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ABSTRACT4

The relationship between energy transport and kinetic energy generation in a hurricane is5

analyzed. The hydrological cycle has a negative impact on the generation of kinetic energy.6

First, in a precipitating atmosphere, mechanical work must also be expended in order to lift7

water. Second, the injection of water vapor at low relative humidity and its removal through8

condensation and precipitation reduces the ability of a thermodynamic cycle to generate9

work. This reduction can be directly quantified in terms of the change in the Gibbs free10

energy between the water added and removed.11

A newly developed approach, namely the Mean Air Flow As Lagrangian Dynamics Ap-12

proximation, is used to extract thermodynamic cycles from the standard output of a nu-13

merical simulation of a hurricane. While convection in the outer rainbands is inefficient14

at producing kinetic energy, the deepest overturning circulation associated with the rising15

air within the eyewall is an efficient heat engine that produces about 70% as much kinetic16

energy as a comparable Carnot cycle. This confirms that thermodynamic processes play a17

central role in hurricane formation and intensification, and that the thermodynamic cycles in18

a hurricane are characterized by high generation of kinetic energy which differ significantly19

from those found in atmospheric convection.20
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1. Introduction21

Intense winds in hurricanes and typhoons require a continuous generation of kinetic en-22

ergy within the storm to balance frictional dissipation. The hurricane circulation transports23

energy received from the warm ocean to the colder atmosphere. In doing so, it acts as a24

heat engine that produces the kinetic energy necessary to sustain the storm. The ability to25

generate kinetic energy can be quantified by an efficiency defined as the fraction of the heat26

input that is converted into kinetic energy. The efficiency depends on multiple environmental27

factors, such as the temperature of the energy source and sink, or the relative humidity of28

the air. In this paper, we will review these factors and show how to assess the efficiency for29

storms simulated in high resolution atmospheric models.30

The Carnot cycle is probably the best known theoretical model for a heat engine. Its31

efficiency is the maximum efficiency of any closed thermodynamic cycle and is equal to32

the ratio of the temperature difference between the heat source and sink to the absolute33

temperature of the heat source. Hurricanes have at times been compared to a Carnot cycle34

(Emanuel 1986, 2003; Willoughby 1999) in which the energy source is the warm ocean surface35

and the energy sink corresponds to the radiative cooling of the troposphere. For a typical36

ocean temperature of about 300K and tropopause temperature of 200K, hurricanes would37

be able to convert up to one third of the energy input into kinetic energy.38

However, not all heat engines act as Carnot cycle. There is a growing body of evidence39

that the hydrological cycle leads to a substantial reduction of the generation of kinetic40

energy by the Earth’s atmosphere. This occurs for two reasons. First, a substantial fraction41

of the work done by the atmosphere is used to lift water and is subsequently dissipated as42

precipitation falls to the ground (Pauluis et al. 2000; Pauluis and Dias 2013). Second, the43

atmosphere acts as a dehumidifier that gains water through evaporation in unsaturated air44

but loses it as liquid water. This corresponds to a thermodynamic transformation in which45

the reactant (water vapor) has a lower Gibbs free energy state than the product (liquid46

water or ice). Such reaction cannot occur spontaneously in an isolated system and reduces47
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the ability of the system to generate mechanical work (Pauluis 2011). Several studies (Pauluis48

and Held 2002a; Laliberte et al. 2015; Pauluis 2016) have confirmed the negative impacts of49

the hydrological cycle on the atmospheric heat engine efficiency at both the convective and50

global scales.51

This raises the questions of whether hurricanes can generate kinetic energy at a rate52

expected from a Carnot cycle, and, if so, of why hurricanes would be less affected by moist53

processes than other atmospheric motions. To address this issue, we will analyze the thermo-54

dynamic behavior of an idealized hurricane simulation. Computing the mechanical output55

of a thermodynamic cycle is straightforward for idealized cycles. This task is more difficult56

for highly turbulent flows in which the trajectories of air parcels vary greatly and are not57

periodic. To address this problem here, we use a new analytical framework, the ”Mean Air58

Flow As Lagrangian Dynamics Approximation” (MAFALDA hereafter, see Pauluis 2016).59

Under MAFALDA, one first computes the overturning circulation in isentropic coordinates60

by sorting rising and descending air parcels in terms of their equivalent potential tempera-61

ture. This mean circulation is then used to construct a set of thermodynamic cycles with the62

same mass and heat transport as the total flow. The thermodynamic transformations along63

these cycles are then analyzed to assess the impacts of moist processes on kinetic energy64

generation in the hurricane.65

Section 2 reviews the impacts of the hydrological cycle on the kinetic energy generation66

in a generic thermodynamic cycle with condensation and precipitation. It shows that the67

mechanical output of such a cycle is reduced by a Gibbs penalty term that accounts for68

the addition and removal of water substance in different thermodynamic states. Section69

3 describes the MAFALDA procedure and applies it to a hurricane simulation. Section70

4 analyzes the thermodynamic cycles in our simulation to show that the thermodynamic71

cycle associated with ascent within eyewall can achieve an efficiency comparable to that of72

a Carnot cycle. Our results are summarized in Section 5.73
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2. Impacts of the hydrological cycle on the atmospheric74

heat engine.75

We consider a schematic representation of the overturning circulation in a hurricane as76

presented in Figure 1. As air rushes toward the center of the storm (point 1 → 2), it gains77

energy and entropy due to the energy flux from the surface.. It then ascends in the eyewall,78

undergoing a near adiabatic expansion, and moves away from the storm center in the upper79

troposphere (point 2 → 3). The air is eventually brought back to the surface while losing80

energy through the emission of infrared radiation (point 3 → 1). These transformations81

correspond to a heat engine which transports energy from the ocean surface to the upper82

troposphere and is associated with a net conversion of internal energy into kinetic energy.83

Quantitatively, we define the efficiency of a heat engine η as the ratio of the generation84

of kinetic energy WKE to the external heating Qin:85

η =
WKE

Qin

(1)

The potential intensity theory of Emanuel (1986) indicates that a hurricane acts in similar86

fashion to a Carnot cycle. In particular, the efficiency is equal to the well-known Carnot87

efficiency ηC :88

ηC =
Tin − Tout

Tin
(2)

where Tin and Tout are respectively the temperatures of the energy source and sink.89

While the total work and heat flux is proportional to the mass of air being circulated,90

the efficiency is not. Here, we compute the energy flux and mechanical work per unit mass91

of dry air circulated. The external heating δq can be directly assessed from the First Law of92

Thermodynamics by:93

δq = dh− αd dp. (3)

