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ABSTRACT

An ensemble of cloud-resolving forecasts from the Weather Research and Forecasting model (WRF) was

used to study error covariance for Hurricane Katrina (2005) during a 64-h period in which the storm pro-

gressed from a tropical storm to a category-4 hurricane. Spatial error covariance between hypothetical

measurements and model state variables was found to be highly anisotropic, variable dependent, and ulti-

mately determined by the underlying storm dynamics, which change dramatically over time. Early in the

forecast, when Katrina passed over the southern tip of the Florida Peninsula as a highly asymmetric tropical

storm, error covariance structures in the Eulerian coordinates were dominated primarily by position un-

certainty, with a secondary dependence on land–air interaction, storm structure, and intensity. The ensemble

error dependence on position uncertainty becomes markedly greater with increasing lead time, as diverging

storm tracks cause large gradients of wind, temperature, and pressure to be concentrated farther from the

mean vortex center.

Ensemble variance for model state variables on storm-relative coordinates becomes increasingly symmetric

about the vortex center at greater hurricane intensity. Likewise, spatial and cross-spatial correlations share

a similar axisymmetric transition about the origin, while maintaining a large degree of local anisotropy with

respect to the location chosen for the correlation point. Our results demonstrate the necessity of using flow-

dependent error covariance for initializing a tropical cyclone with dynamically consistent inner-core structure,

and provide motivation for future sensitivity experiments pertaining to model resolution and ensemble size.

1. Introduction

Improvements have been made over the past three

decades in our ability to forecast the track of tropical

cyclones (TCs) (see www.nhc.noaa.gov/verification), which

is primarily determined by synoptic-scale environmental

flow (Wu and Emanuel 1993; Wu and Kurihara 1996;

Wang et al. 1998). Despite this progress, our ability to

accurately predict intensity change remains quite lim-

ited (Elsberry et al. 2007; Houze et al. 2007). The inner-

core region of a TC is governed by a multiscale array

of dynamic and thermodynamic processes in an air–sea

coupled environment. It is apparent that our inability

to initialize a TC with dynamically consistent struc-

ture and intensity remains a limiting factor for short-

to medium-range operational storm prediction. More

specifically, small-scale uncertainties associated with moist

convection often grow into larger-scale forecast errors

in time (Zhang et al. 2003, 2007; Hendricks et al. 2004;

Krishnamurti et al. 2005; Zhang 2005; Sippel and Zhang

2008, 2010; Nguyen et al. 2008; Zhang and Sippel 2009).

This issue stresses the importance of optimal state esti-

mation, also known as data assimilation, wherein ob-

servations, a previous model forecast (prior), and their

respective errors are used to estimate a model state prior

to integration that contains the least amount of error,

denoted the analysis state. Improvements in operational

intensity prediction may accompany advancements in

tropical cyclone initialization techniques that make better

use of in situ and remotely sensed data (Burpee et al.

1996; Leidner et al. 2003; Zhang et al. 2009; Weng et al.

2011).

Data assimilation is usually performed via a varia-

tional method in which a cost function measuring the

distance between a model forecast and observations is

minimized, or via an alternative approach in which an

innovation or correction is added to the prior after it

is assigned an optimal weight that minimizes the least

squares error (Talagrand 1997). The process of state
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estimation requires knowledge of both observation and

forecast error statistics in terms of variance and covari-

ance. Covariance not only provides an estimate of

forecast uncertainty but also quantifies linear multivar-

iate relationships within the model state, thus allowing

information to be shared between observed and un-

observed variables. In essence, forecast error covariance

determines the extent to which a measured quantity can

correct state variables in model space. Rather than using

stationary, isotropic forecast error covariance, as is the

case for standard implementations of variational data

assimilation systems, a sequential approach called the

ensemble Kalman filter (EnKF) takes into account flow-

dependent covariance, typically estimated from an en-

semble of short-range forecasts.

Model initialization using an EnKF has gained an in-

creasing amount of attention over the past decade for

the analysis and prediction of atmospheric phenomena

at regional scales and mesoscales [e.g., Snyder and Zhang

2003; Zhang et al. 2004; Dowell et al. 2004; Tong and Xue

2005; Zhang et al. 2006; Meng and Zhang 2007; Fujita

et al. 2007; Meng and Zhang 2008a,b; see Meng and

Zhang (2011) for a complete review] and has proven

successful for several TC case studies without the use of

vortex bogussing (e.g., Chen and Snyder 2007; Torn and

Hakim 2009; Zhang et al. 2009; Wu et al. 2010; Weng et al.

2011). In particular, recent experiments in which an EnKF

was used to assimilate Doppler radar radial velocity ob-

servations into the Weather Research and Forecasting

model (WRF) demonstrated a potential to outperform

operational prediction systems (Zhang et al. 2009; Weng

and Zhang 2011, manuscript submitted to Mon. Wea.

Rev.).

Bearing in mind the importance of nonstatic, flow-

dependent forecast error estimation for dynamically

consistent TC initialization, this research is dedicated to

the study of state variable covariance for a region that

spans the inner and outer core of a developing hurri-

cane. Coherent variance and correlation structures

arising from upscale growth of forecast error are ex-

amined using an ensemble of forecasts from the WRF

for Hurricane Katrina as it intensified from a tropical

storm (18 , sustained winds , 33 m s21) to a category-4

hurricane (59 , sustained winds , 69 m s21) on the

Saffir–Simpson scale. We explore several dynamical

features of the cyclones that characterized the ensem-

ble error structures (i.e., vortex asymmetry, tilting, size,

intensity, and position uncertainty). In the following

section, a brief description of our WRF configuration

and method of ensemble generation is provided along

with a discussion about our choice of statistics. Results

are examined in sections 3 and 4, which include several

examples demonstrating how the model dynamics evolve

forecast variance and correlations in time. A summary

and closing remarks are provided in the last section.

2. Forecast model and experiment description

a. Forecast model and ensemble generation

The fully compressible, nonhydrostatic, mesoscale WRF

version 3.1 (Skamarock et al. 2005) was used for this study

with a coarse domain of 202 3 181 horizontal grid points

at 40.5-km grid spacing and 2 two-way nested domains

that automatically follow the storm using the WRF vortex-

following algorithm. The innermost domain (D3), where

all analysis is performed, has a 253 3 253 horizontal grid

with 4.5-km spacing. All domains use 35 vertical levels,

most of which are concentrated in the lowest 8 km, with

the model top at 10 hPa. The physical parameterization

schemes used for this study include the Grell–Devenyi

cumulus scheme (Grell and Devenyi 2002) for the two

course domains, WRF single-moment six-class micro-

physics with graupel (Hong et al. 2004), a thermal diffu-

sion scheme for the land surface, the Monin–Obukhov

scheme for the surface layer, and the Yonsei State Uni-

versity (YSU) scheme (Noh et al. 2003) to parameterize

planetary boundary layer processes.

