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ABSTRACT

Atmospheric data assimilationmethods that estimate flow-dependent forecast statistics from ensembles are

sensitive to sampling errors. This sensitivity is investigated in the context of vortex-scale hurricane data

assimilation by cycling an ensemble Kalman filter to assimilate observations with a convection-permitting

mesoscale model. In a set of numerical experiments, airborne Doppler radar observations are assimilated for

Hurricane Katrina (2005) using an ensemble size that ranges from 30 to 300 members, and a varying degree of

covariance inflation through relaxation to the prior. The range of ensemble sizes is shown to produce vari-

ations in posterior storm structure that persist for days in deterministic forecasts, with the most substantial

differences appearing in the vortex outer-core wind and pressure fields. Ensembles with 60 or more members

converge toward similar axisymmetric and asymmetric inner-core solutions by the end of the cycling, while

producing qualitatively similar sample correlations between the state variables. Though covariance relaxation

has little impact on model variables far from the observations, the structure of the inner-core vortex

can benefit from a more optimal tuning of the relaxation coefficient. Results from this study provide insight

into how sampling errors may affect the performance of an ensemble hurricane data assimilation system

during cycling.

1. Introduction

Accurate tropical cyclone forecasting continues to be

one of the greatest challenges for operational weather

prediction models. One problem lies in our inability to

initialize the tropical cyclone core structure accurately

in real time, owing to limitations in model resolution,

data coverage, and our current data assimilation pro-

cedures (Houze et al. 2007; Zhang et al. 2009). The data

assimilation process combines two state estimates: the

atmosphere as forecasted by a model (denoted prior)

and the atmosphere as depicted by the observations to

generate an analysis state (denoted posterior) to be used

as initial conditions for a forecast (Talagrand 1997).

One approach called the Kalman filter propagates the

multivariate state vector and its error covariance for-

ward in time from the previous assimilation cycle using

a forecast model. The new covariance is used to find the

least squares estimate of the posterior state under the

assumptions of Gaussian errors and linear model dy-

namics (Kalman and Bucy 1960). The ensemble Kalman

filter (EnKF) approximates the standard Kalman filter

by using an ensemble of model forecasts to estimate the

prior and posterior error covariance, thus providing an

affordable means of applying the filter for nonlinear

models (Evensen 1994). The EnKF has proven to be an

affective data assimilation option for a wide range of

weather applications (e.g., Snyder and Zhang 2003;

Zhang et al. 2004; Dowell et al. 2004; Tong and Xue

2005; Zhang et al. 2006; Torn et al. 2006; Meng and

Zhang 2007; Fujita et al. 2007; Meng and Zhang 2008b;

Zhang et al. 2009; Weng and Zhang 2012). Its largest

benefit comes from the use of a forecast ensemble to

estimate the prior error covariance at each assimila-

tion cycle, rather than relying on a climatological error

covariance as is done in alternative data assimilation

methods (i.e., three- and four-dimensional variational

systems). For the case of tropical cyclones, Poterjoy

and Zhang (2011) show that variance and correlations

calculated from a storm-relative ensemble of hurri-

cane forecasts can represent relationships in the storm

core that are physically consistent with our under-

standing of tropical cyclone dynamics. Their results
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also support the notion that a cycling EnKF can ben-

efit from short data assimilation cycles that alleviate

the largely non-Gaussian forecast errors that may re-

sult from vortex position spread (Chen and Snyder

2007).

While ensembles provide a flow-dependent prior error

estimation for each data assimilation cycle, the statistics

are often sensitive to sampling errors. The computational

cost of integrating an ensemble of high-dimensional

models after each consecutive cycle imposes restrictions

on the ensemble size, thus limiting the maximum degrees

of freedom in the state estimate. This sampling deficiency

causes the prior covariance matrix to be rank deficient

and overestimated between variables at distant grid

points. In practice, covariance localization approaches

are applied to overcome these shortcomings by reducing

the magnitude of off-diagonal terms in the ensemble-

estimated covariance matrix. The localization is typically

achieved using a simple element-wise multiplication of

the covariance matrix with an empirical correlation

function (Hamill and Whitaker 2001). In addition to

sampling errors, other unresolved sources of error such

as those imposed by the imperfect forecast model and

nonlinearity may also lead to an underestimation of the

true forecast variance, thus causing the filter to fit ob-

servations less over time in a process called ‘‘filter

divergence.’’ Various means of inflating the forecast

covariance have been used to achieve adequate filter

performance for repeated assimilation cycles (Anderson

and Anderson 1999; Mitchell and Houtekamer 2000;

Zhang et al. 2004; Whitaker and Hamill 2012). Many

of these sampling deficiencies are demonstrated in the

context of tropical cyclone data assimilation by Aksoy

et al. (2012) and Sippel et al. (2013) using simulated

radar observations.

This study uses real data to examine the accumulative

effects of sampling errors in a cycling EnKF data as-

similation system. A set of independent data assimila-

tion cycles for Hurricane Katrina (2005) are run from

1430 to 2000 UTC 25 August 2005, a period in which

Katrina approached the Florida coast while intensifying

from a tropical storm to a category 1 hurricane. The data

assimilation experiments are configured identically, ex-

cept that ensemble size and the degree of covariance

relaxation are varied between cases. The purpose of this

study is to examine how sampling errors can influence

the evolution of storm structure during cycling. The

model grid spacing, choice of ensemble sizes, and detail

of our analysis limits this investigation to one case study.

Nevertheless, our findings may be applicable to a large

variety of cases in which inner-core observations are

assimilated at short cycles to ‘‘spin up’’ a tropical cyclone

with proper dynamic and thermodynamic structure.

The organization of the manuscript is as follows.

Section 2 contains the details regarding model and ex-

periment setup for this study. Sections 3 and 4 describe

the analysis and forecast results from our set of cycling

data assimilation cases, respectively. Section 5 provides

the summary and conclusions.

2. Methodology

The EnKF data assimilation system described in

(Meng and Zhang 2008a,b; Weng and Zhang 2012) is

used in this study for the Weather Research and Fore-

casting Model (WRF) (Skamarock et al. 2008). It fol-

lows the square root algorithm described by Whitaker

and Hamill (2002) to update the perturbations around

the posterior mean state. Covariance localization is

achieved using an element-wise multiplication of the

covariance matrix with a Gaspari and Cohn (1999) fifth-

order correlation function, and the covariance is inflated

after each analysis using the ‘‘covariance relaxation to

the prior’’ method proposed in Zhang et al. (2004). This

system has been used in real time since 2008 to assimi-

late routinely collected radial velocity observations from

National Oceanic and Atmospheric Administration

(NOAA) P3 airborne Doppler radar flight missions

(Aberson et al. 2006), and provide forecasts for tropical

cyclones in the Atlantic hurricane basin (Zhang et al.