Here, h is the enthalpy per unit mass of dry air, αd is the specific volume per unit mass94

of dry air, and p is the total pressure. The external heating here should be understood as95
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external with respect to the parcel. It not only includes energy exchange with the surface and96

radiative cooling, but also diffusive energy transfer and frictional heating. The net energy97

source Qin and net energy sink Qout are defined as the integral of the positive and negative98

values of δq along the cycle. Integrating 3 over a cycle, yields99

Qin +Qout = WKE +WP . (4)

The left-hand side here is equal to the net heating, while the right-hand side is equal to the100

total amount of work produced. The later is separated into the generation of kinetic energy101

WKE102

WKE = −
∮
αddp−

∮
Γ(rv + ri + rl) dz. (5)

and the work done to lift water103

WP =

∮
Γ(rv + ri + rl) dz. (6)

Here, Γ is the gravitational acceleration, and rv, rl and ri are respectively the mass of water104

vapor, liquid water and ice per unit mass of dry air.105

To relate the generation of work to the energy transport, we can take advantage of the106

Gibbs relationship (see equation A.6) to rewrite the external heating (3) as107

δq = Tds+
∑
w=v,l,i

gw drw. (7)

Here, s is the moist entropy per unit mass of dry air, T is the temperature, and gv, gl and108

gi are the specific Gibbs free energy for water vapor, liquid water and ice. The Gibbs free109

energy terms are necessary here to fully account for the thermodynamic impacts associated110

with the addition and removal of water in different phases. These quantities are defined in111

the Appendix. Dividing equation (7) by the absolute temperature and integrating over a112

thermodynamic cycle yields113

Qin

Tin
+
Qout

Tout
+

∆G

Tout
= 0. (8)

We refer here to the term ∆G as the Gibbs penalty and it is defined as114

∆G = −Tout
∮ ∑

w=v,l,i

gw
T
drw. (9)
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Equations (4) and (8) can be combined to yield an expression for the generation of kinetic115

energy:116

WKE =
Tin − Tout

Tin
Qin −WP −∆G. (10)

The first term on the right-hand side is the work that would have been produced by a Carnot117

cycle. The generation of kinetic energy is less than this theoretical maximum due to the work118

necessary to lift the water WP and due to the thermodynamic impact of the hydrological119

cycle quantified in terms of the Gibbs penalty ∆G.120

In the idealized cycle, water vapor is added as unsaturated water vapor and removed121

mostly as liquid water or ice. The Gibbs free energy of unsaturated water vapor is always122

less than that of liquid water at the same temperature with gv − gl = RvT lnH, where Rv123

is the specific gas constant for water vapor and H is the relative humidity. This implies124

that water is added to the cycle at a lower Gibbs free energy than it is removed, thus125

corresponding to a positive value of the Gibbs penalty and a reduction of the mechanical126

output.127

A physical process, such as condensation of unsaturated water vapor, in which the Gibbs128

free energy of the products is higher than that of the reactants cannot occur under isothermal129

and isobaric condition, as it would imply a violation of the Second Law of Thermodynam-130

ics. Indeed, in such situation, the reverse reaction, e.g. the evaporation of liquid water131

in unsaturated air, occurs spontaneously. As the transformations involved in the idealized132

hurricane cycle described in Figure 1 are neither isothermal nor isobaric, they can result in a133

net increase in the Gibbs free energy without violating the Second Law. However, equation134

(10) indicates that, when this happens, the cycle must be associated with a heat transport135

from warm to cold, and the mechanical output is reduced by an amount equal to the Gibbs136

penalty.137

The difference of Gibbs free energy between water vapor and liquid water, gv − gl =138

RvT lnH, is equal to the amount of work that could be produced by the isothermal expan-139

sion of water vapor from its saturation partial pressure to its actual partial pressure. And140
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indeed, this is equal to the amount of work that is produced if water vapor first evaporates in141

saturated condition then expands to reach the partial pressure in the environment. However,142

when evaporation occurs in unsaturated air, water molecules irreversibly diffuse into unsatu-143

rated air, without generating any mechanical work. Instead, there is an irreversible increase144

of entropy equal to the increase of Gibbs free energy divided by the absolute temperature.145

Thus, the Gibbs penalty can be thought of as the amount of work that the thermodynamic146

cycle fails to produce due to the thermodynamic irreversibility tied to the hydrological cycle.147

3. Reconstruction of thermodynamic cycles from nu-148

merical simulations149

a. Numerical model and set-up150

We analyze here the thermodynamic behavior of a hurricane simulated with the Advanced151

Research version of the Weather Research and Forecasting (WRF-ARW) model version 3.1.1152

Skamarock et al. (2008). In this configuration, the model uses three two-way nested domains,153

with respective sizes of 4320 km by 4320 km, 1440 km by 1440 km, and 720 km by 720 km,154

and with horizontal grid spacings of 18, 6, and 2 km. The model has 41 vertical levels with155

the model top at 50 hPa. The two smaller nested domains are moveable, with the domain156

center following the 850-hPa center of the tropical cyclones. The physical parameterizations157

are the same as in Zhang and Tao (2013) and Tao and Zhang (2014). It should be noted158

that the turbulent parameterization used in WRF does not include a frictional heating, i.e.159

the kinetic energy loss to dissipation is not put back as internal energy. Bister and Emanuel160

(1998) have suggested that the inclusion of frictional heating can lead to more intense tropical161

storms. The model is initialized with a modified Rankine vortex with a maximum surface162

wind speed of 15 ms−1 at 135 km radius. The Dunion non-SAL mean hurricane season163

sounding (Dunion 2011) is used for the environmental moisture and temperature profile164
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with a constant sea surface temperature of 29oC (SST29) and a constant Coriolis parameter165

equivalent to 20N. The initial condition and model setup are the same as the noflow-SST29166

in Tao and Zhang (2014) but without moisture perturbation.167

Figure 2 shows the evolution of the maximum wind and minimum pressure. The hurricane168

reaches its maximum intensity by the end of day 5, with a central pressure of 885 mb and169

a maximum wind speed of 97 ms−1. The storm maintains its intensity for the remaining 10170

days of simulation, with a slight increase in surface pressure by day 15. As the experimental171

set-up used here does not include radiative transfer, the atmosphere will slowly evolve toward172

a state of a thermal equilibrium with the ocean, with no convection or wind. Over the173

course of the simulation, we observe an increase in low level humidity away from the storm,174

a warming of the upper-troposphere, and a reduction of the convective activity far away from175

the storm center. All these are consistent with a slow evolution toward thermal equilibrium.176

