 km CY simulation is contoured for reference in gray every 5m s21 (starting at 10m s21) for the tangential

wind and every 4m s21 for the radial wind (negative radial wind contours are dashed). TheRMW in the 1 km or CY simulation is shown by

the black line and the RMW in the 3 km or GZ simulation by the green line.
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these two schemes is the surface drag coefficient (Cd) at

high wind speeds. The first (CY), from Chen et al.

(2018), assumes that Cd decreases with wind speed for

wind speeds greater than hurricane force. The second

(GZ), from Green and Zhang (2013), has been utilized

in the real-time PSU WRF EnKF system and assumes

that Cd gradually increases with wind speed for wind

speeds greater than hurricane force. Differences be-

tween these two parameterizations are explained in

much greater detail in Chen et al. (2018). At the current

time, considerable uncertainty exists in the true re-

lationship between the surface drag coefficient and wind

FIG. 12. As in Fig. 11, but forecasts initialized from 1800 UTC 22 Oct.
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speed for wind speeds greater than hurricane force

(33ms21; e.g., Powell et al. 2003; Black et al. 2007;

Holthuijsen et al. 2012; Bell et al. 2012; Green and Zhang

2013, 2014; Chen et al. 2018) and we attempt here to

examine two extremes of this current uncertainty range.

Uncertainty in the parameterization of the exchange

of momentum and enthalpy is shown to greatly change

the simulated intensity (Figs. 10c,d) and the inner-core

structure (Figs. 11 and 12g–l). Consistent with MPI

theory, where the square of the theoretical maximum

wind speed is directly proportional to the ratio ofCk and

Cd (Emanuel 1995), as Cd is decreased for high wind

speeds (CY), relative to GZ, the maximum simulated

wind speed is greater. The difference in maximum sur-

face winds between CY and GZ for a 6 h time period

around the time of peak intensity is ;27m s21 for the

forecast initialized from 2100 UTC 21 October and

;21ms21 for the forecast initialized from 1800 UTC

22 October, corresponding to an;25% reduction in the

peak surface wind speed in GZ relative to CY. The es-

timated differences in MPI between CY and GZ using

(1) and the appropriate Ck and Cd wind speed re-

lationship from CY and GZ is ;33ms21. While the

calculated difference from theory is a bit higher than the

actual forecast differences, it is possible one or both of

the simulated storms have not yet reached their MPI.

Despite the relative simplicity of the theory and the

somewhat empirical estimations of assumed parameters

in the MPI calculation (e.g., the outflow temperature or

the enthalpy exchange taking place only at the RMW),

we argue that the impact of changes to the surface flux

parameterization on forecasts of Patricia can be ex-

plained, at least to the first order, by theMPI theory [Eq.

(1)], where the square of the maximum wind speed is

directly proportional to the ratio of the surface enthalpy

coefficient to the surface drag coefficient.

While the most meaningful differences between the

two simulations occur within the boundary layer, dif-

ferences in the vertical structure of the primary and

secondary circulations are also apparent and 12h into

the 2100 UTC 21 October forecast, the RMW is ;5km

smaller in CY than GZ, which is likely a result of the

stronger boundary layer inflow in CY that may be acting

to spin up the storm more quickly than in GZ

(Figs. 11g,j). At 24 h, differences in the RMW are re-

duced but, overall differences in the primary and sec-

ondary circulations have increased, as CY has tangential

wind speeds more than 8ms21 greater than GZ near the

eyewall throughout much of the troposphere and the

outflow is also stronger in CY at this time by more than

5ms21 (Figs. 11h,k). By 36h, differences in the RMW

are virtually gone and differences in the tangential wind

speed throughout the troposphere are actually less than

seen at 24 h (Figs. 11h,i), despite differences in maxi-

mum surface wind speeds continuing to increase during

this time (Fig. 10c). Conversely, differences in the sec-

ondary circulation increased between 24 and 36h

(Figs. 11k,l).