2011).

The current study uses the same observations, model

configuration and general EnKF setup as Weng and

Zhang (2012) and Poterjoy and Zhang (2011). The

Advanced Research WRF version 3.1 (Skamarock et al.

2008) is used with a coarse domain (D1) of 202 3 181

horizontal grid points at 40.5-km grid spacing, and two

two-way nested inner domains with 13.5- and 4.5-km

grid spacing (D2 and D3, respectively). The two inner

domains automatically follow the storm using the WRF

vortex-following algorithm, and represent convection

explicitly. All domains use 35 vertical levels, most of

which are concentrated in the lowest 8km, with the model

top at 10mb. Details regarding the method of ensemble

generation, choice of physical parameterization schemes,

and collection and quality-control procedures for the air-

borne radar data are provided inWeng and Zhang (2012).

The ensembles are initialized at 0000 UTC 25 August

2005 using the National Centers for Environmental

Prediction (NCEP)Global Forecast System (GFS) Final

Analysis (FNL) as the mean, and GFS forecast data for

lateral boundary conditions. The initial ensemble per-

turbations are created using the WRF variational data

assimilation system (Barker et al. 2004; Huang et al.

2009) with the cv3 covariance option (Parrish andDerber

1992). The ensemblemembers are integrated for 14.5h to
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evolve flow-dependent forecast error statistics, which are

then centered on the 60-member ensemble mean before

assimilating the first batch of airborne radar observations.

Data from the remaining flight legs are assimilated at

1530, 1630, 1730, 1900, and 2000UTC thereafter. Each set

of observations is collected within 30min of the analysis

time, which is chosen based on the time of the flight leg.

The observation operator projects the background state

vector onto the horizontal component of the radar radial

winds during data assimilation. In doing so, the vertical

component of wind is ignored to avoid the estimation of

particle fall speeds for each observation. The assimilated

observations span altitudes of 10–15 000m, with 95%

falling below 9200m, and cover large portions of the in-

ner core;1 see Fig. 12 of Weng and Zhang (2012).

Each data assimilation experiment uses successive

covariance localization (Zhang et al. 2009), which is an

empirical means of adjusting the localization radius of

influence during sequential data assimilation. The lo-

calization implements a 1215-km radius of influence in

all three domains to assimilate the first 1/9 of the obser-

vations; the radius of influence is then decreased to

405 km to assimilate another 2/9 of the observations inD2

and D3, and decreased further to 135 km to assimilate

the remaining observations in D3 only. The vertical lo-

calization radius of influence is set to 35 vertical levels,

which is large enough to have only marginal effects on

model levels close to flight level, where most of the

verification is performed. Using this configuration, all

observations are assimilated serially in the same order

during each data assimilation cycle.

To ensure that differences between each data assim-

ilation configuration are due to sampling errors alone,

each ensemble shares the same localization configura-

tion and starts from the same priormean at 1430UTC 25

August. Our choice of localization radii is based on past

studies that use the same ensemble data assimilation

system for assimilating airborne radar observations with

30–60 members (Zhang et al. 2009; Weng and Zhang

2012; Zhang et al. 2011). Under a configuration that is

typical for hurricane applications, the sensitivity to en-

semble size N is examined by performing a set of data

assimilation experiments with N set to 30, 60, 120, and

300. While we acknowledge that the optimal choice of

localization varies with N, the current study does not

address this dependence. The goal of these experiments

is to explore how the posterior mean and covariance

change as a result of increasing N in a controlled

manner.

Following Zhang et al. (2004), the covariance is in-

flated after each cycle by relaxing the posterior pertur-

bations (x0an ) back to the prior perturbations (x0fn ):

x0an ) (12a)x0an 1ax0fn . (1)

The a in Eq. (1) is called the relaxation coefficient and

ranges from 0 to 1, where a 5 0 implies no relaxation.

The experiments that investigate the sensitivity of the

data assimilation to N use a constant a of 0.8, a value

that has been used frequently in past studies (Meng and

Zhang 2008a,b; Torn and Hakim 2008). The 60-member

case is then repeated for a second set of experiments

using an a of 0.6, 0.4, 0.2, and 0.0. This allows for an

examination of how a impacts the data assimilation

when N is set to a value that has been demonstrated to

be both effective and affordable for the current appli-

cation (Weng and Zhang 2012; Zhang et al. 2011).

3. Cycling data assimilation results

a. Changes in storm structure during cycling

In situ observations of flight-level (825–840mb) wind

speed, temperature T, pressure P, and relative humidity

were collected by instruments on board the NOAA P3

aircraft as it passed through Katrina during the six flight

missions. Because these observations are not assimilated

during the experiments, they are used in this section to

verify the performance of the prior and posterior mean

states at each analysis time. Figure 1 shows the prior and

posterior mean flight-level wind speed and T plotted

against the verifying observations at the first and last

update times, along with the intermediate time of 1630

UTC 25 August. Provided that the path of the aircraft

through the center of Katrina does not follow a straight

line (see Fig. 1b of Weng and Zhang 2012), only the

inner ;120 km of the vortex is observed during each

flight. The verification shows that all cases produce

reasonably accurate analyses of flight-level wind speeds

in the core, despite the range in ensemble sizes. Never-

theless, the 30-member case produces less accurate re-

sults for variables that are not assimilated during this

experiment. For example, the 30-member posterior

mean T is much lower than observations along the flight

track. The larger-ensemble cases verify much closer to

the T observations, with the exception of inner-core

values during the last cycle where temperatures are

stronger than observed; the warm temperature bias in

these cases may come from errors in the data assimila-

tion that are not considered in this study (e.g., model

1 Following Weatherford and Gray (1988), the inner core refers

to the portion of the storm within 18 (;100 km) of storm center,

whereas outer core is defined as the portion between 18 and 2.58
(;100–250km).
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error or correlated observation errors). Though not

shown, the verification of posterior mean pressure and

humidity is consistent with the flight-level T in Figs. 1g–l

in that the 30-member case contains errors that are

systematically greater than the higher-ensemble cases

during the cycling. Given that temperature, pressure,

and moisture are not assimilated in these experiments,

this result suggests that the 30-member ensemble may

not represent accurate cross correlations between the

wind and thermodynamic variables.