The storm however occupies only a small fraction of the domain and, as noted earlier, its177

intensity remains steady for the last 10 days of the simulation. Our main focus here is178

to analyze the thermodynamic cycles that underlie the storm, and we chose here to focus179

primarily on the intensifying storm on day 5 of the simulation.180

Figures 3A shows the mean azimuthal wind during the fifth day of the simulation. It181

exhibits a well defined maximum near the surface at a radius of about 40 km from the storm182

center. The strong vortex extends through the entire troposphere. Further away from the183

center, in the upper troposphere, the circulation is anticyclonic, as evidenced by the negative184

azimuthal wind.185

Figure 3B shows the distribution of equivalent potential temperature θe. The equivalent186

potential temperature here is defined with respect to ice, as in Pauluis (2016). The definition187

of θe used here includes a contribution from the latent heat of freezing, and is slightly higher188

than the equivalent potential temperature over liquid water as defined in Emanuel (1994).189

Away from the center of the storm, the equivalent potential temperature shows a vertical190

structure typical of the tropical regions, with high value near the surface, θe ≈ 360K, a lower191
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tropospheric minimum with θe ≈ 335K at an altitude of 4-5km, then a slow increase in the192

upper troposphere. The stratosphere is not shown in Figure 3B but it exhibits an enhanced193

stratification. Toward the center of the storm, the equivalent potential temperature increases194

and the midtropospheric minimum of θe becomes less pronounced. The eyewall appears as195

a region of almost constant value of θe.196

The secondary circulation can be quantified in terms of an Eulerian streamfunction197

ΨE(r, z) =

∫ r

0

ρwrdr, (11)

which is shown in Figure 3C. The streamfunction shows a direct overturning circulation,198

with inflow at low level, rising motion in the eyewall and outflow in the upper troposphere.199

Figure 3C also indicates another inflow in the upper troposphere located between 10 and200

12km, below the main outflow. Similar upper level inflows have been noted in other numerical201

simulations of hurricanes, such as Rotunno and Emanuel (1987).202

b. The Mean Air Flow As Lagrangian Dynamics Approximation203

The analysis of the thermodynamic cycles in the previous section requires us to know204

the evolution of the thermodynamic properties of an air parcel. Most atmospheric flows are205

highly turbulent, and not only are all parcel trajectories different, but they almost never206

correspond to a closed thermodynamic cycle. To circumvent this problem, Pauluis (2016)207

introduced MAFALDA, a systematic approach designed to extract a set of representative208

cycles from numerical simulations of turbulent atmospheric flows. The method consists of 4209

distinct steps:210

i. Compute the isentropic streamfunction in z − θe coordinates;211

ii. Estimate the conditional average of thermodynamic state variables as function of z212

and θe;213

iii. Construct a set of trajectories in z − θe from the isentropic streamfunction;214
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iv. Interpolate the values of the various state variables along these trajectories;215

1) Isentropic streamfunction216

Under MAFALDA, one first computes a mean overturning circulation using height (z)217

and equivalent potential temperature θe as coordinates. It is quantified in terms of the218

isentropic streamfunction Ψ(z, θe) shown in Figure 4, defined as the net upward mass flux219

at height z of all air parcels with an equivalent potential temperature less than θe0:220

Ψ(z, θe0) =
1

P

∫ t0+P

t0

∫ 2π

0

∫ r0

0

ρ(w − w)H(θe0 − θe(r, φ, z, t)) rdr dφ dt. (12)

Here, P = 1 day is the time period for the averaging, r0 = 800 km is the radius of the domain221

used for averaging, ρ is the mass of dry air per unit volume, w is the vertical velocity, w(r, z) is222

the mass weighted horizontally averaged velocity for r < r0 and H is the Heaviside function.223

Note that the integral in (12) is computed only for a central part of the simulated domain.224

Convection far away for the storm center dominates the isentropic streamfunction when it225

is computed over the entire domain, making the thermodynamic structure of the hurricane226

more difficult to distinguish. We choose here to limit the isentropic analysis to an area227

relatively close to the storm instead. The isentropic streamfunction is introduced in Pauluis228

and Mrowiec (2013) and its application to hurricanes is discussed in Mrowiec et al. (2016).229

The isentropic streamfunction averaged over the 5th day of the simulation is shown in230

Figure 4. For a steady flow, the mean flow in z − θe coordinates follows the isolines of the231

streamfunction. In Figure 4, this flow would be clockwise, with air rising at high value of θe232

near the center of the storm and subsiding at lower θe much further away. The ascent in the233

eyewall corresponds to rising motions at very high value of θe, here for 365K < θe < 380K.234

The ascent of high θe air in the eyewall accounts for only one third of the total the overturning,235

with the bulk of the ascent occurring at lower value of θe, with 355K < θe < 365K.236

There are substantial differences between the overturning identified by the Eulerian237

and isentropic streamfunctions depicted respectively in Figure 3C and Figure 4. Notably,238
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the mass transport is much larger in the isentropic analysis, with a maximum value of239

about 1.4 1010kgs−1, than in the Eulerian frame, which has a maximum value of about240

0.6 1010kgs−1. The maximum of the isentropic streamfunction is also located near the sur-241

face, while the Eulerian streamfunction peaks in the upper troposphere. In addition, the242

isentropic analysis indicates that rising air parcels exhibit high value of θe, with θe > 355K,243

which is substantially larger than the value of θe found in the free troposphere away from the244

boundary layer and eyewall. These differences can be attributed to the mass transport by245

convective motions, which is not accounted for by the Eulerian averaging. We will refer the246

interested readers to Mrowiec et al. (2016) for a more detailed discussion of the difference247

between isentropic and Eulerian circulations in hurricanes.248

2) MAFALDA trajectories:249

In MAFALDA, the isolines of the isentropic streamfunction are treated as parcel trajec-250

tories. For a given value of the streamfunction Ψ0, we construct a parametric representation251

(z(λ), θe(λ)) of the isoline such that252

Ψ(z(λ), θe(λ)) = Ψ0. (13)