To generate the first set of model states, ensemble per-

turbations are produced from the WRF three-dimensional

variational data assimilation system (WRFDA) using

the cv3 background error covariance option (Barker

et al. 2004) and added to the National Centers for En-

vironmental Prediction (NCEP) Global Forecasting

System final analysis (FNL) at 0000 UTC 25 August

2005. Lateral boundary conditions are also provided by

FNL data and perturbed in the same manner as the

initial conditions. The initial 60-member ensemble is

integrated for 14.5 h to evolve a flow-dependent fore-

cast error covariance matrix before airborne radar data

collected during a flight leg of a National Oceanic and

Atmospheric Administration (NOAA) P-3 aircraft are

assimilated using an EnKF. Five more legs of radar

observations are assimilated at 1530, 1630, 1730, 1900,

and 2000 UTC 25 August before an ensemble of 64-h

forecasts is produced from EnKF analyses of Hurri-

cane Katrina (Fig. 1). The WRF-EnKF system per-

formed well for Katrina when analyses and the mean

forecast are verified against independent flight-level

observations and National Hurricane Center (NHC)

best-track data; see Weng and Zhang (2011, manuscript

submitted to Mon. Wea. Rev.) for details regarding the

collection and quality control procedures for airborne

radar data, as well as the configurations and performance

of the EnKF for this event.

The dynamic and thermodynamic structure of forecast

members changed dramatically during the simulation as
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the ensemble mean weakened to a tropical storm be-

tween 2000 UTC 25 August and 0000 UTC 26 August

before intensifying to a category-4 hurricane by the end

of the 64-h forecast. For this study forecast error co-

variance is evaluated both in a storm-relative reference

frame (i.e., relative to a frame of reference following

a vortex) and in Eulerian (ground-relative) coordinates.

Postprocessing of vortex-following D3 model output

was performed by 1) centering WRF data based on

minimum sea level pressure (minSLP) and subtracting

a storm motion vector from the velocity field of each

member for storm-relative calculations, and 2) centering

data with respect to a fixed latitude and longitude cor-

responding to the mean vortex center at the time of the

forecast for the Eulerian reference frame calculations.

The Eulerian coordinates, used in practice for deter-

mining analysis increments in the EnKF algorithm, al-

low for an investigation of storm position, structure,

and intensity effects on forecast error and the resulting

EnKF analyses. On the other hand, forecast uncertainty

calculated in a frame of reference following the vortex

provides further insight into the physical processes forc-

ing the time evolution of the covariance matrix inde-

pendent of position.

The region of interest for this study lies within the

vicinity of the hurricane inner and outer core, where

large gradients in pressure, wind velocity, temperature,

and moisture contribute to most of the forecast uncer-

tainty. With this in mind, all calculations are performed

in a subset of D3 that encompasses the eye, eyewall, and

outer rainbands. The new subspace has a grid size of 89 3

89 3 30 and covers a 400 3 400 3 18 km3 area, restricting

our investigation to a portion of the hurricane where

dynamic and thermodynamic relationships are often

poorly represented by parameterized covariance in

variational data assimilation systems.

b. Ensemble correlations and variance

Forecast error covariance estimated from ensembles

is determined by the underlying error growth dynamics,

as discussed by Cohn and Parish (1991), Daley (1992),

Evensen (1994), Zhang (2005), and Zhang et al. (2006).

When covariance is used for data assimilation, it is in-

formative to separate the statistics into components of

correlation and variance. Correlations indicate how in-

formation is shared between like and unlike variables in

FIG. 1. Forecasted (a) track, (b) minSLP, and (c) maximum 10-m

winds for Advanced Research WRF (ARW-WRF) Katrina members

 
(gray) initialized with EnKF analyses at 2000 UTC 25 Aug 2005.

Mean (solid black) and 61 standard deviation from the mean

(dashed black) are plotted in (b) and (c).
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both space and time, while variance quantifies the fore-

cast uncertainty for a given event (variable).

Correlation is a normalized value for covariance and

is given by

corr(xijk, yi9j9k9
) 5

exp[(xijk 2 xijk)(yi9j9k9
2 yi9j9k9

)]

sxsy

5
cov(xijk, yi9j9k9

)

sxsy

, (1)

where x and y represent two state and/or observed var-

iables at model grid points (i, j, k), and (i9, j9, k9), re-

spectively. Terms denoted with an overbar are ensemble

means and s represents sample standard deviations for

x and y. As in Zhang (2005), for the remainder of this

paper we will refer to two different definitions of cor-

relation. The first, cross correlation, is the element-wise

correlation between two different variables at corre-

sponding grid points [x 6¼ y, (i, j, k) 5 (i9, j9, k9)]. The

spatial (auto-) correlation will refer to a correlation be-

tween two like variables, calculated with respect to an

individual correlation point [x 5 y, (i, j, k) 6¼ (i9, j9, k9)],

and the cross-spatial correlation will be a spatial correlation

between two unlike variables [x 6¼ y, (i, j, k) 6¼ (i9, j9, k9)].

For data assimilation, the cross-spatial correlation

matrix is used to propagate information from an ob-

served scalar quantity to model state variables at neigh-

boring and distant grid points. These statistics combined

with uncertainty estimates in terms of observation error

and forecast ensemble variance are used to determine

the optimal weight associated with two independent ap-

proximations of the model state, a forecast state vector

denoted by xb of length Nx and an observation vector

denoted by y of length Ny. In the Kalman filter algo-

rithm, the optimal weight is called the Kalman gain K

and is given by

K 5 PbHT(HPbHT 1 R)21, (2)

where Pb is the forecast error covariance matrix of size

Nx 3 Nx, H is an Ny 3 Nx nonlinear observation oper-

ator that converts the model state to observation space,

and R is the observation error covariance matrix (Kalman

and Bucy 1961). In the EnKF update equations R is pa-

rameterized and typically assumed to be a diagonal ma-

trix, and Pb is estimated from an ensemble of n forecast

states by

Pb 5
1

n 2 1
�

n

i51
(xb

i 2 xb)(xb
i 2 xb)T. (3)

A new analysis state vector xa is estimated by adding to

xb an increment weighted by K:

xa 5 xb 1 K(y 2 Hxb). (4)

The analysis increment, defined as the difference be-

tween y and the forecast state vector in observation

space Hxb, determines the direction in which a state

variable is corrected (i.e., a decrease or increase in value),

whereas K determines the amplitude. In the traditional

implementation of the EnKF, xa and xb in (4) are taken as

analysis and forecast members.

The impact of forecast spatial covariance on (2) and

(4) can be more easily understood by considering the

case where a single observation is assimilated. For a

scalar observation y9 with variance R9, PbHT from (2)

reduces to an Nx 3 1 column matrix c, given by cov(xb,

xbHT), and HPbHT 1 R reduces to a scalar d. The EnKF

update equation now becomes

xa 5 xb 1
c

d
(y9 2 Hxb), (5)

where corrections to the prior forecast now depend on c

and the difference between y9 and the model forecast of

y9, given by Hxb (Snyder and Zhang 2003).

Several types of EnKF algorithms exist that deviate in

one or more ways from the above equations, such as the

ensemble square root filter version of Whitaker and

Hamill (2002) used for this study, which requires addi-

tional calculations for updating the ensemble with unique

estimates of K for each member. Nevertheless, the fun-

damental idea provided by (2)–(4) and the single obser-

vation case in (5) is adequate for exemplifying the

significance of background (forecast) error covariance

for the success of data assimilation.