While the flight-level verification provides insight into

how ensemble size can affect the accuracy of the data

assimilation in the inner core, the main objective of this

section is to describe the changes in storm structure that

emerge from our ensemble size experiments. Figure 2

shows the difference in posterior tangential wind speeds

Vu between the N 5 300 ensemble and N 5 30, 60, and

120 ensembles. Model data in these plots come from

a subspace of D1 that covers the entire Gulf of Mexico

and Florida, and the 300-member vortex center is used as

the reference center for calculating Vu. The unpaired

Student’s t test shows that differences of about 1m s21

or greater are statistically significant at the 90%–95%

confidence level. Portions of the flight-level 300-member

posterior mean Vu field are 11ms21 stronger than in the

30-member ensemble, but the differences decrease sub-

stantially when additional members are added. The pos-

terior mean wind differences at each time represent the

accumulative effects of errors caused by sample size,

which are assumed to be smallest for the 300-member

ensemble. The largest values are found in the dashed

boxes plotted in Fig. 2, which indicate a 900 3 900 km2

region that fits inside D3. Data from the 4.5-km domain

will be used for the remaining portions of this manuscript

to compare the posterior ensembles in more detail within

the dashed box.

The posterior azimuthal mean tangential wind Vu and

P are plotted in Figs. 3a–f at three analysis times to

FIG. 1. (a)–(c) Prior and (d)–(f) posterior flight-level winds and (g–(i) prior and (j)–(l) posterior T verified against aircraft observations at (a),

(d),(g),(j) 1430; (b),(e),(h),(k) 1630; and (c),(f),(i),(l) 2000 UTC for ensemble sizes of 30 (green), 60 (light blue), 120 (orange), and 300 (red).
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FIG. 2. Differences between the 300-member and (a) 30-, (b) 60-, and (c) 120-member posterior tan-

gential winds contoured every 2m s21 at 1500m for D1 on 2000 UTC 25 Aug. The light shading indicates

where the pair of posterior means is statistically unique at the 90% confidence level using the unpaired

Student’s t test. Dark shading indicates a significant difference at the 95% confidence level. The dashed box

indicates the subspace in which data from D3 are compared in the subsequent figures.
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compare the evolution of the axisymmetric storm

structure as the observations are assimilated. The vor-

tices produced by the larger ensembles converge toward

a similar solution inside 100 km by the last cycling time,

owing to the greater concentration of observations in the

inner core. Nevertheless, the Vu and P fields outside

the inner core diverge early in the experiments, where

analysis increments depend on covariance and cross co-

variance between the outer-core state vector and winds

close to the storm center. The ensemble covariance will

be discussed in more detail in the next section.

The profiles of azimuthal mean P in Fig. 3d show that

the 30-member ensemble produces pressure increments

that are 2–4mb lower than all other experiments at the

initial time. Each data assimilation experiment uses the

same prior mean during the first cycle; therefore, any

distinctions in storm structure must come entirely from

sampling errors in the ensemble-estimated background

FIG. 3. Axisymmetric posterior (a)–(c)Vu and (d)–(f)P at 1500m for (left to right) the first, second, and sixth update times. (g)–(l) As in

(a)–(f), but for the deterministic forecasts of Vu and P for (left to right) 24-, 48-, and 72-h lead times. Values are plotted for 30 (green),

60 (light blue), 120 (orange), and 300 (red) members.
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error covariance. While the 30-member case yields the

deepest central pressure after the first update, it pro-

duces anomalously higher central pressures at the re-

maining assimilation times because of poor ensemble

track forecasts between cycles. Figure 4a shows that the

displacement between the prior and posterior mean

vortex is typically much larger in the 30-member case

than in other experiments, which suggests that the ef-

fects of storm position errors on the analyses are largest

in the 30-member experiment. The 30-member ensem-

ble also produces a prior spread in vortex positions that

is nearly 2 times larger than any of the other ensembles

during cycling (Fig. 4b). The large position uncertainty

in the 30-member case decreases the influence of vortex

size and intensity on the ensemble error covariance es-

timate, which may lead to a degraded azimuthal mean

storm structure during data assimilation (Chen and

Snyder 2007; Poterjoy and Zhang 2011). Both of these

factors contribute to the 30-member case producing the

largest flight-level errors (Fig. 1).

Amplitudes of azimuthal wavenumber (n) 0, 1, and 2

posterior variables are plotted for radial profiles of the

inner and outer core at 2000 UTC 25 August in Fig. 5.

The profiles are calculated at the approximate altitude

of the flight path (1500m), which is found to be repre-

sentative of major sampling differences in storm structure.

While this height may not be the most representative of

the variables examined in this manuscript, its proximity

to the independent observations in Fig. 1 make it a

practical choice for this comparison. As is shown in Figs.

3a–f, the 60-, 120- and 300-member posterior means

converge toward a similar axisymmetric primary circu-

lation and pressure field in the inner 100 km of the

vortex, but diverge outside of this region by the last cycle

(first column in Fig. 5). The n 5 0 profiles show that the

larger ensembles produce a warmer warm core, more

subsidence, and lower pressure in the eye and higher

water vapor mixing ratios qy in the outer core.

Cycling with 30 members produces the largest asym-

metries in posterior Vu and P (Figs. 5b,c,n,o), which is at

least partially caused by the large position adjustment

during the data assimilation (Fig. 4a). The secondary

circulation in the smallest ensemble also differs from the

larger cases. Twomaxima ofVr for n5 022 are found in

the posterior means: one near the radius of maximum

winds at 27 km and another between 100 and 200 km.

Sampling errors in the 30-member ensemble lead to

larger amplitudes of asymmetric Vr at both of these

maxima (green lines in Figs. 5e,f). The N5 60, 120, and

300 cases also contain;1m s21 spikes in the w fields for

n5 1 and 2 near the radius ofmaximumwinds, which are

absent in the 30-member posterior mean. The agreement

between the larger ensembles on the representation ofVr

andw in the inner core suggests that the larger ensembles

are approaching a similar solution to Katrina’s secondary

circulation.