We focus here on two distinct cycles corresponding to 2.5% and 42.5% of the absolute253

minimum of the streamfunction. Three locations are marked along each cycle: point 1 is the254

minimum entropy, point 2 corresponds to the maximum entropy at the surface, and point 3255

is the highest point in the cycle.256

The first trajectory, indicated by the solid black line, is referred here to as the inner-core257

cycle, and is associated with air parcels rising at very high equivalent potential temperature,258

with θe ≈ 370K. The second trajectory, which we will refer to as the rainband cycle, is259

representative of air parcels that rise at lower value of the equivalent potential temperature,260

with θe ≈ 350K in the upper troposphere. These two trajectories are shown respectively261

as the solid black line and the blue dashed lines in Figures 3A-C. To convert a trajectory262
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in isentropic coordinates θe − z, to the Eulerian coordinates r − z, we compute the mean263

radius associated with air parcels at a given value of z and θe as discussed in the next264

subsection. Figure 3A shows that the inner-core cycle indeed corresponds to an air parcel265

that penetrates to near the center of the storm, rises to the tropopause within the eyewall266

before moving outward and subsiding far away from the center. In contrast, the rainband267

cycle is associated with rising motion further away from the center, in the region associated268

with the outer rainbands of the storms.269

3) Isentropic average of state variables270

To evaluate the value of the various properties of the air parcels along the streamlines,271

we compute their mass-weighted conditionally averaged value in z − θe coordinates. First,272

for any function f(x, y, z, t), we introduce its isentropic integral < f > as273

< f > (z, θe0) =
1

P

∫ t0+P

t0

∫ 2π

0

∫ r0

0

fδ(θe0 − θe(r, φ, z, t))r dr dφ dt,

where δ is the Dirac delta function. The mass-weighted average of f is defined as274

f̃(z, θe0) =
< ρf >

< ρ >
.

Figure 5 shows the isentropic average for the radius r̃, azimuthal wind, specific moist275

entropy s̃, temperature T̃ , mixing ratio r̃ and Gibbs free energy g̃v, respectively. The radius276

distribution in Figure 5A shows that air with high θe is preferentially located near the277

storm center, while low energy air parcels, with θe less than 345K, are located far away278

from the center, with r̃ ≥ 500km. At low levels, the radius r̃ decreases with increasing279

θe, corresponding to the gradual moistening of the air toward the center of the storm. The280

azimuthal wind ũ is shown in Figure 5B. The strongest wind corresponds to the air with high281

θe near the surface. A benefit of the isentropic averaging here is to magnify the structure of282

the eyewall. Indeed, while the eyewall occupies a small physical area near the storm center,283

it is associated with a fairly broad range of high values of θe between 355K and 375K.284
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Figures 5C and 5D show the distribution of moist entropy s̃ and temperature T̃ . There is285

a close relationship between equivalent potential temperature and entropy, which translates286

in that the isolines for s̃ are almost vertical. Similarly, the isolines for temperature T̃ are287

almost horizontal, as the the temperature variations are closely tied to changes in height.288

The water vapor distribution (Figure 5E) shows high value near the surface and at high289

equivalent potential temperature. The decreases of water vapor with height is due to the290

decrease in temperature through the Clausius Clapeyron relationship. At a given height,291

fluctuations of water vapor are strongly linked to the horizontal variations of equivalent292

potential temperature. Figure 5F shows the distribution of the Gibbs free energy of water293

vapor gv. The variations of gv are foremost determined by relative humidity. At high value of294

θe , gv is close to 0, indicating that these air parcels are saturated with respect to liquid water.295

Lower values of θe are associated with large negative value of gv in the unsaturated storm296

environment. In the upper troposphere, the Gibbs free energy is negative as condensation297

over ice reduces the water vapor pressure well below its saturation value over liquid water.298

4) State variables along the MAFALDA trajectories:299

State variables along given MAFALDA trajectories are taken to be equal to the corre-300

sponding isentropic average at the same value of z and θe, e.g.:301

s(λ) = s̃(z(λ), θe(λ)).

This procedure allows us to estimate the value of any state variable along any of the302

MAFALDA trajectories. The solid black line and the dashed blue line on Figure 5 show303

the MAFALDA trajectories associated with the cycles superimposed on the isentropic aver-304

age for various state variables.305

We apply the MAFALDA procedure to reconstruct the thermodynamic cycles during306

the 5th day of our simulation. Figure 6 shows the results for the inner-core cycle and the307

rainband cycles under six different coordinate pairs: moist entropy (s) and temperature (T )308
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(Figure 6A); buoyancy b and height z (Figure 6B); total water content rT = rv + rl + ri309

and height z (Figure 6C); mixing ratio q and Gibbs free energy for water vapor gv (Figure310

6D); liquid water content rl and Gibbs free energy for liquid water gl (Figure 6E); and ice311

water content qi and Gibbs free energy for ice gi (Figure 6F). The axes are chosen so that312

the trajectories are going clockwise in all four panels, with x and y directions corresponding313

qualitatively to increasing radius and increasing height. Three locations are marked along314

each cycles: point 1 is the entropy minimum, point 2 corresponds to the maximum entropy315

at the surface, and point 3 is the highest point in the cycle.316

4. Thermodynamic cycles in a simulated hurricane317

The MAFALDA procedure has allowed us to extract thermodynamic cycles from the318

numerical model output. We now turn to the physical interpretation of the cycles in various319

thermodynamic coordinates as shown in Figure 6, and their implications for the generation320

of kinetic energy.321

In the T-S diagram (Figure 6A), the two trajectories exhibit features of a heat engine.322

For the inner-core cycle, the first transformation from 1 to 2 leads to an entropy increase323

from 200JK−1kg−1 to 300JK−1kg−1 due to the energy fluxes from the ocean surface. The324

second transformation from 2 to 3 corresponds to an expansion with approximately constant325

moist entropy but decreasing temperature from 300K to about 200K. In the last leg from326

3 to 1, the parcel is compressed back to the surface and its temperature increases from327

200K to about 300K. As first, the parcel loses energy and its entropy decreases from about328

300JK−1kg−1 to 200JK−1kg−1. Closer to the surface, water vapor gained from mixing with329

cloudy air leads to an entropy increase from 200JK−1kg−1 to 240JK−1kg−1.330

The rainband cycle differs from the inner-core cycle in three aspects. First, the entropy331

increase in the inflow portion of the cycle (1→ 2) is substantially less for the rainband cycle332

indicative of weaker surface energy fluxes. Second, the entropy decreases from about 280 to333
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250JK−1 during the ascent (2→ 3). This loss of entropy occurs as the air parcel loses water334

vapor through detrainment and mixing: a reduction of entropy of 30JK−1kg−1 corresponds335

approximatively to a loss of 3g/kg of water vapor. Finally, the rainband cycle is shallower,336

reaching a height of 12km and its minimum temperature (at about 220K) is substantially337

warmer than for the inner-core cycle.338

Figure 6B shows the two cycles in buoyancy and height coordinates. The buoyancy here339

is given by340

b = Γ

(
T − T
T

+
Rv

Rd

(rv − rv)− (rT − rT )