While intensity differences between the 1-km and

3-km forecasts were reduced for the forecast initialized

from 1800 UTC 22 October, relative to the forecast

initialized from 2100 UTC 21 October, comparable

differences for this forecast are still apparent between

CY and GZ (Fig. 10c), as differences in the surface drag

coefficient between CY and GZ increase with wind

speed for wind speeds greater than hurricane force. The

largest differences in the primary circulation between

CY and GZ for these forecasts appear to be radially

inward of the RMW, perhaps because of the increased

surface drag in GZ at high winds resulting in a more

upright eyewall (Figs. 12g–i). Additionally, by 24h into

the forecasts, the radial inflowwithin the boundary layer

now appears stronger in GZ than CY, similar to Green

and Zhang (2014), and again likely a result of the in-

creased surface drag in GZ at high wind speeds

(Fig. 12l).

From the experiments presented in this subsection, it

can be seen that both the model horizontal resolution

and choice in ocean–atmosphere momentum and en-

thalpy exchange parameterization can meaningfully

impact the prediction of Patricia’s intensification pro-

cess. Additionally, based on the comparison of simula-

tions with different surface drag formulations shown, the

assumption of an increasing drag coefficient at high wind

speeds is clearly inappropriate for Hurricane Patricia,

and likely other intense tropical cyclones. We expect

that uncertainties in other model physical processes and

their parameterizations (such as microphysics and

boundary layer turbulence) can further limit the pre-

diction skill of this record-breaking storm.

d. Key sources of ensemble forecast error and
reduced practical predictability in Patricia’s
intensification

The practical predictability of Patricia’s intensifica-

tion is influenced by a combination of the intrinsic limit,

related to the chaotic nature of the atmosphere, IC un-

certainty, which is impacted by the data assimilation

system and availability of observations, and model un-

certainty, such as model physics uncertainty or un-

resolved forcing. Because by definition the intrinsic limit

cannot be further improved, we focus on the impacts of

IC and model uncertainties, specifically the model hor-

izontal resolution and physics related to the air–sea

fluxes. To place the impacts of IC uncertainty, coarser

model horizontal resolution, and a suboptimal surface
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flux parameterization on the forecast accuracy and

practical predictability into context, we have conduct-

ed several additional sets of 10-member ensemble

forecasts initialized from 2100 UTC 21 October with

four different model configurations and compared with

the corresponding first 10 members from the control

Airborne1CONV ensemble (CNTL-E). The impact of

IC uncertainty, model resolution, and air–sea flux pa-

rameterization on the forecast accuracy is assessed by

calculating the ensemble root-mean-squared error

(RMSE), relative to best track, and comparing with

that of CNTL-E, which has the lowest RMSE

(Figs. 13a,b). The impact on predictability is further

evaluated by comparing the pairwise root-mean-square

difference (RMSD) between the corresponding mem-

bers of the ensemble with a modified configuration and

the subset of the CNTL ensemble (CNTL-E) against the

ensemble spread of CNTL-E, which includes only the

10 members used in calculating the pairwise RMSD.

By examining the pairwise ensemble RMSD between

CNTL-E and a given modified ensemble, we can isolate

the forecast uncertainty resulting from specific sources.

A pairwise ensemble RMSD greater than the ensemble

spread of CNTL-E indicates that the modified ensemble

configuration results in differences, relative to CNTL-E,

that are larger than the ensemble spread of CNTL-E and

therefore implies that forecast uncertainty grows more

rapidly as a result of the modification than that from the

IC uncertainty of CNTL-E.

The first ensemble configuration examines the con-

sequences if no data assimilation is performed (NoDA).

The ensemble is initialized from GFS with CV3 en-

semble perturbations (NoDA), and the model configu-

ration is identical to CNTL-E. NoDA has the largest

RMSE of all ensemble configurations shown, and the

average RMSE over the first 39 h is more than 74%

(99%) greater in terms of maximum wind speed (mini-

mum central pressure) than CNTL-E (Figs. 13a,b),

demonstrating that the ensemble data assimilation per-

formed in CNTL-E considerably improved intensity

forecasts of Patricia relative to NoDA.

The second ensemble is designed to assess the con-

sequences on the intensity forecast predictability if air-

borne observations were not available, and therefore

only assimilates conventional observations (CONV).