3. Error covariance during the first 16 h

We first analyze the first 16 h of forecast uncertainty

(along with the EnKF analysis ensemble at 2000 UTC

25 August), using both the Eulerian and storm-relative

reference frames. In this section, we compare error co-

variance from the analysis with that of the 4-, 10-, and

16-h forecasts (0000–1200 UTC 26 August). The analysis

error at 2000 UTC 25 August represents the posterior

uncertainty provided by the EnKF after assimilating

several hours of inner-core airborne Doppler radar ve-

locities for Hurricane Katrina [see details in Weng and

Zhang (2011), manuscript submitted to Mon. Wea. Rev.].

Most members followed a southwestward track after

initialization and decreased in intensity upon making

landfall over the southern tip of the Florida peninsula. In

general, members were in large agreement with Katrina’s

intensity change throughout the first 10 h of model

integration.
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Using a vortex-following coordinate system (with the

location of minSLP for each member relocated to the

origin), Figs. 2a–d show that the standard deviations sy

of meridional wind velocity y decreased by about 4 m s21

within the radius of maximum wind (RMW), corre-

sponding to the decrease in intensity during this period

(Fig. 1c). Despite the reduction in forecast uncertainty

within the RMW, sy contours of 4 m s21 or greater in-

creased spatially at the lowest model level (;35 m in our

experiment) with greater forecast lead time. Forecast

uncertainty in the low-level wind field was most likely

caused by moist convection—in particular, nonlinear in-

teractions associated with surface sensible and latent heat

fluxes, which were aided by the spread of storm positions.

While the mean maximum 10-m wind speed Vmax de-

creased by 6 m s21 from the analysis to 4-h forecast, the

ensemble mean minSLP remained nearly constant be-

cause of a lag in the mass field response to the falling

wind speeds. As a result, standard deviations sP of

storm-relative pressure P decreased slightly at the low-

est model level (Figs. 2e–h) and remained less than 6 hPa

throughout the first 10 h of integration. Likewise, large

temperature gradients in the inner-core region, ex-

tending outward from the eye, concentrated the largest

ensemble temperature T uncertainty near the mean

vortex center, as indicated by T standard deviations sT

FIG. 2. Storm-relative ensemble mean (solid black) and standard deviations (shading) of (a)–(d) y, (e)–(h) P, and (i)–(l) T for 0–16 h.

Horizontal cross sections are shown through the lowest model layer (;35 m) for y and P and at the 1.9-km level for T. Ensemble means are

contoured every 3.0 m s21 for y, 2.0 hPa for P, and 0.75 K for T, and standard deviations are shaded in increments of 2.0 m s21 (starting

with 4 m s21) for y, 3.0 hPa for P, and 0.75 K for T.
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in Figs. 2i–l. Maximum sT values were found near 1.9 km

in altitude and decreased substantially by 0600 UTC

26 August as most members tracked near land, de-

creasing the upward flux of moist air from the ocean

surface, latent heat release in the eyewall, and hori-

zontal temperature gradients at middle levels. With po-

sition error removed in the storm-relative calculations,

it is apparent that error associated with intensity and struc-

tural uncertainty of Katrina’s inner-core circulation de-

creased throughout the 10-h forecast. Nevertheless, as a

majority of members moved farther from the coast of

southwest Florida by 1200 UTC 26 August, ensemble sP

and sT increased substantially.

Ensemble analysis and forecast sy are again shown in

Fig. 3, but with all calculations performed in the original

(Eulerian) model coordinates. In this case, analysis er-

ror evolves from a centralized, compact structure to a

broad, asymmetric distribution after a short forecast

period. Analysis y uncertainty is maximized inside the

RMW, with sy increasing inward from 4 to 20 m s21 in

the marine boundary layer (MBL) because the initial

distribution of storm positions concentrated large wind

gradients near the mean vortex center. Given the small

analysis position spread, forecast uncertainty initially

resembles that of the storm-relative reference frame

(Fig. 2a) but rapidly grows within the first several hours

of model integration as members diverge from the mean

position. Unlike the storm-relative calculations, the spa-

tial extent of 4 m s21 or larger forecast sy in Eulerian

coordinates grew substantially with increasing lead time,

and an uncertainty maximum of approximately 24 m s21

formed near the mean storm center by 16 h. A notable

characteristic of low-level sy is an approximately 2 m s21

decrease between sea surface and land grid points. A

majority of ensemble members passed over the southern

tip of Florida as tropical storms and winds over land were

damped by surface roughness, resulting in a coastal vari-

ance discontinuity for an approximately 150-m-deep layer

(three WRF h levels in our experiments). This is consistent

with Zhang et al. (1999), who observed a sharp ocean-to-

land decrease in surface winds observed from their nu-

merical simulation of Hurricane Andrew (1992).

Similar to sy, uncertainty with regard to Katrina’s

simulated thermodynamic fields (P and T) in the Eu-

lerian coordinates rapidly broadens with increasing lead

time and track spread (Fig. 4). A clear depiction of

modes within the storm track can be observed in three-

dimensional distributions of sP and sT (not shown),

since the largest anomalies for these variables typically

occur near storm centers instead of along two or more

regions in the RMW (as is usually the case for y). In

general, the error structures associated with P and T are

highly sensitive to non-Gaussian distributions of storm

position, which becomes increasingly noticeable with

growing track spread. To isolate the effects of position

error, a ‘‘track error only’’ (TEO) ensemble was created

by calculating a storm-relative mean from the 60-member

WRF ensemble forecast and then azimuthally averaging

the mean and placing 60 identical wavenumber-0 vortices

in the original locations of members valid at the forecast

FIG. 3. Eulerian mean y (contoured solid for positive, dashed for negative every 3.0 m s21) and standard deviations (shaded every

2.0 m s21 starting with 4 m s21) from 0 to 16 h along with locations of minSLP for each member (indicated by 5) and land data (thick

black contour), using (a)–(d) the lowest model levels and (e)–(h) vertical cross sections through lines AB, CD, EF, and GH, respectively.
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time. The TEO ensemble presents a hypothetical case

in which all members are axisymmetric and share the

same structure; therefore, only position uncertainty ex-

ists. Figure 5 compares P analysis and forecast statistics

throughout the first 16 h for the Eulerian and TEO en-

semble experiments. From this comparison it is evident

that most of the asymmetric structure in sP can be at-

tributed to track spread, as the storm-relative error acts

FIG. 4. Eulerian mean P (contoured solid for positive, dashed for negative every 3.0 hPa) and standard deviations (shaded every 1.0 hPa

starting with 2 hPa) from 0 to 16 h along with locations of minSLP for each member (indicated by 5) and land data (thick black contour),

using (a)–(d) the lowest model levels and (e)–(h) vertical cross sections through lines AB, CDEF, GHIJK, and LMNO, respectively.