)
,

where the overbar denotes the horizontal average. In an anelastic model, the generation of341

kinetic energy would be proportional to the integral of
∮
bdz, i.e. the area within the curve342

shown in Figure 6B. As the Mach number in a hurricane is high, the anelastic approximation343

is inaccurate, and the generation of kinetic energy should be computed by the integral (10).344

Nevertheless, we use here the buoyancy-height coordinates as it makes it easier to visualize345

the cycles. In both cycles, rising air is lighter than descending air, so that the cycles are346

associated with a net generation of kinetic energy. The variations of buoyancy in the inner-347

core cycle are particularly large - reaching up to 0.4ms−2. The kinetic energy generation348

is approximately equal to the area within the curve, and Figure 6B thus indicates that the349

inner-core cycle generates much more kinetic energy than the rainband cycle.350

Figure 6C shows the two cycles in total water mixing ratio and height coordinates. Both351

cycles corresponds to a net upward transport of water in all phases. The geopotential energy352

gained by the water as it is lifted by atmospheric motions, is proportional to the area within353

the cycle. The inner-core cycle does more work in order to lift more water to a higher level354

than the rainband cycle. The maximum mixing ratio in the inner-core cycle is about 22355

g/kg, which is about 2g/kg larger than for the outer rainband cycle. This is consistent356

with the difference of about 20JK−1kg−1 in the maximum entropy between the two cycles,357

and confirms that the entropy increase near the center of the storm is due to the enhanced358

evaporation from the ocean.359
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These cycles differ from a Carnot cycle in a more fundamental way: most of the entropy360

increase arises from the evaporation of water at the ocean surface. The air parcel must361

be treated as an open system that exchanges water in various phases. Figure 6D shows362

the two cycles in rv - gv coordinates with clockwise trajectories. The Gibbs free energy of363

water vapor can be approximated as gv ≈ RvT lnH and its variations depends primarily on364

relative humidity. Surface evaporation 1 → 2 also corresponds to a gain of water vapor at365

low value of the Gibbs free energy. Expansion 2 → 3 corresponds to a loss of water vapor366

through condensation and precipitation. As the air is saturated through the expansions,367

the Gibbs energy of the water vapor closely matches that of liquid water below the freezing368

level, and that of ice above it. During compression 3 → 1, the air parcel gradually gains369

water vapor from mixing with surrounding clouds. Water is injected into unsaturated air at370

a low value of the Gibbs free energy (1→ 2 and 3→ 1) but removed during the expansion371

as condensed water with higher Gibbs free energy (2 → 3). From a thermodynamic point372

of view, a chemical reaction where the reactant, water vapor, has a lower Gibbs free energy373

than the product, liquid water, does not occur spontaneously under isothermal conditions.374

The hydrological cycle is possible here because evaporation occurs systematically at higher375

temperature than condensation. The difference in Gibbs free energy between evaporation376

and condensation also leads to a reduction of the kinetic energy generated by the atmospheric377

heat engine.378

Figures 6E and 6F show the two cycles in the mixing ratio and Gibbs free energy for379

liquid water ( gl− rl in Figure 6E) and ice (gi− ri in Figure 6F). These are necessary for the380

computation of the Gibbs penalty ∆G, but the contribution of the water and ice phase is381

quite smaller than the contribution from water vapor, due to the facts that there is much less382

liquid water and ice present, and that the variations of Gibbs free energy for water are small383

when compared to that of water vapor. The decision here to use liquid water at 273.15K as384

the reference state ensures that the Gibbs free energy of water is small and slightly negative.385

We apply the thermodynamic framework of section 2 to analyze the kinetic energy gen-386
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eration in each thermodynamic cycle computed from MAFALDA. The energy source Qin387

and sink Qout are computed by integrating the positive and negative values of the heating388

increment δq = dh− αddp:389

Qin =

∮
max(δq, 0) (14)

Qout =

∮
min(δq, 0) (15)

The tempertature of the energy source Tin and sink Tout are obtained by390

Qin

Tin
=

∮
max(

δq

T
, 0) (16)

Qout

Tout
=

∮
min(

δq

T
, 0). (17)

The Carnot efficiency ηC is equal to the temperature difference between the energy source391

and energy sink, divided by the temperature of the energy source392

ηC =
Tin − Tout

Tin
, (18)

so that the maximum work that could be achieved by an equivalent Carnot cycle Wmax is393

equal to the product of the net heating multiplied by the Carnot efficiency Wmax = ηCQin.394

The generation of kinetic energy WKE is given by equation (5), the work done to lift water395

WP by equation (6) and the Gibbs penalty by equation (9). These quantities are related to396

each other in terms of the thermodynamic budget ( 10):397

WKE = Wmax −WP −∆G.

Note that all the values for the energy flux and work - Qin,Qout, Wmax, WP , ∆G and WKE398

- are expressed in Joules per unit mass of dry air.399

For the rainband cycle, our analysis yields an external heatingQin =19.9 kJkg−1occurring400

at an average temperature Tin = 294K, while the cooling temperature is Tout = 269K.401

The Carnot efficiency for this cycle is ηC = 0.08, which corresponds to a maximum work402

Wmax = ηCQin = 1.68 kJkg−1. The generation of kinetic energy WKE = 0.73 kJkg−1 which403
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corresponds to a heat engine efficiency η = WKE/Qin = 0.04. This small efficiency is404

due both to the fact that a substantial portion of the work is used to lift water, with405

WP = 0.42 kJkg−1, and to counter the Gibbs penalty ∆G = 0.48 kJkg−1resulting from406

the hydrological cycle. These numbers are similar to the ones obtained for the deepest407

MAFALDA cycle in moist convection (Pauluis 2016), which confirms that the rainband408

cycle is in a similar thermodynamic regime as deep convection in the tropics.409

In contrast, the inner-core cycle is associated with a larger energy transport, with a net410

heating of Qin = 33.6 kJkg−1. The temperature of the heat source is marginally lower than411

for the rainband cycle, with Tin = 283K. However, the temperature of the energy sink412

drops significantly to Tout = 233K. As the cycle acts on a larger temperature difference, its413

Carnot efficiency increases to ηC = 0.18. This larger Carnot efficiency combined with a larger414

energy transport leads to a large increase of the maximum work to Wmax = 5.91 kJkg−1.415

The negative contributions from water lifting WP = 0.87 kJkg−1 and Gibbs penalty ∆G =416

0.76 kJkg−1increase as well, but not at the same rate as the maximum work. The kinetic417

energy generation WKE = 4.18 kJkg−1 is less than the theoretical maximum and corresponds418

to a heat engine efficiency η = 0.13 for the inner-core cycle.419

Our analysis indicates that a striking six-fold increase in kinetic energy generation be-420

tween the rainband cycle and the inner-core cycle is due to a combination of three changes:421