While the posterior means tend toward similar inner-

core results when 60 or more members are used, no-

ticeable differences exist between the 60- and 120 to

300-member cases away from the inner core. For in-

stance, the 60-member posterior contains values of axi-

symmetricVu,Vr, and qy that are lower than the 120- and

300-member cases at radii larger than 100 km. These

profiles are accompanied by larger amplitudes in the

asymmetric components. Though the asymmetries are

not as large as those produced for the 30-member en-

semble, these results may be a reflection of the slightly

inferior storm position in the priors and posteriors de-

picted by the smaller ensembles.

b. How the evolving ensemble members affect
EnKF updates during cycling

In this section, we describe how the spatial extent of

analysis increments changes over the course of the cy-

cling data assimilation experiments. Figure 6 shows the

FIG. 4. (a) Displacement between the prior and posterior mean

vortex centers, (b) prior ensemble vortex position spread, and

(c) posterior ensemble vortex position spread for 30 (green), 60

(light blue), 120 (orange), and 300 (red) members.
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posteriormean 1500-mVu and analysis increments at the

three times used in Fig. 3. The increments are calculated

by subtracting the prior mean from the posterior mean

at each analysis time, while using the posterior mean

vortex center as the origin for calculating the tangential

winds. At the first data assimilation cycle, analysis

increments act to adjust the horizontal winds within

a 400-km radius from the storm center. The large posi-

tive increments within 300km of the vortex center (white

contours in Fig. 6), along with negative increments outside

this region at some analysis times (black contours along

periphery of Figs. 6b–d), act to increase the gradient of Vu

FIG. 5. Wavenumber (left) 0, (middle) 1, and (right) 2 amplitudes of (a)–(c)Vu, (d)–(f)Vr, (g)–(i)w, (j)–(l) T, (m)–(o)P, and (p)–(r) qy for

the posterior ensemble means. Values are plotted for 30 (green), 60 (light blue), 120 (orange), and 300 (red) members at 2000 UTC.
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around the storm, thus producing a strong vortex around

the region covered by the radar observations.

The initial ensemble forecast at 1430UTC contains the

weakest storms and largest position spread compared to

the cycles that follow, which leads to relatively small

values of ensemble variance near the storm center at this

time; the variance in tangential winds for the 60-member

ensemble is provided inFig. 7 for reference.After the first

data assimilation cycle, the hurricanes in the ensemble

begin to adjust and move apart between each successive

cycle. This process causes large gradients of wind to be

concentrated near the mean storm center (near A in Fig.

7). As wind variance in the inner core increases between

successive data assimilation cycles, the variance in the

outer core (near B in Fig. 7) remains relatively small. The

ensemble members therefore evolve in a manner that

leads to larger variance near more dynamically active

regions of the domain (i.e., in the inner core of the sim-

ulated vortex).

We will present a hypothetical single-observation exam-

ple to demonstrate how the evolving covariance matrix af-

fects the spreadof information from inner-coreobservations

during cycling. The Kalman update equation is given by

xa5 xf 1K(y2Hxf ) , (2)

where xf and xa are the forecast and analysis mean state

vectors, respectively; y is the observation state vector;

and H is an operator that maps the model state into

observation space. Bold sans serif and bold roman fonts

are used to represent matrix and vector quantities, re-

spectively, and the overbar denotes an ensemble mean.

The K is the Kalman gain matrix:

K5PfHT(HPfHT 1R)21 , (3)

which uses the ensemble-estimated prior covariance

Pf and observation covariance matrix R to spread

FIG. 6. PosteriormeanVu shaded every 3m s21 and analysis increments contoured for 2, 4, 8, and 16m s21 with positive (negative) values

in white (black). Data are plotted for an altitude of 1500-m at (top) 1430, (middle) 1630, and (bottom) 2000 UTC for number of members:

(a),(e),(i) 30; (b),(f),(j) 60; (c),(g,(k) 120; and (d),(h),(l) 300.

APRIL 2014 POTER JOY ET AL . 1617



information from observations to the model state

vector.

Suppose we wish to assimilate a tangential wind ob-

servation y that is located at the inner-core location A in

Fig. 7. Let Hxf 5 xA, where xA is the prior mean pro-

jected onto the tangential wind at point A, and R5s2
y,

so that the Kalman gain can be written as

K5
Cov(xA, x

f )

s2
A1s2

y

5Cor(xA, x
f )

sAsx f

s2
A 1s2

y

. (4)

The xf in Eq. (4) is a random variable that is represented

by the prior ensemble, and the nonbold x is a scalar with

position indicated by the capital subscript letter. If y is

used to update the prior mean wind at point B (denoted

xB) outside the inner core in Fig. 7, then the analysis

increment for xB is given by

dxB 5Cor(xA, xB)
sAsB

s2
A1s2

y

(y2 xA) . (5)

The prior variance increases in the inner core after the

first cycle (cf. Fig. 7). Though not shown, this result oc-

curs for cases that use a$ 0.4. The relaxation also allows

the ensemble to maintain strong correlations between

inner- and outer-core winds throughout the cycling. The

outer-core analysis increment, dxB in Eq. (5), is at a

maximum with respect to sA when sA 5 sy, and de-

creases to zero as sA gets progressively larger. Likewise,

dxB is maximized at the first analysis time, because sA is

close to the sy 5 3m s21 value assigned for the airborne

Doppler winds. Since sB and Cor(xA, xB) change very

little during the successive cycles, both the decrease in

innovation and increase in sA cause dxB to be much

smaller at later cycles when relaxation is used. More

generally, the increase in ensemble variance in the in-

ner core is one factor that contributes to the changing

magnitude of outer-core wind increments in Fig. 6.

It follows that the EnKF representation of the outer

core weighs greatly on the first data assimilation cycle.

This result also holds true for cases that do not use co-

variance relaxation, in which case ensemble correlations

between variables at distant grid points are reduced

substantially during the cycling. Each data assimilation

experiment uses the same localization and prior mean at

1430UTC 25August, so differences in increments at this

time must come solely from sampling errors in the en-

semble forecast covariance. As a result, the sampling

errors from the first analysis time lead to differences in

posterior wind and pressure for the experiments at later

times. Further evidence is shown in Figs. 3a–c, where the

300-member posterior contains the strongest azimuthal

mean outer-core winds at every update time.

FIG. 7. Prior ensemble mean and standard deviations for the

60-member experiment at (a) 1430, (b) 1630, and (c) 2000 UTC. The

gray shading is the ensemble mean Vu in 3m s21 increments and the

white contours are the standard deviations contoured for 2, 4, 8, and

16ms21. As referenced in the text, points A and B indicate the lo-

cation of a hypothetical observation and state variable to be updated,

respectively.
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c. Verification of ensemble spread in the inner core

The performance of the EnKF depends largely on

how well the forecast ensemble approximates the true

prior error distribution. The assimilated radar observa-

tions (each observation denoted by yi) are used here to

compare ensemble standard deviations with the in-

novations di at each time to measure the effectiveness of

the ensembles in estimating the true forecast errors. Any

displacement in storm position from the truth is likely to

result in biases in the model state projected to point

observations. To limit this problem, error statistics are

estimated by averaging the value of each metric over

annular regions around the storm center at each time.