FIG. 5. Statistics are compared for (a)–(d) Eulerian and (e)–(h) TEO ensemble P for the lowest model level. Mean (contoured solid for

positive, dashed for negative every 3.0 hPa) and standard deviations (shaded every 1.0 hPa) are plotted from 0 to 16 h along with locations

of minSLP for each member (indicated by 5) and land data (thick black).
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only to enhance the magnitude of sP in the Eulerian

reference frame. Despite the analysis position uncer-

tainty being mostly Gaussian, the limited sample size for

this experiment allows the eastward located outliers to

create a secondary sP maximum that appears in both

Eulerian and TEO calculations (Figs. 5a,e). By 0000 UTC

26 August, three sP maxima have formed (Figs. 5b,f),

corresponding to three independent storm position modes

with errors of 4 hPa or greater near the surface. The three

maxima persist after 10 h of integration (Figs. 5c,g), but

two predominant modes of storm track appear, one on

each side of the Florida Keys corresponding to sP .

10 hPa by 1200 UTC 26 August (Figs. 5d,h).

Besides the use of variances in statistical data assimi-

lation systems for determining the amount of confidence

associated with a given state estimation, an observation’s

impact on correcting a prior forecast also depends criti-

cally on the cross and/or spatial correlations between

observed and unobserved variables [(5)]. Multivariate

spatial correlations that illustrate the effects of assimi-

lating hypothetical observations to correct 10-h surface

pressure and zonal winds are chosen as examples. When

vortex position in terms of central latitude and longi-

tude is chosen as the observed value to be assimilated

(Figs. 6a,e), large correlation dipoles form, with val-

ues that alternate sign across the domain. Assuming a

bivariate normal distribution for ensemble positions,

the eigenvectors and eigenvalues accounting for 69%

(s 5 65.8 km) and 31% (s 5 44.2 km) of the position

standard deviations are plotted in Figs. 6a and 6e, with

the leading component oriented along the direction of

largest variance (primary axis of the distribution). The

dipole resulting from corr(central longitude, P) lies in

nearly the same direction as the leading eigenvector (the

primary axis), since eastward located members tend

to be positioned farther northward and westward mem-

bers tend to be more southward. The subsequent corre-

lations would act to increment the location of minSLP for

Katrina members forward or backward along the primary

axis of the position distribution for this case, rather than

along lines of constant longitude. Similarly, corr(central

latitude, P) would increment members in the direction

of the secondary axis. The result is consistent with the

analysis increments described in Chen and Snyder (2007),

where vortex position was assimilated using an EnKF

with a barotropic model, except pressure is used here as

the variable to be updated rather than vorticity.

In Fig. 6b, a zonal wind velocity u located at a grid

point approximately 75 km west of the mean vortex cen-

ter at 0600 UTC 26 August (denoted observation point a

and measurement ua) is cross-correlated spatially with the

P field, yielding a broad positive signal in the lower-left

FIG. 6. (a),(e) 10-h Eulerian surface correlations between (a) center latitude and P and (e) center longitude and P. (b)–(d), (f)–(h) Cross-

spatial correlations between (b)–(d) u on three surface points (marked a, b, and c, respectively) and the P field and (f)–(h) u spatial

correlations for the same surface points (shaded for magnitudes . 0.4 with positive values contoured in black). Vectors along the primary

and secondary axes of the normal bivariate storm position distribution are indicated by the black arrows in (a) and (e).
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portion of the domain directly south of point a. If

the WRF-EnKF analysis/forecast cycle were to continue

from the 10-h forecast, by (5) measurement ua would

produce positive (negative) analysis increments south

of point a for an observation greater than (less than) the

mean forecasted ua, thus filling (deepening) Katrina

members with centers near the given location. At the

same observation point, corr(ua, u) (Fig. 6f) are physically

consistent with the hypothetical ua-to-P corrections, with

positive values north of the largest P increments. Con-

sequently, a negative pressure increment from ua would

coincide with corrections to the velocity field that in-

crease the cyclonic rotation around the largest ua-to-P

signal. Similarly, for a measure of u ; 30 km southwest of

the mean storm center (point b), corr(ub, P) in Fig. 6c

indicate a strong negative signal north of the mean vortex

center. Despite its proximity to location a, measurement

ub provides a completely new set of information re-

garding the forecast P and u fields that would result in

EnKF corrections to the model state in regions of the

domain that are dissimilar to those from measurement ua,

thus demonstrating the tremendous amount of variability

that exists in the forecast covariance matrix. Once again,

the increments produced from ub will act to increase (de-

crease) the cyclonic rotation near the pressure falls (rises)

provided by the spatial correlations shown in Figs. 6c

and 6g. In a third example, a wind observation taken

at location c, a distance greater than 100 km from the

storm center (Figs. 6d,h), would yield corrections to the

P field on both sides of the mean vortex center, much

like the case in which storm position is assimilated.

Recall that error covariance is determined by both mul-

tivariate spatial correlations and forecast uncertainty, and

consequently the EnKF increments resulting from the

provided measurements would also depend on sP and sy

in these examples.

As demonstrated in Fig. 5, the spatial distribution of

ensemble variance depends greatly on storm position

uncertainty. To extend our investigation into the effects

of track error on ensemble forecast error covariance, the

TEO ensemble was again used to calculate the same

spatial and cross-spatial correlations shown in Fig. 6.

The resulting signals (cf. Fig. 7) are remarkably similar

to the pure Eulerian case, implying that the assimilation

of storm position, along with point measurements ua, ub,

and uc, acts mostly to correct vortex location. Central

latitude and longitude observations force the members

along the eigenvectors shown in Figs. 7a and 7e and

similar P increments result from wind observations, only

the axis in which the correlation dipole forms is de-

pendent on the location of the wind measurement with

respect to the mean storm center. The spatial correlations

FIG. 7. (a),(e) 10-h TEO surface correlations between (a) center latitude and P and (e) center longitude and P. (b)–(d), (f)–(h) Cross-

spatial correlations between (b)–(d) u on three surface points (marked a, b, and c, respectively) and the P9 field and (f)–(h) u spatial

correlations for the same surface points (shaded for magnitudes . 0.4 with positive values contoured in black). Vectors along the primary

and secondary axes of the normal bivariate storm position distribution are indicated by the black arrows in (a) and (e).
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calculated for point measurements of u will act to move

the prior vortex center in a manner consistent with the

central latitude and longitude correlations, provided

that a sufficient amount of observations are available.

As more observations are assimilated, the influence of

position uncertainty on the ensemble background (fore-

cast) covariance will decrease, as the storms are incre-

mented closer to the center realized by the observations.

The amount of complexity associated with the co-

variance matrix, even for an ensemble of identical

wavenumber-0 vortices, is demonstrated by the distinct

spatial correlation structures that exist for the hypothet-

ical measurements.