(1) a 60% increase in the external heating associated with the intense evaporation at the422

center of the storm, (2) a substantial decrease in the cooling temperature (from 269K to423

233K) which results in a doubling of the the Carnot efficiency, and (3) the actual efficiency424

of the cycle becomes close to its Carnot efficiency. This later point can be attributed to the425

fact that relative increases in water lifting WP and in Gibbs penalty ∆G are much weaker426

than the relative increase in Wmax. As a result, while the heat engine efficiency of the rain-427

band cycle was only about 40% of the corresponding Carnot efficiency ηC , the inner- core428

cycle achieves about 70% of its Carnot efficiency.429

The increase in surface heating between the rainband and inner-core cycles is a con-430
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sequence of the enhanced surface evaporation near the storm center, which has long been431

recognized as one of the key requirements for the maintenance of hurricane. Enhanced evap-432

oration by itself may not be sufficient however. Indeed, the maximum intensity theory of433

Emanuel (1986) shows that the maximum wind depends not on entropy itself, but on the434

entropy gradient near the storm center. To be effective, surface evaporation must lead to a435

local increase in the moist entropy. The ratio Qin/Tin is the amount of entropy that a parcel436

gains from the energy source. In our simulation, the high value of Qin for the inner-core cycle437

is tied to the fact that the air parcels rising within the eyewall have an equivalent potential438

temperature - about 370K - that is substantially larger than that of the environment.439

The reduction of cooling temperature Tout from 269K to 233K between the rainband and440

inner-core cycles leads to a substantial increase in the Carnot efficiency. The reduction in441

cooling temperature can be partially attributed to the deepening of the cycle, as the inner-442

core cycle reaches a height of 15km instead of 13km for the rainband cycle. However, this443

fact does not by itself explain the large drop in Tout. Indeed, a closer look at the s − T444

diagram for both cycles in Figure 6A reveals that the lowest temperature in rainband cycle445

is about 220K which is not much different than the minimum temperature in the inner-core446

cycle - about 200K. The cooling temperature Tout corresponds to the (harmonic) average447

temperature at which the parcel loses energy. In the rainband cycle, there is a very clear loss448

of entropy - and energy - during the ascent 2 → 3 due to the entrainment of dry air in the449

convective updrafts. This energy loss occurs at warm temperature, between 275K and 300K450

and shift the cooling temperature toward higher values. In contrast, the ascent in the inner-451

core cycle is almost adiabatic, and most of the entropy loss occurs during the subsidence at452

low temperature. Thus, the low cooling temperature and high Carnot efficiency in the inner-453

core cycle require not only a deep overturning - so that cooling can occur at low temperature454

- but also a lack of entrainment during the ascent - which would otherwise correspond to an455

energy loss at relatively warm temperature.456

Finally, the high generation rate of kinetic energy in the inner-core cycle is due in part to457
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the fact that this cycle is able to achieve an efficiency that is close to the Carnot efficiency.458

While both the Gibbs penalty ∆G and the water loading WP nearly double between the459

raindband and the inner-core cycles, the maximum work Wmax more than triples. Pauluis460

(2016) argue that the Gibbs penalty and water loading depends primarily on how much461

water is added and removed through a thermodynamic cycle, and are only weakly sensitive462

to the depth of the cycle. As such, deep thermodynamic cycles are less hindered by moist463

processes and their efficiency is closer to their Carnot efficiency.464

We further analyze 20 cycles from MAFALDA, ordered from the deepest inner-core cycle465

1 to the shallowest cycle 20, with the rainband cycle described above corresponding to cycle466

8. The cycles are constructed from different values of the stream function and are ordered467

from the deepest to the shallowest. Figure 7A shows the four terms from equation (10).468

Deep cycles transport more energy across a larger temperature difference and are associated469

with large value of the maximum work Wmax. Kinetic energy generation exhibits even a470

higher sensitivity to cycle depth: it is but a small fraction of the maximum work for shallow471

cycles, but accounts for most of it for the deepest cycle. Both the Gibbs penalty and water472

lifting also increase with the depth of the cycle, but the sensitivity to the cycle depth is473

relatively small when compared to either Wmax or WKE.474

Figure 7B compares the actual efficiency to the Carnot efficiency for each cycle. Deep475

cycles not only exhibit a higher Carnot efficiency, but they achieve an actual efficiency close476

to its theoretical maximum. This indicates that, while the the hydrological cycle acts to477

greatly reduce the kinetic energy output of shallow convection, it only marginally reduces478

the output of deep overturning flows such as the inner-core cycle. Finally, Figure 7C shows479

the temperature of the heat source Tin and heat sink Tout. This confirms that the increase480

in efficiency is directly related to the deepening of convection and the decrease in the cooling481

temperature.482

Figure 8 shows the evolution of the thermodynamic properties of the deepest MAFALDA483

cycle through the 15 days of our simulation. This cycle is associated with the value of the484
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isentropic streamfunction equal to 2.5% of its absolute minimum, which corresponds to the485

inner-core cycle discussed earlier. The four terms of the kinetic energy budget (10) are shown486

in Figure 8A. Both the Gibbs penalty ∆G and water loading terms WP remain steady. The487

intensification on day 5 is however marked by a sharp increase in both the maximum work488

Wmax and kinetic energy generation WKE. This intensification is also evident in the Carnot489

efficiency ηC and the actual efficiency of the cycle shown in Figure 8B. The increase in490

Carnot efficiency is itself due to the reduction in the cooling temperature (Figure 8C). At491

the beginning of the simulation, the cooling temperature is about 260K. It drops sharply492

to 240K at day 4, and settles to a value between 230K and 235K for the remainder of the493

simulation.494

5. Conclusion495

In this paper, we have applied MAFALDA to analyze the thermodynamic transforma-496

tions in a high resolution simulation of a hurricane. This technique relies on identifying497

the atmospheric overturning by computing a mean circulation in z − θe coordinates, and498

extracting a set of thermodynamic cycles that represent the mean overturning flow. This499

then allows us to diagnose various thermodynamic transformations that occur through each500

cycle.501

We use MAFALDA here to assess the ability of the hurricane to act as a heat engine.502