The maximum wind speed (minimum central pressure)

RMSE for CONV averaged over the first 39 h is more

than 40% (37%) greater than CNTL-E (Figs. 13a,b),

demonstrating assimilation of airborne radial velocity

observations appreciably reduced the intensity forecast

FIG. 13. (top) Root-mean-square error and (bottom) pairwise root-mean-square difference for (left) maximum

wind speed and (right) minimum central pressure. Dash black line in all panels depicts the ensemble spread of

control ensemble (CNTL-E).
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errors over the first 39 h. Additionally, the pairwise

RMSDbetween CNTL-E and CONV is greater than the

CNTL-E spread over the first 30 h–by as much as

4.6m s21 (140%) and 5hPa (66%)–and comparable over

the next 9 h (Figs. 13c,d). The greater pairwise differ-

ences between CONV and CNTL-E, than the CNTL-E

spread, imply that the CONV ensemble is more differ-

ent from CNTL-E than CNTL-E members are from

each other. Furthermore, the maximum winds speed

(minimum central pressure) ensemble spread of CONV

is also more than 54% (19%) greater than CNTL-E (not

shown), demonstrating increased intensity forecast un-

certainty without assimilation of airborne radial velocity

observations.

In addition to IC uncertainty, model horizontal res-

olution and choice in surface flux parameterization

have already been shown to degrade deterministic

forecasts of Patricia’s intensification (Fig. 10). To fur-

ther assess the impact of model uncertainties from

coarser horizontal resolution on the practical pre-

dictability, a 10-member ensemble is conducted identi-

cal to CNTL-E, but with 3-km horizontal grid spacing

for the innermost domain during the forecasts (3 km)

(i.e., without the 1-km finest domain used in CNTL-E).

The maximum wind speed (minimum central pressure)

ensembleRMSE for 3-km averaged between 12 and 39h

is more than 52% (27%) greater than the CNTL-E

(Figs. 13a,b), further indicating that inadequate model

horizontal resolution can be an important model error

source in accurately capturing Patricia’s intensification.

Additionally, the pairwise ensemble RMSDof Patricia’s

maximum wind speed (minimum central pressure) be-

yond 24 h (21h) is increased, relative to the CNTL-E

spread, solely from the difference in horizontal resolu-

tion utilized during the forecasts by asmuch as 3ms21 or

28% (5.6 hPa or 50%; Figs. 13c,d). The greater pairwise

ensemble RMSD between 3-km and CNTL-E, than the

CNTL-E spread, indicates that beyond;1 day, intensity

forecast uncertainty increases more rapidly from dif-

ferences in horizontal resolution than from the IC dif-

ferences of CNTL-E.

Arguably the worst performing deterministic fore-

casts were from those utilizing a surface drag coefficient

which—we speculate erroneously—increased with wind

speed (Figs. 10c,d). To further assess the impact of po-

tential errors within the model parameterized surface

drag coefficient on intensity forecast errors and ensem-

ble predictability, a 10-member ensemble forecast

identical to CNTL-E, but with GZ surface drag formu-

lation (GZ) was performed. The maximum wind speed

RMSE, averaged between 24 and 39 h, for GZ is more

than 53% greater than CNTL-E, with CY surface drag

formulation (Figs. 13a,b). The substantial increase in

ensemble simulated maximum wind speed RMSE, re-

sulting from changes in the surface drag coefficient

formulation, highlights the major intensity forecast

degradation that is possible for intense TCs if an in-

adequate surface drag parameterization is used. Addi-

tionally, the pairwise ensemble RMSD of Patricia’s

maximum wind speed between GZ and CNTL-E is in-

creased beyond 21 h, relative to the ensemble spread of

CNTL-E, by as much as 7.6m s21 (60%) at 39 h, as a

result of only differences in the surface drag coefficient

at high wind speeds (Fig. 13c). The greater pairwise

ensemble RMSD for the maximum wind speed between

GZ and CNTL-E, than the CNTL-E spread, indicates

that beyond;1 day, uncertainty in simulated maximum

wind speed increases more rapidly from differences in

the surface drag coefficient than the IC differences of

CNTL-E. The greatest maximum wind speed RMSD

from CNTL-E near the time of peak intensity (39 h), for

all ensemble sets shown, is observed in GZ, indicating

that the model surface drag formulation uncertainty

potentially has a more substantial impact on the un-

certainty in simulated peak wind speed of intense TCs,

like Patricia, than current IC uncertainty (CNTL-E) or

changes from 3- to 1-km horizontal grid spacing. The

minimum central pressure on the other hand, is less

sensitive to changes in the surface drag (Figs. 13b,d), in

agreement with Green and Zhang (2014).