The bins are created at 2-km radii out to 108 km, using

the 300-member posterior as the storm center, with each

bin representing a different error region that spans all

vertical levels. Since the sign of airborne radar radial

winds depends on the location of the aircraft and quad-

rant of the storm being sampled, all yi are forced to be

positive for the verification. This task is accomplished by

removing all yiwith magnitudes less than the observation

error (so 5 3ms21), and reversing the sign of the re-

maining negative yi and corresponding prior perturba-

tions H(x
f
n,i). The modified set of observations are

positive, but the ensemble members may be positive or

negative to account for values of H(x
f
n,i) that have the

opposite sign of yi. Detecting a statistical bias in the en-

semble would be nearly impossible without a post-

processing procedure of this type, since a positive bias in

one quadrant of the storm would otherwise translate into

a negative bias in another quadrant for a quasi-

axisymmetric wind field, thus giving a total bias near

zero.

If the ensemble variance is calibrated properly, the

expected value of the squared innovationsmust be equal

to the sum of the forecast error variance in model space

and observation error variance (Dee 1995). We perform

this comparison by first calculating the mean squared

innovations, h(di 2d)2i, and mean observation space

ensemble variance, hs2
H(x)i, for each bin of observations.

As in Aksoy et al. (2009), we use the ratio of error terms:

R5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs2

H(x)i
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(di2 d)2i2s2

o

q , (6)

to characterize the ensemble spread in each bin. The

coefficient R in Eq. (6) is between 0 and 1 when the

ensemble spread is too small, and greater than 1 when

the ensemble spread is too large. Since the goal of co-

variance relaxation is to control the ensemble variance

between cycles, Fig. 8 shows the metric R and the

ensemble biases for each of the ensemble priors that are

available from the 60-member covariance relaxation

experiments. Ensemblemembers at the first update time

come from 14.5-hmodel integrations, causing the spread

in vortex position to be nearly as large as the region

covered by the radar data (Fig. 4b).Withmanymembers

forecasting a storm location that is far from the actual

center, the variance in winds near the observations are

largely underestimated by the ensemble at this time

(Fig. 8a), and contain a negative bias of about 15m s21

around the radius of maximum winds. Experiments that

use small amounts of relaxation (a # 0.2) continue to

have too little variance during the cycling, thus dem-

onstrating why inflation is necessary for practical im-

plementations of the EnKF. Nevertheless, too much

relaxation can lead to a prior error estimation that is too

large, as demonstrated by the last four cycles of the a5
0.8 experiment (Figs. 8c–f).

A larger a can lead to more bias near the radius of

maximum winds, as shown in Figs. 8j–l. This result fol-

lows from the fact that relaxation increases the position

spread between cycles, thus reducing the amplitude of

inner-core winds in the prior mean. The choice of a 5
0.8 worked well in previous studies in which a 6- or 12-h

time window was used between assimilation cycles

(Meng and Zhang 2008a,b; Torn and Hakim 2008), but

the statistics presented in Fig. 8 suggest that an a of 0.4

or 0.6 is more appropriate for assimilating inner-core

hurricane observations with short lead times between

cycles. The amount of relaxation should also depend on

ensemble size, with more relaxation required for smaller

ensembles. In this context, however, the errors associ-

ated with sample size become small compared to other

error sources (e.g., model error) as N becomes larger

than 60. Though not shown, we find similar biases and R

values in the inner core for cases that use an increasing

number of members (and a 5 0.8), because the optimal

a depends less on ensemble size as random sampling

error decreases. Overall, the choice of relaxation coefficient

has little impact on storm structure in the 60-member ex-

periment for a . 0.2, but a much larger sensitivity is ob-

served in relaxation experiments using 30 members.

As was discussed in the previous section, the spatial

distribution of ensemble variance can limit the amount

of information that is passed from observations in dy-

namically active regions to distantmodel grid points.We

will now explore the consequences of underestimating

the background error variance in the vicinity of the

inner-core observations. Figure 8a shows that the prior

error estimation is between 2 and 3 times too small at

1430 UTC, before the EnKF with covariance relaxation

recovers the correct spread by the third assimilation

cycle. Assuming that the ensemble provides a more
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accurate error estimation outside the inner core than

inside,2 the actual analysis increments outside the inner

core may be much larger than what would have been

made given a properly calibrated prior variance. We

examine the impact of variance deficiency in the inner

core by recalculating the 1430 UTC posterior mean us-

ing an inflated prior variance. The variance inflation

follows the function

x0fn (r)) x0fn (r)[11 0:0075(r1 9)2e2[(r19)/25]] , (7)

where r is the distance of a model grid point to the storm

center. This function (plotted in Fig. 9a) provides a rea-

sonable fit to the ratio of root-mean-squared ensemble

variance to root-mean-squared innovation and observa-

tion variance (inverse of the coefficient R in Fig. 8a)

at 1430 UTC, and decays exponentially to zero outside

100km. Figure 9b shows the prior and posterior azimuthal

mean tangential winds at 1500m for the 60-member case

with inflation and without inflation (denoted control). The

inflation produces azimuthalmeanwinds in the 60-member

posterior that are over 2ms21 weaker than the control

experiment for large parts of the outer core, and reduces

some of the outer-core sensitivity to ensemble size (not

shown). Taking note of the fact that changes to the inner-

core winds are relatively small between these two analyses,

we can conclude that the suboptimal background variance

FIG. 8. Verification of prior ensemble spread in the relaxation experiments using 60 ensemble members and the assimilated radar data at

each update time. The error ratio (R) and bias are plotted as a function of radius for (a)–(f) and (g)–(i), respectively, for a 5 0.0–0.8.

2 This is a reasonable assumption because a 14.5-h ensemble

forecast is more likely to capture the uncertainty in the large-scale

wind features than the much smaller vortex-scale uncertainty as-

sociated with the location of the inner core.
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near observations has the most profound impact on distant

analysis increments. This example partially explains why

the outer-core storm structure demonstrates the most

sensitivity to sampling errors in our simulations.