Previous studies (Pauluis and Held 2002a,b; Pauluis 2016; Laliberte et al. 2015) have demon-503

strated that the hydrological cycle has a negative impact on the ability of the atmosphere504

to generate kinetic energy. This arises from two key aspects of the hydrological cycle. First,505

mechanical work must be performed in order to lift water and is then loss through frictional506

dissipation as condensed precipitates (Pauluis et al. 2000). Second, the atmosphere acts507

partially as a dehumidifier, in which water is introduced as unsaturated water vapor and re-508

moved as a condensate. From a thermodynamic point of view, the water has a lower Gibbs509
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free energy when it enters the atmosphere than when it is removed. This results in a reduc-510

tion of the amount of work that can be produced by the atmospheric circulation (Pauluis511

2011). For moist convection, previous studies (Pauluis and Held 2002a; Pauluis 2016) have512

found that the generation of kinetic energy of moist convection in radiative convective equi-513

librium is about 10 to 20 percent of the work that could be done by a Carnot cycle acting514

between the same energy sources and sinks.515

Here, we contrast two thermodynamic cycles associated with different trajectories in our516

simulation: a rainband cycle associated with air ascending in the outer rainband located517

about 200km away from the storm, and a inner-core cycle corresponding to air rising within518

the eyewall. These two cycles exhibit very different thermodynamic behavior, and, in par-519

ticular, the generation of kinetic energy for the inner-core cycle is approximately six times520

larger than for the rainband cycle. We identify three different factors contributing to the521

high generation rate of the inner-core cycle: (1) an enhancement of the energy transport by522

the cycle, (2) a very low cooling temperature, characteristic of the upper troposphere, which523

results in a very high Carnot efficiency, and (3) a relatively small negative contribution from524

the hydrological cycle, so that the actual efficiency of the inner-core cycle is about two thirds525

of its Carnot efficiency.526

The high rate of generation of kinetic energy in the inner-core cycle is strongly tied to527

the nature of the rising motions within the eyewall. The ascent in the rainband cycle shows528

a clear indication of entrainment as a gradual decrease of entropy and equivalent potential529

temperature as the air rises. In contrast, the ascent in the inner-core cycle shows little530

indication of entrainment of dry air and is almost isentropic. The ascent in the inner-core531

cycle reaches very high and is associated with very low cooling temperature, which greatly532

increases the Carnot efficiency. In our simulation, a drop in cooling temperature and a533

corresponding increase in efficiency precede intensification by about one day. While our534

work here is limited to a single storm, it strongly suggests that entrainment of dry air into535

the eyewall, or rather the lack thereof, plays an important role in the intensification and536
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energetics of tropical cyclones.537

The methodology of MAFALDA is designed to analyze the thermodynamic processes in538

a numerical simulation. The physical insights it provides should be tempered by the fact539

that a numerical simulation is at best a good faith effort at reproducing a physical flow. In540

particular, the horizontal resolution of 2km here is too coarse to fully capture the turbulent541

nature of entrainment. While we strongly believe that the results presented here are both542

physically consistent and robust, understanding how numerical resolution and the various543

physical parameterizations affect the behavior of simulated atmospheric flows remains an544

important challenge in atmospheric science. Assessing thermodynamic processes represented545

in such numerical simulations should be an essential component of such endeavor.546

The novel approach introduced in this study offers a unique perspective on the role played547

by thermodynamic processes in hurricane formation and intensity. Our study indicates that548

the atmospheric circulation in a hurricane, characterized by very high generation of kinetic549

energy, is in a different thermodynamic regime than tropical deep convection. The genesis550

and intensification of tropical cyclones correspond to the emergence of deep and highly551

efficient thermodynamic cycles. Systematic applications of MAFALDA should shed further552

light on how such cycles emerge, and how energy exchanges with both the ocean surface553

and the surrounding environment can impact the storm intensity and structure, and on how554

hurricanes and tropical storms behave under different climates.555
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A. Appendix: Gibbs relationship for moist air562

The specific Gibbs free energy is defined as the difference between the specific enthalpy563

and the specific entropy multiplied by the absolute temperature:564

g = h− Ts.

The specific entropy and specific enthalpy depend on the reference state, and so does the565

Gibbs free energy. In this study, we use liquid water at the freezing temperature Tf as the566

reference state. The specific enthalpies of water vapor hv, liquid water, hl and hi are567

hv = Cl(T − Tf ) + Lv (A.1a)

hl = Cl(T − Tf ) (A.1b)

hi = Ci(T − Tf ) + Lf0. (A.1c)

Here, Cl and Ci are the specific heat of liquid water and ice, Lv is the latent heat of va-568

porization at temperature T , and Lf0 is the latent heat of fusion taken at the reference569

temperature Tf . The corresponding specific entropies sv, sl and si are570

sv = Cl ln
T

Tf
+
Lv
T
−Rv lnH (A.2a)

sl = Cl ln
T

Tf
(A.2b)

si = Ci ln
T

Tf
− Lf0

Tf
, (A.2c)

with Rv is the specific gas constant for water vapor. For this choice of the reference state,571

the specific Gibbs free energy is therefore:572

gv = Cl(T − Tf − T ln
T

Tf
) +RvT lnH (A.3a)

gl = Cl(T − Tf − T ln
T

Tf
) (A.3b)

gi = Ci(T − Tf − T ln
T

Tf
)− Lf0(1−

T

Tf
). (A.3c)
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We treat here moist air as an ideal mixture of 1kg of dry air, rv kg of water vapor, rl kg573

of liquid water and ri kg of ice. The corresponding entropy and enthalpy per unit mass of574

dry air are575

s = sd + rvsv + rlsl + risi (A.4)

h = sd + rvhv + rlhl + rihi. (A.5)

The Gibbs relationship relates the change in entropy to changes in enthalpy, pressure and576

composition:577

Tds = dh− αddp−
∑
w=v,l,i

gwdrw. (A.6)

Here, the specific volume αd is the specific volume per unit mass of dry air:578

αd =
RdT +RvrvT

p
. (A.7)
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List of Figures622