4. Conclusions

Compared with operational guidance present at the

time of Hurricane Patricia, the current study examines

the potential for improving the practical predictability

of Hurricane Patricia’s rapid intensification to its peak

intensity through assimilating airborne Doppler radar

radial velocity observations in the inner core region with

an ensemble Kalman filter, reducing horizontal grid

spacing of the forecast model, and using an improved

surface flux parameterization in which the surface drag

decreases with wind speed above hurricane force.

Complementary to previous investigations, it is dem-

onstrated that assimilation of airborne radial velocity

observations is crucial to better capture the initial inner-

core structure and intensity and to subsequently im-

prove the deterministic and ensemble analyses and

forecasts of the hurricane’s structure and intensity.

Moreover, using the EnKF analysis perturbations

with airborne Doppler observations assimilated, a

60-member ensemble with 1-km horizontal grid spacing

demonstrates its ability to simulate the observed maxi-

mum wind speed with high probability, since the ma-

jority of ensemble members reached at least the

observed peak intensity and many capture the observed
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record-breaking intensification rate during the forecast,

though the timing of reaching the observed peak wind

speed was more uncertain. The initial primary and sec-

ondary circulations beyond the RMW were found to be

the dominant sources of initial condition uncertainty

leading to different intensities at the time of peak ob-

served intensity, as members with initially stronger pri-

mary and secondary circulations beyond the RMW were

able to intensify earlier. Without assimilation of airborne

radial velocity observations, ensemble intensity forecast

errors are increased by more than 40% and the intensity

forecast uncertainty is increased by more than 50%.

Encouragingly but not surprisingly, given the rather

compact inner core of Patricia, it is found that the

convection-allowing forecasts with 1-km horizontal grid

spacing were able to better capture Patricia’s structure

and reduced ensemble intensity forecast errors by as

much as 50%, in comparison with 3-km horizontal grid

spacing. This forecast improvement is observed despite

the cycling ensemble DA being conducted with a

coarser horizontal grid spacing of 3-km. Further sys-

tematic expansion of the current investigation to many

other tropical cyclone events could lead to the use of

real-time prediction using much refined resolution while

performing the cycling ensemble DA at the marginal

convection-permitting resolution under limited compu-

tational constraints. We speculate, based on our limited

testing (not shown), that performing the cycling en-

semble DA with 1-km horizontal resolution would yield

little–if any–improvement because current observations

are insufficient spatially and temporally to constrain the

uncertainty at the finer resolved scales.

Last, this study demonstrates the importance of not

only continuing to reduce IC uncertainty through ef-

fective DA methods but also the importance of im-

provements to numerical models, in particular the

parameterization of subgrid-scale physical processes in

order to maximize the practical predictability of TCs. In

many studies examining TC predictability (e.g., Van

Sang et al. 2008; Torn and Cook 2013; Zhang and Tao

2013; Emanuel and Zhang 2016), the model physics

uncertainty is often neglected. However, we have dem-

onstrated here that the current physics uncertainty re-

lated to the air–sea fluxes can be an important source of

intensity forecast uncertainty that is potentially more

important than current initial condition uncertainty for

prediction of intense tropical cyclones, like Patricia,

beyond ;1 day. The very large changes in forecast in-

tensity and structure observed by modifying the air–sea

exchange of momentum and enthalpy, demonstrated

here and elsewhere (e.g., Green and Zhang 2013, 2014),

certainly warrants future research. Specifically, future

works are needed to better understand, represent, and

constrain the impact of Ck and Cd uncertainty on TC

development, intensification, structure and energetics.

Pathways to reduce uncertainty in Ck and Cd, include,

but are not limited to, using the budget analysis of Bell

et al. (2012), systematic ensemble and parameter sensi-

tivity analysis as in Green and Zhang (2014), and si-

multaneous state and parameter estimation assimilating

in situ and remotely sensed observations (e.g., Aksoy

et al. 2006a,b; Hu et al. 2010).
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