One limitation of the inflation function applied during

this experiment is that the variance outside the inner

core is assumed to be accurate. The inflation also adjusts

the perturbations to fit a variance profile that is esti-

mated from horizontally and vertically averaged in-

novations, which may not be representative of the true

forecast error in this region. Despite these assumptions,

the experiment still suggests that the Katrina analyses

can benefit from variance inflation near the observed

storm center, or possibly a smaller localization radius for

the first data assimilation cycle to avoid spurious cor-

rections outside the inner core. Adaptive inflation

techniques that provide spatially and temporally varying

covariance inflation (e.g., Anderson 2009;Miyoshi 2011)

may also be useful for providing a radially varying in-

flation factor in this scenario. Updates to the larger

scales should come from additional observations that

capture the environmental conditions (e.g., dropsonde

data or satellite winds) or after the ensemble variance

becomes more consistent with the magnitude of in-

novations. This result has broad implications for en-

semble data assimilation at the storm scale, because

ensembles can easily underestimate the prior spread in

regions of high wind and thermodynamic gradients (e.g.,

data assimilated in a supercell environment may lead to

incorrect analysis increments at larger scales if the en-

semble fails to capture the correct model uncertainty in

the vicinity of the mesocyclone).

d. Inner-core updates

While the assimilation of radar observations pro-

duces only minor adjustments to the large-scale cir-

culation around the hurricane vortex after the first

cycle, the EnKF continues to make significant correc-

tions to the inner core. This subsection compares re-

sults within the dashed box indicated in Fig. 7 that

covers the inner 100 km of the tropical cyclone vortex.

The 60-member ensemble is compared with the 300-

member ensemble at the last update time because 60

members is found to be the smallest sample that pro-

duces reasonably accurate storm structure during the

experiments (cf. Fig. 5). Since tropical cyclones can be

thought of as quasi-axisymmetric weather systems,

prior and posterior ensemble members are decom-

posed into storm-relative azimuthal wavenumber

components to show the contribution of the axisym-

metric and asymmetric components during the data

assimilation experiments. The wavenumber separation

is carried out in a storm-relative reference frame for

each member. This procedure involves: locating the

vortex center for each member via the Geophysical

Fluid Dynamics Laboratory (GFDL) vortex tracker

algorithm (Marchok 2010), interpolating all variables

to cylindrical coordinates with respect to vortex loca-

tion, transforming variables into azimuthal wave-

number space, separating the powers for each

wavenumber before transforming the variables back to

physical space, and interpolating the filtered variables

to a Cartesian grid with the approximate center of the

posterior mean at the origin. The reference center for

each member is fixed with height and storm-motion

vectors are not subtracted from the wind field; there-

fore, the nonzero wavenumbers include both internally

FIG. 9. (a) The function used to tune the prior error variance

along with R21 data (circles) from Fig. 8a. (b) Axisymmetric mean

1500-m Vu for the first analysis time for the prior (dotted line),

control 60-member posterior (dashed line), and 60-member pos-

terior with inflation (solid line).
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generated vortex asymmetries as well as those that are

induced by the environment. The wavenumber sepa-

ration is performed with respect to the vortex center of

each member, but the ensemble spread in vortex po-

sition is maintained when variables are transformed to

the ground-relative Cartesian grid.

Figure 10 shows the contribution of the n5 0, 1, and 2

wind components to the 60- and 300-member posterior

means and standard deviations of Vu for the last data

assimilation cycles. These statistics represent the mean

and standard deviations of the filtered ensemble data

and should not be confused with a filtered mean and

FIG. 10. The [(a)–(c) and (g)–(i)] 60- and [(d)–(f) and (j)–(l)] 300-member ensemble Vu fields compared in the inner core. Posterior

means (solid for positive and dashed for negative) and standard deviations (shaded) at 2000 UTC for (left) n 5 0, (middle) n 5 1, and

(right) n5 2. (a)–(f)Horizontal cross sections through an altitude of 1500m. (g)–(l) Vertical cross sections through the dashed lines in (a)–

(f). The sample size is indicated on the top of each panel.
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filtered standard deviations, which would require the use

of a common center for all members. Given that Katrina

reached category-1 hurricane intensity at this time,

the n 5 0 portion of the ensemble vortices contributes

themost to themean and variance ofVu, followed by the

n 5 1 and 2 components. Each member is decomposed

with respect to its own vortex center in these calcula-

tions, so the n 5 0 portions of the mean and variance in

Figs. 10a,d,g,j come from ensembles of axisymmetric

vortices with the same position spread as the unfiltered

ensembles (Fig. 4a). The contribution from wave-

numbers higher than 2 is relatively insignificant com-

pared to the first three components, so they are omitted

from the figure. The n 5 1 and 2 components produce

a total of 7m s21 to the total 1500-m posterior winds

inside 50 km (sum of winds in the second and third col-

umns of Fig. 10). Since the filtering is performed in

a storm-relative reference frame for each member, the

n 5 1 and 2 winds in the figure must come from collo-

cated asymmetries in the inner core of the ensemble at

this time. As in Fig. 5, which shows consistent results

between the 60- and 300-member posterior mean winds

in the inner core, the ensemble perturbations for these

two cases (Fig. 10) share qualitatively similar features.

The decomposition of the posterior mean and standard

deviations for inner-core radial winds (not shown) also

indicate an agreement between the two ensembles,

suggesting that the horizontal winds in this region are

not sensitive to ensemble size for this case study. Re-

calling that the smallest radius of influence that is used

to localize the ensemble covariance via successive co-

variance localization is 135 km for these experiments,

the close match between the 300- and 60-member en-

sembles in the inner core shows little sampling sensi-

tivity for ensembles greater than 60 members. This

result holds for any reasonable choice of localization

[e.g., additional experiments using a fixed localization

radius of 405 km for the 60-member ensemble (not

shown) provided similar results in the inner core].

Noticeable differences exist between the twoensembles

at regions away from the observations (e.g., the n 5 2

component contributes more to winds in the upper levels

of the 60-member posteriormean than in the 300-member

posterior mean; Fig. 10i). Figure 2 also shows that sam-

pling differences are largest in the outer core, where no

observations are available during the cycling. The smaller

ensembles are more likely to produce spurious correla-

tions at great horizontal and vertical distances from the

observations (e.g., Hamill andWhitaker 2001), given that

the same localization is used for all experiments. Never-

theless, the lack of observations in these regions limits our

ability to verify which experiments produce the most

accurate results outside the inner core.

Azimuthal wavenumber decomposition for w is shown

for the 300- and 60-member posterior ensemble statistics

in Fig. 11, using the same approach that was applied in

Fig. 10 forVu after the last assimilation cycle. Unlike the

horizontal winds, the power in w is distributed across

a larger spectrum of wavenumbers, so the components

are separated into three different bins: n 5 0, n 5 1, 2,

and 3, and n . 3. The n 5 0 component contributes

a maximum of 0.6m s21 to the posterior mean and

1m s21 to the total standard deviations of w, showing

a weak region ofmean ascent around the eyewall in both

experiments. The pair of ensembles contains qualita-

tively similar contributions from low (n 5 1, 2, and 3)

and high (n . 3) wavenumbers, each of which favor

larger updrafts in the southeast quadrant of the vortex.