1 Schematic representation of a hurricane as a heat engine. Step 1 → 2: the623

low level inflow gains energy from the ocean surface (Qin). Step 2 → 3: Air624

rises from the surface to the upper troposphere, and water condenses and625

precipitates. Step 3→ 1: air is gradually compressed back to the surface and626

loses energy (Qout) through the emission of infrared radiation. This circulation627

acts as a heat engine that transports heat from a warm source at temperature628

Tinto a colder sink at temperature Tout. This produces mechanical work to629

generate wind (WKE) and lift condensed water (WP ). The injection of water630

at the surface and its removal through precipitation are associated with a631

Gibbs penalty (∆G) that reduces the kinetic energy output. 30632

2 Minimum pressure (upper panel) and maximum tangential wind (lower panel). 31633

3 Time and azimuthal average of the tangential wind (panel A), equivalent634

potential temperature (panel B) and stream function (panel C). The solid635

black line and the dashed blue line correspond to trajectories associated with636

the inner-core cycle and rainband cycle (see Section 4). On Panel A, three637

locations have been marked along each trajectory: point 1 is the lowest entropy638

value, point 2 indicates the highest entropy near the surface, and point 3 is639

the highest point along the cycle. 32640

4 Isentropic streamfunction in z − θe coordinate. The inner-core cycle (solid641

black line) and the outer cycle (dashed blue line) correspond to two isolines of642

the streamfunction. Three locations have been marked along each trajectory:643

point 1 is the lowest entropy value, point 2 indicates the highest entropy near644

the surface, and point 3 is the highest point along the cycle. 33645
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5 Isentropic averaged value for radius (panel A), tangential wind (panel B),646

specific moist entropy (panel C), temperature (panel D), mixing ratio (panel647

E) and Gibbs free energy of water vapor (panel F). The solid black line and648

the dashed blue line correspond to Eulerian trajectories associated with the649

inner-core cycle and rainband cycle (see Section 4). 34650

6 The inner-core cycle and rainband cycle are shown in different coordinate651

pairs: specific moist entropy and temperature (panel A), buoyancy and height652

(Panel B), total water content and height (panel C), Gibbs free energy of water653

vapor and mixing ratio (panel D), liquid water content and Gibbs free energy654

for liquid water (panel E), and ice content and Gibbs free energy for ice (panel655

F). The inner-core cycle is shown by the solid black line, and the outer cycle656

by dashed blue line. The trajectories are clockwise in all panels. 35657

7 Thermodynamic analysis for 20 MAFALDA cycles. Panel A: decomposition658

of the maximum work Wmax(black) into the generation of kinetic energy659

WKE(red), water lifting WP (magenta) and Gibbs penalty ∆G(blue). The660

inner-core cycle corresponds to cycle 1 and the outer cycle to cycle 8. Panel661

B: Comparison between the Carnot efficiency ηC (blue) and the effective effi-662

ciency η (red)for each cycle. Panel C: Temperature of the energy source Tin663

(blue) and energy sink Tout (red) for each cycle. 36664

8 Time evolution of the MAFALDA cycle associated 2.5th percentile of the665

isentropic streamfunction, which corresponds to the inner-core cycle discussed666

in section 4. Panel A: decomposition of the maximum work Wmax(black) into667

the generation of kinetic energy WKE(red), water lifting WP (magenta) and668

Gibbs penalty ∆G(blue). Panel B: Comparison between the Carnot efficiency669

ηC (blue) and effective efficiency η (red). Panel C: Temperatures of the energy670

sources Tin (blue) and of the energy sink Tout (red). 37671
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Fig. 1. Schematic representation of a hurricane as a heat engine. Step 1→ 2: the low level
inflow gains energy from the ocean surface (Qin). Step 2→ 3: Air rises from the surface to
the upper troposphere, and water condenses and precipitates. Step 3 → 1: air is gradually
compressed back to the surface and loses energy (Qout) through the emission of infrared
radiation. This circulation acts as a heat engine that transports heat from a warm source
at temperature Tinto a colder sink at temperature Tout. This produces mechanical work to
generate wind (WKE) and lift condensed water (WP ). The injection of water at the surface
and its removal through precipitation are associated with a Gibbs penalty (∆G) that reduces
the kinetic energy output.
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Fig. 2. Minimum pressure (upper panel) and maximum tangential wind (lower panel).
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A. Radius

B. Equivalent potential temperature

C. Secondary circulation

Fig. 3. Time and azimuthal average of the tangential wind (panel A), equivalent potential
temperature (panel B) and stream function (panel C). The solid black line and the dashed
blue line correspond to trajectories associated with the inner-core cycle and rainband cycle
(see Section 4). On Panel A, three locations have been marked along each trajectory: point
1 is the lowest entropy value, point 2 indicates the highest entropy near the surface, and
point 3 is the highest point along the cycle.
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Fig. 4. Isentropic streamfunction in z − θe coordinate. The inner-core cycle (solid black
line) and the outer cycle (dashed blue line) correspond to two isolines of the streamfunction.
Three locations have been marked along each trajectory: point 1 is the lowest entropy value,
point 2 indicates the highest entropy near the surface, and point 3 is the highest point along
the cycle.
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A. Radius B. Tangential wind

C. Moist entropy D. Temperature

E. Mixing ratio F. Gibbs free energy

Fig. 5. Isentropic averaged value for radius (panel A), tangential wind (panel B), specific
moist entropy (panel C), temperature (panel D), mixing ratio (panel E) and Gibbs free
energy of water vapor (panel F). The solid black line and the dashed blue line correspond
to Eulerian trajectories associated with the inner-core cycle and rainband cycle (see Section
4).
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A. S − T B. B − z

C. rT − z D. rv − gv

E. gl − rl B. gi − ri

Fig. 6. The inner-core cycle and rainband cycle are shown in different coordinate pairs:
specific moist entropy and temperature (panel A), buoyancy and height (Panel B), total
water content and height (panel C), Gibbs free energy of water vapor and mixing ratio
(panel D), liquid water content and Gibbs free energy for liquid water (panel E), and ice
content and Gibbs free energy for ice (panel F). The inner-core cycle is shown by the solid
black line, and the outer cycle by dashed blue line. The trajectories are clockwise in all
panels.
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A. Decomposition of maximum work

B. Efficiency

C. Tin and Tout

Fig. 7. Thermodynamic analysis for 20 MAFALDA cycles. Panel A: decomposition of the
maximum work Wmax(black) into the generation of kinetic energy WKE(red), water lifting
WP (magenta) and Gibbs penalty ∆G(blue). The inner-core cycle corresponds to cycle 1 and
the outer cycle to cycle 8. Panel B: Comparison between the Carnot efficiency ηC (blue) and
the effective efficiency η (red)for each cycle. Panel C: Temperature of the energy source Tin
(blue) and energy sink Tout (red) for each cycle.
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A. Decomposition of maximum work

B. Efficiency

C. Tin and Tout

Fig. 8. Time evolution of the MAFALDA cycle associated 2.5th percentile of the isentropic
streamfunction, which corresponds to the inner-core cycle discussed in section 4. Panel
A: decomposition of the maximum work Wmax(black) into the generation of kinetic energy
WKE(red), water lifting WP (magenta) and Gibbs penalty ∆G(blue). Panel B: Comparison
between the Carnot efficiency ηC (blue) and effective efficiency η (red). Panel C: Tempera-
tures of the energy sources Tin (blue) and of the energy sink Tout (red).
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