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ABSTRACT

The equatorial coastal circulation is modeled in terms of the linear wave response to a diurnally oscillating

heat source gradient in a background wind. A diurnal scaling shows that the solution depends on two

parameters: a nondimensional coastal width L and a nondimensional wind speed U. The solutions are in-

terpreted by comparing to the U 5 0 theory of Rotunno.

For U 6¼ 0 the Fourier integral solution consists of three distinct wave branches. Two of these branches

correspond to the prior no-wind solution of Rotunno, except with Doppler shifting and associated wave

dispersion. The third branch exists only for U 6¼ 0 and is shown to be broadly similar to flow past a steady heat

source or a topographic obstacle. The relative importance of this third branch is determined largely by the

parameter combination U/L. For sufficiently large U/L the third branch becomes the dominant part of the

solution.

The spatial structures of the three branches are described in terms of group velocity arguments combined

with a desingularized quadrature method.

1. Introduction

The sea breeze circulation is an atmospheric response

to differential surface heating between the land and the

sea. It impacts many atmospheric processes over coastal

regions including, but not limited to, the initiation and

modulation of thunderstorms, fog, and air pollution.

Over the past two centuries since the first known pub-

lished study on sea breeze by Halley (1686), there have

been numerous studies on this subject based on differ-

ent approaches: observational (Fisher 1960; Davis et al.

1889; Finkele et al. 1995; Miller et al. 2003; Puygrenier

et al. 2005), analytical (Jeffreys 1922; Haurwitz 1947;

Schmidt 1947; Pierson 1950; Defant 1951; Walsh 1974),

numerical (Pearce 1955; Pearce et al. 1956; Estoque 1961;

Fisher 1961), and laboratory (Simpson 1997; Cenedese

et al. 2000), to name only a few.

Most of the aforementioned studies focus on the local

features of the sea breeze and its associated low-level

front and density current. However, a few studies have

noted that the sea breeze also has a mesoscale gravity

wave signature. Sun and Orlanski (1981) were the first

to discuss this wave response in terms of a linear sea

breeze model with a specified oscillating temperature

gradient. The idea was later explored in greater detail

by Rotunno (1983, hereafter R83), who considered the

linear theory for the problem of an oscillating heat

source in a resting background state. R83 showed that

the solution is a propagating wave response whenever

the Coriolis parameter is smaller than the diurnal fre-

quency (i.e., equatorward of 308 latitude). Yan and

Anthes (1987) extended many of these ideas to a non-

linear context using numerical simulations. Dalu and

Pielke (1989) extended the linear theory of R83 to in-

clude aperiodic heat forcing. More recently, observa-

tional studies such as Yang and Slingo (2001) and

Mapes et al. (2003a,b) have suggested that such diurnal

coastal gravity waves may play a role in initiating con-

vection far offshore. Wave disturbances forced by di-

urnal heating were also proposed as a mechanism for

convective initiation over the continental United States

in summer (e.g., Zhang and Koch 2000; Koch et al.

2001; Carbone et al. 2002).

The current study seeks to extend the linear theory

of R83 by including the effect of background wind on
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the sea breeze wave response, which, to the best of our

knowledge, has never been explored analytically. Sec-

tion 2 gives the basic equations and the associated

Fourier transform solution. Section 3 revisits the no-

wind linear theory of R83. The solution with the effect

of the background wind added is provided in section 4.

The spatial structure of the sea breeze wave response is

discussed in terms of group propagation in section 5. A

summary is presented in section 6.

2. Basic methods

a. Basic equations and scaling parameters

We consider a 2D Boussinesq and hydrostatic flow as

linearized about a uniform background state with back-

ground wind speed U. Attention is limited to the equa-

torial case so that the Coriolis parameter is taken to be

zero. The primitive equations in dimensional form (as

indicated by asterisks) are then given by

›u*

›t*
1 U

›u*

›x*
5 �›P*

›x*
, (1)

›P*

›z*
5 b*, (2)

›b*

›t*
1 U

›b*

›x*
1 N2w* 5 Q*, and (3)

›u*

›x*
1

›w*

›z*
5 0, (4)

where u* and w* are the disturbance velocities in the

x* and z* directions, P* is the Boussinesq disturbance

pressure, b* is the buoyancy, and N is the background

state static stability. Here, Q* is the diabatic heating

profile, which in principle includes both the turbulent

transfer of heat by boundary layer eddies and the effects

of radiation. Following R83, we simplify the problem as

much as possible by letting Q* be strictly periodic in

time. Specifically,

Q* 5
Q0

p

p

2
1 tan�1 x*

L

� �
exp �z*

H

� �
cos (vt*), (5)

where Q0, L, H, and v are the constant heating ampli-

tude, half-width of the coastal zone, heating depth,

and diurnal frequency, respectively. Here the coastline

is at x* 5 0 with land to the right (x* . 0) and sea to the

left.