The largest downdrafts in the eye come from low-

wavenumber asymmetries in the members, while the

largest updrafts are found in both low and high wave-

numbers.

As configured, the EnKF posterior mean in both ex-

periments fails to capture strong updrafts and down-

drafts in the eyewall and eye, due to a lack of correlations

between the horizontal and vertical winds in the core.

This follows from the fact that vortex position uncertainty

causes the locations of strongest vertical motion in the

ensemble to be displaced in a ground-relative coordinate

system, which causes a decorrelation between the storm-

relative asymmetric updrafts/downdrafts and the hori-

zontal wind field. As a result, most members contain

discrete regions of strong w (.10m s21) in the eyewall

that go unchanged after each EnKF analysis. These

features are reflected in the relatively large standard

deviations of w, which are maximized southeast of the

vortex center in the upper levels of the eyewall (Figs.

11b,c,e,f). Prior standard deviations in vortex position at

2000 UTC 25 August decrease from 14.4 km to less than

2 km between the a 5 0.8 and a 5 0.2 experiments.

Though not shown, the cases that use an a between 0.0

and 0.4 contain more substantial updrafts and down-

drafts in the posterior mean; the contribution of each

bin of wavenumbers to the total w field in Fig. 11 is

about twice as large for these cases. Nevertheless, the

standard deviations of w in the eyewall become very

small (,1m s21) as a is reduced to 0.0, which is almost

certainly an underestimation of the true vertical motion

errors, given the assumptions made by the EnKF in

producing these analyses. This result supports the rec-

ommendation made in section 3c for a lower (but non-

zero) relaxation coefficient for ensembles of 60 or more

members.

Figure 12 shows the n5 0, 1, and 2 contributions of the

ensemble T statistics at the last update time. Results are

truncated at n5 2 because of the relatively insignificant
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contribution of the higher wavenumbers to the poste-

rior. The simulated tropical cyclones reach category 1

hurricane intensity by the end of cycling, which leads to

thermodynamic structures that are largely dominated by

the n5 0 component. For the asymmetric portions of T,

the n 5 1 component (second column in Fig. 12) yields

slightly cooler (warmer) temperatures (618C) in the

southeast (northwest) half of the vortex near the surface,

with a reversal of sign at the midlevels. The n 5 2 com-

ponent (third column in Fig. 12) contributes an addi-

tional 0.18–0.38C to the low- and midlevel temperature

near the storm center. The two ensembles produce

reasonably similar results for the T decomposition; that

is, the n 5 0 contribution to the mean and standard

deviations are within 0.28C, and the n 5 1 and 2 values

are in phase.

FIG. 11. As in Fig. 10, but for the w field for (left) n 5 0; (middle) n5 1, 2, and 3; and (right) n . 3. The contours for posterior mean are

plotted every 0.3m s21 for n 5 0; and 0.5m s21 for n . 0. The horizontal cross sections are through an altitude of 12 000 m.
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The persistent asymmetric midlevel T anomalies co-

exist with similar n 5 1–2 moisture anomalies (not

shown) for mid- and upper model levels in the southeast

portion of the vortices for both ensembles. The location

of these thermodynamic anomalies match the posterior

w field considerably well, suggesting that the asymme-

tries are induced by diabatic heating from convective

updrafts. Evidence of a strong relationship between

updrafts in the eyewall and asymmetric T is given in

Fig. 13, which shows modest correlations (.0.5) be-

tween w at a point in the eyewall and the n 5 1–3

components of T for both ensembles. Correlations be-

tween the w and the n5 0 portion of T are left out of the

figure since they are negligible in this region. Eachmember

of the N5 300 ensemble w is filtered in the third column

of Fig. 13 to show that the low-wavenumber (n 5 1–3) w

field contributes the most to the correlations. While

correlations between w and qy are not shown here, they

FIG. 12. As in Fig. 10, but for the T field.
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follow a similar structure and magnitude in the two

ensembles, because warm anomalies in the eyewall must

contain higher vapor mixing ratios in order to exceed

saturation in these regions. Though neither w nor T are

assimilated in these experiments, examples like this one

show that a 60-member ensemble can maintain qualita-

tively similar correlations within the ensemble during

cycling.

4. Deterministic forecast results

a. Intensity and track forecasts

Figure 14 compares deterministic forecasts with the Na-

tional HurricaneCenter best track data for all experiments.

Each forecast is initialized from the 2000UTC posterior on

25 August 2005 and run for 130h to 0600 UTC 31 August.

As the simulated storms track westward from Florida,

a strengthening ridge over the northern Gulf of Mexico

produces strong northeasterly mid- to upper-level flow.

This deep-layer steering flow causes the simulated storms

(and real storm; Knabb et al. 2005) to track southwestward

from the initialization time before turning northward

toward the Gulf Coast. The bias in minimum surface

pressure for these simulations was noted in Green and

Zhang (2013) to be caused by the choice of surface flux

parameterization scheme in WRF (‘‘isftcflx’’ namelist

option). The default surface flux option (used in this

study) assumes a monotonically increasing value for the

surface drag coefficient at higher wind speeds, which was

shown to produce a pressure–wind relationship that is

inferior to schemes that cap the surface drag coefficient at

a set wind speed. This possible source of model error is

expected to have little impact on the EnKF analyses de-

scribed in the previous section, because the storm in-

tensity during the data assimilation period is too low for

the drag-induced pressure bias to occur.

With the exception of a weaker intensity forecast in

the 30-member experiment, all cases provided similar

predictions for the track and intensity of Katrina,

showing little forecast sensitivity to ensemble size and

covariance relaxation under the given circumstances.