Despite the similarities between the Eulerian and TEO

ensemble correlations, it is evident that forecast uncer-

tainty with regard to intensity and structure still has a

significant effect on error covariance, even at lead times

as large as 10 h. For example, storms that are positioned

farther north by 0600 UTC 26 August encounter more

land–air interaction and experience less of a relationship

between u and distant P values. As a result, the TEO

ensemble overestimates the magnitude of negative cor-

relations in the northeastern quadrant of the domain in

Fig. 7b, where ua only has a small bearing on P anom-

alies over this region for the pure Eulerian case. Similar

arguments can be applied for explaining cases in which

the TEO ensemble underestimates signals in the corre-

lation matrix as well, such as in Fig. 7c, where track error

alone cannot account for the large linearity that exists

between decreasing ub and pressure rises on the south-

western coast of Florida (cf. Fig. 6c).

4. Storm-relative forecast error covariance
beyond 16 h

It is apparent from the previous section and past

studies analyzing EnKF analysis increments (i.e., Chen

and Snyder 2007; Torn and Hakim 2009) that model

forecast error is primarily determined by position spread,

especially for large lead times. At the same time, error

covariance resulting from uncertainty with regard to hur-

ricane intensity and dynamical structure is still quite sig-

nificant and must be accounted for during state estimation.

Despite the practical importance of calculating ensemble

error statistics in an Eulerian reference frame for vortex-

scale data assimilation, errors emerging from sources

other than position uncertainty are considerably more

difficult to visualize in the Eulerian coordinates. For that

reason, a storm-relative reference frame will be used for

the remainder of this paper to study forecast error co-

variance past 16 h of model integration. Forecast times

representative of major changes in Katrina’s wind field

and thermodynamic error structures were chosen for the

storm-relative analysis, corresponding to mean storm

intensity forecasts of category-1 (1200 UTC 26 August),

category-2 (0000 UTC 27 August), category-3 (1200 UTC

27 August), and category-4 hurricanes (1200 UTC

28 August).

While viewing spatial correlations calculated with re-

spect to a storm-relative reference frame, the reader

should be cognizant of the fact that the correlation

point chosen for the calculation is in reality not fixed in

the ground-relative sense. In other words, the ground-

relative position of a hypothetical observation to be

assimilated will differ for each member. Despite this

limitation for ground-relative data assimilation purposes,

calculations of storm-relative forecast error covariance

have a large functional importance for scenarios in

which observations are assimilated in short time in-

tervals where vortex position uncertainty is minimal,

such as the 1-h analysis/forecast cycles used for assim-

ilating radar observations in the beginning of our simu-

lation. They also provide a cleaner comparison between

flow-dependent and parameterized forecast covariance

typically used in variational data assimilation methods

that make use of a vortex bogussing algorithm for cor-

recting vortex position before any observations are as-

similated.

a. Wind and temperature

As indicated by the dashed lines in Figs. 1b,c, intensity

error for the Katrina forecast ensemble grew steadily

throughout the 64-h forecast (with the exception of the

initial weakening due to interaction with land through-

out the first 10 h), as standard deviations of Vmax and

minSLP increased from 5.7 to 8.5 m s21 and 7.6 to

24.6 hPa, respectively. Following the initial 0–10-h de-

crease in maximum storm-relative wind variance (Figs.

2a–c), sy continued to grow while organizing into two

maxima on opposite ends of the eyewall near corre-

sponding maxima in wind speed. In association with low-

level radial inflow that becomes more axisymmetric

about the origin with hurricane intensity, the axis sepa-

rating positive and negative values of mean y (black con-

tours in Fig. 8) contains a varying degree of tilt throughout

the forecast. This can be conceptualized by separating the

y field into tangential and radial components and realizing

that the radial contribution is positive in the southern half

of the domain and negative in the northern half, while the

tangential contribution has positive and negative maxi-

mums directly east and west of the origin, respectively. In

Figs. 8a–d, vectors representing the radial contribution to

the mean y field (from this point forward denoted yr) are

plotted to illustrate how inflow at this level affects the

mean y field and distribution of sy. For most of the

members, a significant amount of southerly inflow persists
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throughout the simulation. The inflow contributes to the

asymmetric shape of the mean y field in the southern half

of the domain and explains the region of sy . 6 m s 21

that extends southwestward from the origin. It is ap-

parent from these forecast times that regions of large

forecast y uncertainty (sy . 6 m s 21) existing outside

the RMW tend to coincide with regions where yr is at

a maximum. As the yr vectors increase in magnitude

for the northern half of the domain by 1200 UTC 28,

the radial inflow within 100 km of the origin becomes

largely axisymmetric, causing the orientation of the

mean y field north of the origin to match that of the

southern portion of the domain. The ensemble-estimated

forecast uncertainty shows a large sensitivity of sy to

asymmetries in radial inflow, thus again highlighting the

value of flow-dependent covariance modeling in vortex-

scale data assimilation.

The vertical structure of sy also exhibited considerable

changes throughout the course of the simulation. When most

Katrina members were near tropical-storm and category-1

hurricane intensity (1200 UTC 26 August–0000 UTC

27 August), sy . 6 m s21 occupied a volume bounded by

the eyewall (;45 km from vortex center) extending as

high as 17 km in altitude (Figs. 8a,b,e,f). With minimal

intensity spread at these times, wind error may have re-

sulted from high wavenumber asymmetries caused by

convection and/or vortex tilting, as weaker members are

prone to synoptic-scale environmental forcing and ver-

tical wind shear. By 1200 UTC 27 August (Figs. 8c,g),

most of the members obtained category-3 intensity

and became increasingly axisymmetric. The increasing

dependence on wavenumber-0 vortex structure led to

weaker sy in the eye but larger sy near the RMW as the

ensemble intensity forecasts diverged and uncertainty

associated with the magnitude and location of maximum

wind speeds became more prevalent. The transition is

clearer in Figs. 8i–l, where correlations between minSLP

and the y field are shown. At 1200 UTC 26 August and

0000 UTC 27 August, the portions of the wind field varying

with minSLP are loosely organized and largely asymmet-

ric. Significant correlations of magnitude greater that 0.6

are absent from the inner 27 km of the vortex center at

FIG. 8. Storm-relative forecast mean y (contoured solid for positive, dashed for negative every 5.0 m s21). (a)–(d) Vectors of the radial

component of mean y, (e)–(h) standard deviations (shaded every 2.0 m s21 starting with 6.0 m s21), and (i)–(l) cross-spatial correlations

between minSLP and y from 16 to 64 h (shaded for magnitudes . 0.4 with positive values contoured in black). (a)–(d) Surface levels and

(e)–(l) vertical cross sections through lines AB, CD, EF, and GH, respectively.
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mid- to upper levels because of a lack of linearity be-

tween intensity and the wind field at these heights

(perhaps due to vortex tilting). It is also possible that

land–air interaction early in the forecast acted to di-

minish low-level correlations at 1200 UTC 26 August.

Once the ensemble mean surpassed category-2 intensity,

the resulting standard deviations and correlations orga-

nized into symmetric structures about the origin, which

had only minor fluctuations in magnitude and spatial

extent between 1200 UTC 27 August and 1200 UTC

28 August.

Unlike the variance observed for wind components,

the distribution of forecast temperature uncertainty re-

mained mostly axisymmetric throughout the entire fore-

cast, only increasing in magnitude along large thermal

gradients in the eyewall. Figure 9 shows maximum sT

increasing from 2.6 to 3.2 K in regions of the eye be-

tween 1200 UTC 26 August and 0000 UTC 27 August.