Despite these similarities, notable changes in inner- and

outer-core storm structure appear after assimilating the

FIG. 13. The n5 1–3 contributions to the posterior ensemble mean T contoured (light solid lines for positive, dashed for negative) at 2000

UTC along with correlations (shading) between w at point ‘‘c’’ and the T field. The posterior statistics for the (a),(d) 60- and (b),(e) 300-

member ensembles. (c),(f) The w field of each member of the 300-member ensemble filtered to estimate correlations between low-wave-

number w and low-wavenumber T asymmetries. (a)–(c) Horizontal cross sections through an altitude of 12 km and (d)–(f) vertical cross

sections through the dashed lines in (a)–(c).
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radar observations, especially for cases that use different

ensemble sizes.

b. Storm structure after initialization

Figures 3g–l show azimuthal mean Vu and P for 24-,

48-, and 72-h forecasts that were initialized from the

2000 UTC 25 August posterior means. The storm evo-

lution in each of these forecasts suggests that the initial

wind and pressure differences in Figs. 3c,f are significant

for the development of the tropical cyclone vortex, de-

spite the small variability in track and maximum sur-

face winds (Fig. 14). Sampling errors lead to 5m s21 or

greater azimuthal mean wind differences between the

300- and 60-member posteriors outside of 100 km, with

values that exceed 10m s21 by 72 h in the deterministic

forecasts. The 120- and 300-member ensembles produce

comparable forecasts of storm structure because of

similar posteriors at 2000 UTC, though an explanation

for why the 30- and 300-member forecasts provide

similar outer-core solutions is nontrivial. While the 30-

member posterior mean vortex contains an outer core

that closely resembles the vortex in the 60-member case

at the end of cycling, the vortex initialized by the 30-

member mean undergoes an adjustment toward a solu-

tion that more closely matches the cases that uses 120 or

more members. The proximity of Katrina to land at the

FIG. 14. Deterministic forecasts of (a),(b) track; (c),(d) maximum 10-m winds; and (e),(f) minimum surface

pressure for (a),(c),(e) the ensemble size experiment and (b),(d),(f) covariance relaxation experiments for a 5 0.0–

0.8. The s and 3 symbols indicate best track and forecast values, respectively, at 0000 UTC on each day.
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initialization time makes it difficult to determine exactly

how the vortex in the 30-member experiment adjusts to-

ward a similar outer-core wind and pressure field as in the

300-member experiment.

Though not shown, NOAA P3 missions on 27 and 28

August indicate a positive bias in the outer-core winds

for the deterministic forecasts initialized from cases that

use larger ensembles. This verification is consistent with

our results from sections 3b and 3c, where the inner-core

variance deficiency at the initial update time is shown to

produce a positive outer-core wind bias that persists to

the last data assimilation cycle. Sampling errors in the

60-member ensemble happen to offset the error induced

by using an underdispersed ensemble, thus causing

weaker outer-core winds by the last update cycle (cf.

Fig. 3c). However, we acknowledge that other sources of

error may have also caused the outer-core wind bias

(e.g., the wind field adjusting to the low pressure bias

described in section 4).

5. Summary and conclusions

A set of cycling data assimilation experiments are

performed for a developing tropical cyclone case study

to examine the sensitivity of an EnKF to sampling errors

in a real-data application. Airborne Doppler radar ob-

servations that were collected from NOAA P3 flight

missions for Hurricane Katrina (2005) are assimilated in

six short assimilation cycles using ensemble sizes that

range from 30 to 300 members and varying degrees of

covariance relaxation. The experiments are carried out

using WRF, nested down to a cloud-permitting (4.5 km)

model grid spacing. Results are examined for the inner-

and outer-core region of the vortex, where the data as-

similation has the largest effect.

Deterministic forecasts from the EnKF posterior

means at the last assimilation cycle produce similar track

and intensity predictions for the developing hurricane.

Nevertheless, sampling differences in the ensemble-size

experiments cause variations in the outer-core pressure

and wind fields that persist for at least 3 days in simula-

tions. While covariance relaxation has almost no impact

outside the inner core during data assimilation, sampling

errors in experiments that use less than 60 members can

lead to significant changes in the outer wind and pressure

field. These outer-core differences emerge at the first

analysis time and carry through to the remaining cycles.

Ensemble variance increases rapidly in the inner core

during the assimilation cycles, owing to corrections in

storm location and intensity by the EnKF. The dispro-

portionately large increase in variance in the inner core,

compared to other locations in the domain, contributes to

the lack of significant outer-core increments after the first

analysis time. A verification of the inner-core ensemble

variance shows that the true forecast error may be

underestimated by a factor of 2–3 at the first assimilation

time, which causes the initial set of outer-core increments

to be too large. Experiments using an inflation factor in

the inner core show significant impacts for the outer-core

analysis, but additional research is needed to understand

the full consequences of the variance deficiency. In gen-

eral, additional steps should be taken to either inflate the

variance near the vortex center or reduce the localization

radius when the ensemble contains a significant amount

of vortex position spread. Furthermore, the lack of ob-

servations in the hurricane outer coremay have increased

the sensitivity of the outer wind and pressure fields to

ensemble size, since the final structure of the posterior

vortex relies greatly on how covariance between distant

grid points are represented at the first update time.

For the inner core, two experiments are distinguished

as outliers early in this study; the 30-member ensemble

fails to produce a strong axisymmetric vortex and

the ensemble variance in the a 5 0 (no relaxation) case

collapses by the end of cycling. The kinematic and

thermodynamic structure of the inner core is consistent

among experiments that use 60 or more members and

a modest amount of relaxation ($0.4). While the vortex

structure in the 60-member cases shows little sensitivity

to the choice of a, smaller ensembles are expected to

produce a much greater sensitivity to relaxation, owing

to the larger sampling error (e.g., Aksoy 2013). The

examples show that a 60-member ensemble can contain

qualitatively similar wind and temperature asymmetries

as a 300-member ensemble after several assimilation

cycles. In conclusion, 60 members appears to be a suffi-

cient ensemble size for capturing many of the important

features of the tropical cyclone inner core when pro-

vided with a high-resolution set of wind observations.

Nevertheless, this result is only valid in the vicinity of the

radar observations. Though not shown, we also find that

the storm structure in the 30-member case can be im-

proved by decreasing the localization radius; however,

the solution never approaches the same storm size and

intensity that are found with ensembles of 60 or more

members.

While it is desirable to reproduce these experiments

for additional tropical cyclones, we are limited by the

computational expense that is required to assimilate

observations using the resolution and ensemble sizes

used in this study. The main objective is to explore

possible sampling differences that may result from using

a range of ensemble sizes and covariance relaxation

coefficients for a high-resolution cycling data assimilation

case. This study uses the default setup of an ensemble

data assimilation system that has been applied over the
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past five Atlantic hurricane seasons (Zhang et al. 2011)

underNOAA’sHurricaneForecast ImprovementProgram

(HFIP;Gall et al. 2013).Our choice of localization radii and

relaxation coefficients may not necessarily be optimal for

the set of ensembles, but the configuration has been shown

to be reasonable enough to allow for an examination of

sampling errors in both the inner- and outer-core areas of

a hurricane vortex. Applying an ensemble-size-dependent

localization radius of influence and tuning the relaxation

coefficient are two ways of coping with some of the model

and sampling errors we observed in our experiments.

Nevertheless, finding the optimal balance between ensem-

ble size, localization, and relaxation is beyond the scope of

the current study.
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