Early in the simulations, most of the error was confined

to lower and middle levels (z , 5 km), but adiabatic

warming induced by the thermally indirect secondary

circulation raised the sT maximum with greater lead

times. The large column of sT . 4.2 K, extending from

4 to 9 km at 1200 UTC 28 August, was aided by the in-

tensity spread at later times, since the presence of both

weak and strong members produced varying degrees of

warming in the eye. A secondary uncertainty maximum

at 14 km emerged between 1200 UTC 27 August and

1200 UTC 28 August as a result of enhanced upper-level

warming for strong members at later times when the

simulated Katrina members obtained a mean intensity

greater than category 3.

As demonstrated in Figs. 8 and 9, ensemble forecast

uncertainty induced by changes in Katrina’s intensity

and structure are greatest in the vicinity of the eyewall

and eye region near large horizontal and vertical gradi-

ents of wind, pressure, and temperature. Since the pur-

pose of data assimilation is to make corrections to the

model state vector, given that an observation is corre-

lated with the system’s state variables, hypothetical ob-

servations will again be chosen to analyze the value

certain measurements hold for improving the EnKF

analysis. Our objective in this section is to highlight

important aspects of the system-scale vortex uncertainty

that may produce a large signal in the Eulerian refer-

ence frame but are often difficult to distinguish in the

covariance matrix given the presence of position un-

certainty.

Figure 10 shows the significance of assimilating tem-

perature observations in the eye of Katrina at altitudes

of 6.3 (location d) and 3.4 km (location e). The T spatial

correlations at location d (Td) show midlevel warming

being positively correlated with y in eastern portions of

the domain and negatively correlated with y in western

regions with respect to the origin. The same pattern

emerges in Figs. 8a–h in the form of two horizontally tilted

y error maxima. It is also significant to mention that

the three-dimensional distributions of corr(minSLP, y)

(only the vertical profile is shown in Figs. 8i–l) pro-

duces a qualitatively similar signal due to the hydrostatic

FIG. 9. Storm-relative forecast mean T [black contours every (a)–(d) 0.75 and (e)–(h) 10.0 K] and standard deviations (shaded in 0.3-K

increments starting with 1.1 K) from 16 to 64 h. (a)–(d) 4-km level and (e)–(h) vertical cross sections through lines AB, CD, EF, and GH,

respectively.
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relationship between upper-level warming and low-level

pressure falls in the eye. For the low-level measure of T at

location e (Te) (Figs. 10i–l), the signal is similar to that

provided from Td for the earlier time steps, albeit weaker,

and is nearly nonexistent by 1200 UTC 28 August. This

suggests that warming of the eye at 3.4 km is indicative

of stronger members during early stages of the storm’s

intensification but has less importance at later times

where the mean reaches category-4 intensity. From Fig.

11, where a 14-km temperature at location f is correlated

with the y field, it is clear that by 1200 UTC 28 August

the wind fields of the simulated hurricanes are more as-

sociated with upper-level warming than at lower and

middle levels. The correlations resulting from the three

temperature values show that the height at which this

coupling occurs is largely dependent on the intensity of

the simulated hurricanes. They also reveal that a signifi-

cant amount of information can be spread from middle-

and upper-level measures of temperature for correcting

the magnitude and structure of the wind field at nearly all

layers of the model. Flow-dependent covariance calculated

from these hypothetical measurements would lead to cor-

rections in Katrina’s wind field that are dynamically

consistent with the model’s uncertainty with regard to

changes in storm structure and intensity. The resulting

EnKF increments would be highly anisotropic and take

into account warming trends in the hurricane eye, as well

as the primary and secondary circulation of the wind

field, given the tilted covariance structures associated

with inflow.

Figure 12 demonstrates another hypothetical scenario

in which low-level tangential velocity Vu, a wind velocity

derivable from satellite or airborne Doppler radar, is

used for correcting the wind field (denoted measure-

ment Vug). Spatial correlations with respect to Vu at a

point approximately 50 km from the vortex center (de-

noted location g) extend from the lower to middle lev-

els at 16 h, with significant values confined to the eastern

half of the domain inside a radius of 100 km. From

1200 UTC 26 August to 1200 UTC 28 August, correla-

tions of magnitude greater than 0.4 extended outward

from the center, becoming increasingly axisymmetric with

FIG. 10. Storm-relative forecast mean y (contoured solid for positive, dashed for negative every 5 m s21) and cross-spatial correlations

between a midlevel T value marked by point d and the y field (shaded for magnitudes . 0.4 with positive values contoured in black) from

16 to 64 h. The lowest model level is used for (a)–(d) and vertical cross sections through lines AB, CD, EF, and GH are used for (e)–(h),

respectively. The same fields are plotted in (i)–(l), except for a correlation point e.
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larger lead times. The signal grew considerably in mag-

nitude, with correlations of 0.8 or greater persisting in

the RMW for levels as high as 12 km by 1200 UTC

27 August. By 1200 UTC 28 August, the RMW of most

members contracted to a distance inside the hypothetical

storm-relative location marked by point g, thus causing

a slight decrease in correlations at this time; that is, the

location of point g with respect to the RMW is changing

throughout the forecast, which also influences the mag-

nitude and structure of the correlations in Fig. 12.

Using the same surface wind value, cross-spatial cor-

relations with respect to Vug and the T field are shown

in Fig. 13, yielding a complex relationship between

storm intensity and the inner- and outer-core thermo-

dynamic structure of the simulated Katrina. In general,

the correlations are most significant near the surface and

FIG. 11. As in Fig. 10, but for a correlation point f.

FIG. 12. Storm-relative forecast mean Vu (contoured every 5 m s21) and Vu spatial correlations for a surface value marked by point g

(shaded for magnitudes . 0.4 with positive values contoured in black) from 16 to 64 h, using (a)–(d) the lowest model level and (e)–(h)

vertical cross sections through lines AB, CD, EF, and GH, respectively.
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in the storm’s eye region, with strong anticorrelations

appearing in regions outside the eyewall. Figures 13a–d

show a clear relationship between surface wind speeds

and low-level temperatures in an extensive portion of

the domain throughout the simulations. As surface air

from outside the eyewall circulates inward from regions

in the northern portions of the domain, the more intense

Katrina members benefit from the inflow of warmer,

more buoyant air from these regions, resulting in posi-

tive correlations. In the middle and upper portions of

the domain, a column of positive correlations inside the

eyewall results from members with larger sustained sur-

face wind speeds coinciding with a strong secondary cir-

culation and increased subsidence and warming in the

eye. The vertical distribution of these correlations is

similar in shape to the T standard deviations shown

in Fig. 9, producing the most significant amount of co-

variance for this example.

Anticorrelations of notable magnitude exist for a large,

isolated region directly outside the eyewall and below

the freezing level throughout the simulations. A con-

sistent yet slightly stronger signal appears for correla-

tions between minSLP and the T field (not shown),

demonstrating that cooler temperatures in this portion

of the domain coincide with stronger storms. While

most of the deep convection and large concentrations

of rain, snow, ice, and graupel occur upwind of this

region, the advection and melting/evaporation of pre-

cipitation into the northwestern quadrant of the outer

core suggest one possible explanation of the observed

correlations. It is also feasible that melting or evapo-

ration of hydrometeors occurred before reaching the

area of large correlations, allowing cooler air resulting

from the phase change to be advected into this region.

As the storm obtains a more axisymmetric profile by

1200 UTC 28 August, the large negative signal vanishes,

FIG. 13. Storm-relative forecast mean T [black contours every (a)–(h) 0.75 and (i)–(l) 10.0 K], cross-spatial correlations between surface

Vu at point g and the T field (shaded for magnitudes . 0.4 with positive values contoured in black) from 16 to 64 h, using (a)–(d) the lowest

model level, (e)–(h) a 4.0-km level marked by the dashed lines, and (i)–(l) vertical cross sections through lines AB, CD, EF, and GH,

respectively. The freezing level (heavy black contour) is also plotted in (i)–(l).
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possibly due to the larger updrafts surrounding north-

western portions of the eyewall by this time (the vertical

velocity field will be discussed in the following section).

Considering the low ensemble variance collocated with

these correlations (sT , 1 K) (cf. Fig. 9), the amount of

cooling found outside the eyewall in this region for strong

members is relatively insignificant; therefore, the correla-

tions would yield only marginal updates during the data

assimilation procedure.

Since significant correlations occupy regions of large

forecast variance in this example, temperature error

can be effectively corrected using measurement Vug in

a storm-relative reference frame. The resulting EnKF

increments would be most significant inside the hurri-

cane eye as opposed to a region surrounding point g

inside the eyewall, which would not be the case for a

traditional variational data assimilation system using iso-

tropic forecast error covariance. Examples such as this,

along with the largely asymmetric wind/temperature

variance and correlation fields at early forecast times

(Figs. 8–13), further validate the importance of flow-

dependent forecast error covariance for adequate ini-

tialization of developing hurricanes.

b. Moisture and vertical motion

Diabatic energy sources in terms of sensible and latent

heat fluxes in the MBL are important for the steady-

state maintenance and intensification of TCs (Rotunno

and Emanuel 1987). Furthermore, intensity and vortex

core asymmetries can be highly sensitive to the distribution

of tropospheric moisture (Nolan et al. 2007; Nguyen et al.

2008; Sippel and Zhang 2008, 2010; Fang and Zhang 2010,

2011). Under the above realizations, an examination of

ensemble forecast uncertainty of water vapor mixing ra-

tio qy and vertical velocity w is well justified.

The distribution of storm-relative, low-level qy (Fig. 14)

shows a large amount of moist air in the southeastern

quadrant at earlier times that becomes increasingly axi-

symmetric throughout the forecast. Radial gradients of

qy change sign and increase substantially in the eye, with

a maximum directly inside the RMW aided mostly by

1) the vertical transfer of moisture by updrafts in the

eyewall, 2) evaporation of hydrometeors at dry midlevels

inside the RMW, and 3) an upper-level minimum in the

eye region, where subsidence of dry upper-level air oc-

curs. By 1200 UTC 26 August (Figs. 14a,e) most of the

qy forecast uncertainty sqy
is found in the MBL near

areas of deep convection, such as the eyewall and spiral

rainbands. As ensemble intensity forecasts diverge with

increasing lead time, a larger uncertainty emerges with

regard to the upward flux of moist air in the eyewall and

dry subsidence in the eye. As a result, sqy
inside the RMW

continued to grow, surpassing 2.4 g kg21 by the end of

the forecast, while standard deviations in rainbands out-

side the eyewall remained nearly constant.

Evidence of a moisture uncertainty dependence on

storm intensity is shown in Fig. 15, where low-level qy

in the eye and upper-level qy in the eyewall is nega-

tively correlated with minSLP. The strongest negative

signal in the correlation matrix appears in a 4-km-deep

FIG. 14. Storm-relative forecast mean qy [solid black lines contoured every (a)–(d) 0.5 and (e)–(h) 3.0 g kg21] and standard deviations

(shaded in 0.25 g kg21 increments starting with 1.0 g kg21) from 16 to 64 h, using (a)–(d) a 2.8-km level marked by the dashed lines and

(e)–(h) vertical cross sections through lines AB, CD, EF, and GH, respectively.
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layer above the 12-km level, where stronger hurricanes

transport moister air upward and out from the origin

at all time steps, resulting in positive qy anomalies

above the eyewall that spiral outward with height. Like-

wise, a relationship between surface pressure falls and

middle- to upper-level drying in the eye forms at later

time steps as the Katrina members intensify and form

well-developed warm cores. The height at which drying

in the eye is correlated with minSLP moves upward with

increased storm intensity, which is consistent with Figs. 10

and 11, which show a height dependence on storm

intensity and warming. It is not prudent to interpret

these correlations as evidence of a warm core height

dependence on intensity. They simply suggest that as

hurricanes in the WRF intensify, stronger members tend

to coincide with anomalously warmer and dryer air at

higher altitudes.

Near the surface, distributions of corr(minSLP, qy)

show a low-level moisture dependence on deepening

pressure and intensity. Significant correlations outside

the eyewall are limited to discrete regions of the do-

main throughout the simulations, with the exception of

the last time step at 1200 UTC 28 August when the

Katrina ensemble reached its peak intensity. As mem-

bers strengthen to category-4 intensity, a larger signal

emerges between low-level qy and minSLP because of

the increased evaporation and a more organized trans-

port of moist air toward the center. This causes an in-

crease in moist convection and heating that is consistent

with the observed pressure falls at the forecast time. An

increase in radial inflow in the northern section of the

domain may have also contributed to the larger corre-

lations, as moist air in this region is more efficiently

transported inward by the end of the simulation (cf.

Fig. 8).

As mentioned earlier, the inner core is characterized

by intense slantwise updrafts and convection in the

eyewall. At larger radii, bands of organized convection

associated with regions of positively buoyant air and

upward motion exist alongside clear areas of down-

drafts, most likely associated with the return circulation

from outflow. From 1200 UTC 26 August to 1200 UTC

28 August, the original asymmetric, spiraling updrafts

(and downdrafts) near the vortex center (Figs. 16a,e)

gave way to a ring of strong w about a calm eye (Figs.

16d,h). As Katrina members intensified and became

increasingly axisymmetric, forecast uncertainty with re-

gard to w in the eyewall decreased. At earlier stages of

the simulation, the location of maximum updrafts with

respect to the vortex center differed substantially among

members (recall that wavenumber-0 vortices were cen-

tered based on minSLP for storm-relative calculations),

resulting in standard deviations of w (sw) reaching a

maximum by 1200 UTC 26 (Figs. 16a,e). Outside the

eyewall, the magnitude of sw became saturated (sw ,

2.0 m s21) near discrete convective cells associated with

the outer rainbands (Figs. 16b,c,d,f,g,h).

Despite the importance of w in the initialization of

convective-scale features, the correlations between verti-

cal motion and other variables are small in our experiment,

FIG. 15. Storm-relative forecast mean qy [solid black lines contoured every (a)–(d) 0.5 and (e)–(h) 3.0 g kg21] and cross-spatial cor-

relations between minSLP and the qy field (shaded for magnitudes . 0.4 with positive values contoured in black) from 16 to 64 h, using

(a)–(d) the lowest model level and (e)–(h) vertical cross sections through lines AB, CD, EF, and GH, respectively.
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even at earlier time steps (although this may not have

been the case if the ensemble were initialized at a time

in which Katrina was a major hurricane). The only var-

iable that correlated considerably with w for lead times

greater than 16 h (in the storm-relative case) was w itself

(Fig. 17). In addition, only grid points inside strong up-

drafts within the eyewall were able to generate strong

enough signals to warrant substantial corrections to the

w field. Since vertical motion is tied closely to trans-

formations of hydrometeor species and their effects on

buoyancy, correlations in which one or both variables

are rain, snow, ice, or graupel mixing ratio are also small

in this forecast ensemble (not shown). The loss of cor-

relation between w or hydrometeor species with other

state variables is likely because w and hydrometeor

species have a more significant amount of small-scale

variability and are more directly associated with moist

convection, which is largely nonlinear and inherently

less predictable (Zhang et al. 2006). One possible means

of extracting significant vortex-scale w cross correlations

from the ensemble, such as those associated with the

secondary circulation, is to remove small-scale features

from w or hydrometeor species via spectral analysis or

other filtering tools before estimating the correlations.

This additional step of postprocessing model output,

which will be investigated by the authors in a follow-

up study, may allow for more dynamically consistent

corrections to be made to the low-wavenumber (more

balanced) component of the vortex structure of the w

field.

5. Summary and conclusions

In an effort to improve our current understanding of

ensemble forecast covariance pertaining to TCs, corre-

lations and standard deviations of model state variables

were analyzed from a 60-member WRF ensemble of

Hurricane Katrina during a 64-h period in which fore-

casts progressed from a tropical storm to a category-4

hurricane. The examination was restricted to a 400 3

400 3 18 km3 model subspace that captured the vortex-

scale variance and correlations. Previous research (e.g.,

Houze et al. 2007; Nguyen et al. 2008; Fang and Zhang

2011) suggests that the dynamical elements of this re-

gion may have a profound influence on intensity fluctu-

ation, intensification, and decay. Our study was motivated

by the small- to large-scale error propagation that oc-

curs when inner-core features of an initialized TC vortex

are structurally inconsistent or ill accounted for during

model analysis time steps.

The observed error statistics were shown to be de-

pendent on ensemble track spread, land–air interaction,

storm structure, and intensity. Position spread was quickly

realized as the largest factor for determining the ob-

served flow-dependent variance and correlation dis-

tributions, even at relatively short forecast lead times

(e.g., 4 h). Members were also centered based on the

location of minSLP for storm-relative calculations to

separate the effects of track spread and analyze sec-

ondary sources of forecast uncertainty. At longer lead

times (corresponding to larger intensity), the resulting

FIG. 16. Storm-relative forecast mean w (contoured solid for positive, dashed for negative every 0.3 m s21) and standard deviations

(shaded in 0.5 m s21 increments starting with 1.0 m s21) from 16 to 64 h, using (a)–(d) the 4.0-km level and (e)–(h) vertical cross sections

through lines AB, CD, EF, and GH, respectively.
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storm-relative covariance was less affected by high

wavenumber asymmetries and had a larger dependence

on intensity uncertainty.

Our results demonstrate how a better understand-

ing of TC error growth dynamics for complex regions,

such as the inner core, can be achieved through the

analysis of model forecast ensembles. The resulting spa-

tial covariance matrices, determined by the underlying

model dynamics, are increasingly axisymmetric about

the storm center for storm-relative calculations as

Katrina progresses into the mature hurricane stages

but remain largely anisotropic with respect to the cor-

relation points. It appears that sufficient correlations

exist between standard measured variables and the

wind, temperature, and pressure fields in locations of

high forecast uncertainty; thus, adequate flow-dependent

updates can be made to the given state variables during

the data assimilation procedure. Correlations involving

moist processes and buoyancy-driven vertical velocity

are typically lower but still significant at the vortex

scale. The flux of heat and moisture from the ocean

surface to the lower troposphere, accompanied by discrete

convective cells outside the eyewall and water trans-

formations in the middle and upper troposphere, tends

to complicate possible links between these variables

and other predictors. Results from both ground- and

storm-relative calculations suggest that ensemble-based

data assimilation methods can adequately regulate

inner-core structure and intensity, provided that track

spread is marginal or a suitable amount of data has

been previously assimilated to decrease forecast po-

sition uncertainty.

While the scope of this study exclusively covers the

change in ensemble covariance for a developing hur-

ricane, the results allow for speculation into the co-

variance for nonintensifying storms. Calculations made

from the Katrina ensemble result mostly from balanced

vortex dynamics, with additional flow-dependent, asym-

metric structure caused by forcing from smaller-scale

features. Since most of the forecast uncertainty and

multivariate correlations can be attributed to the pri-

mary and secondary circulation and to the adiabatic

structure of the developing hurricanes, large similarities

are expected for steady-state or weakening tropical cy-

clones, where similar dynamics apply. Nevertheless, one

should always be cautious with results obtained from a

single-case study. In future research, the authors will ex-

tend their investigation to more storms including steady-

state or weakening cases. The Katrina ensemble provides

valuable information with regard to the targeting of

observations through spatial/cross-spatial correlations,

demonstrates the necessity of short assimilation/analysis

cycles for adequate intensity and structure corrections,

and verifies the advantage of implementing high spatial

resolution data for vortex-scale data assimilation. This

study presents a descriptive look at how ensemble-based

data assimilation methods extract statistical information

from a sample of forecasts to make dynamically and ther-

modynamically consistent corrections to a hurricane sim-

ulation. It highlights advantages and potential shortfalls

FIG. 17. Storm-relative forecast mean w (contoured solid black for positive, dashed for negative every 0.3 m s21) and spatial corre-

lations between low-level w at point h and all other elements of the w field (shaded for magnitudes . 0.4 with positive values contoured in

black) from 16 to 64 h, using (a)–(d) the 2.3-km level and (e)–(h) vertical cross sections through lines AB, CD, EF, and GH, respectively.
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of the ensemble Kalman filtering method and its ap-

plication to tropical cyclone data assimilation.

Future work will involve more direct comparisons

between analysis and short-term forecast error covari-

ance and sensitivity with respect to model resolution and

ensemble size. The increase in resolution may (or may

not) lead to improvements for small-scale vertical veloc-

ity and moisture correlations, as highly nonlinear error

growth mechanisms, such as moist convection, may limit

such correlations to shorter ensemble lead times. Like-

wise, a larger ensemble size may be required in sync with

the increased model resolution to take full advantage

of the higher degrees of freedom associated with each

forecast. Given the complexity of the forecast error co-

variance matrix, as demonstrated in many of our exam-

ples, future studies using idealized hurricane models

will be necessary to fully understand how model dy-

namics and physical parameterization schemes force

the observed ensemble error propagation.
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