The lower boundary is assumed flat so that w* 5 0

at z* 5 0. Apart from the diurnal oscillations in b* and

P* over land, the disturbance is assumed to vanish as

|x*| ! ‘.1 The domain is unbounded aloft with a radi-

ation condition applied as z* ! ‘.

The system is nondimensionalized using scaling fac-

tors derived from the U 5 0 solution of R83. Specifi-

cally, R83 showed that for a resting background state,

the depth scale of the disturbance is set externally by the

vertical scale of heating (i.e., by H). The horizontal scale

is then given by H/d 5 NH/v, where d 5 v/N is the

geometric aspect ratio (depth/length) set by the associ-

ated gravity wave dispersion relation (see R83). The

time scale is determined by the period of the heating

forcing. The rest of the scales then follow from the

dominant balances in (1)–(4). The scaling factors are

x* 5
NH

v
x, z* 5 Hz, t* 5

t

v
,

Q*5 Q0Q, u* 5
Q0

Nv
u, w* 5

Q0

N2
w,

b* 5
Q0

v
b, and P* 5

Q0H

v
P,

where again the asterisks indicate dimensional quanti-

ties. Substituting the scaling factors into (1)–(5), we have

a set of nondimensional equations:

›u

›t
1U ›u

›x
5 � ›P

›x
, (6)

›P

›z
5 b, (7)

›b

›t
1U ›b

›x
1 w 5 Q, and (8)

›u

›x
1

›w

›z
5 0, with (9)

Q 5
1

p

p

2
1 tan�1 x

L
� �

exp(�z) cos (t), (10)

where U 5 U/NH is the nondimensional background

wind speed2 and L 5 vL/NH is the nondimensional

1 The basis for this assumption is that the velocity field responds

only to gradients in the heating rather than the heating itself. To

see this, consider a problem in which the heat source extends

uniformly to infinity in both directions in x. The pressure and

buoyancy in this problem both oscillate, but no horizontal gradi-

ents are formed and no motion occurs [cf. (1) and (4), or equiva-

lently (12)]. The same holds for our problem as x! ‘.
2 Physically, the parameter U measures the size of the back-

ground wind speed relative to the characteristic phase speeds

present in the U 5 0 case. Because the depth scale for the R83

solution is H, the relevant phase speed is then NH. The combi-

nation U/NH is also sometimes referred to as the thermal Froude

number (e.g., Lin 2007, chapter 6).
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half-width of the coastal zone. It is obvious that the only

two control parameters for the nondimensional prob-

lem are then U and L.

Solutions are sought in terms of a streamfunction c,

defined by

u 5
›c

›z
and w 5 � ›c

›x
. (11)

Reducing (6)–(9) to a single equation in c then gives

›

›t
1U ›

›x

� �2
›2c

›z2
1

›2c

›x2
5 � ›Q

›x
. (12)

b. Fourier transform solution

The Fourier transform of (12) gives

›

›t
1 iUk

� �2
›2~c

›z2
� k2~c 5 � e�kLe�z eit 1 e�it

2
, (13)

where k is the nondimensional horizontal wavenumber

and ~c is the Fourier transform of c defined by

~c(k, z, t) 5

ð‘

�‘

c(x, z, t)e�ikxdx.

Solutions are obtained by first decomposing the forcing

into the eit and e2it modes and then solving for each

mode independently. Writing the solution for a given

mode in the form

~c(k, z, t) 5 ĉ(k, z)e6it (14)

and substituting into (13) then gives

v̂2 d2ĉ

dz2
1 k2ĉ 5

1

2
e�kLe�z, (15)

where v̂ 5 61 1Uk is the dimensionless intrinsic fre-

quency, with the 6 matching that given in (14).

Because c is real, we can specify k so as to always be

positive. The eit and e2it modes then correspond to

leftward- and rightward-propagating waves relative to

the ground, respectively. The phase speed of the waves

is given by cx 5 71/k, showing that longer waves

propagate faster than shorter waves.

For concreteness we restrict attention to the caseU$ 0.

(The U , 0 case is simply the reflection about the x 5 0

axis.) In the flow-relative (or intrinsic) frame, the speci-

fied heat source is then seen as propagating to the left at

speed U, which causes the Fourier modes to be Doppler

shifted. For leftward-moving (or eit) modes, the intrinsic

propagation is faster than the ground-relative value,

implying that v̂ for these modes is greater than the di-

urnal frequency (i.e., v̂ . 1). For rightward-moving

(or e2it) modes with phase speeds greater than U (i.e.,

long waves with 1/k . U), the intrinsic propagation is

slower than the ground-relative value so that the

intrinsic frequency satisfies �1 , v̂ , 0. Rightward-

moving waves with phase speeds less than U (i.e., short

waves with 1/k , U) are seen as leftward moving in the

intrinsic frame and thus have v̂ . 0.

The solutions to (15) are obtained in terms of Green’s

functions in the vertical with a radiation condition ap-

plied aloft, resulting in

ĉ(k, z) 5
�e�kL(eimz � e�z)/(2v̂2 1 2k2), v̂ . 0,
�e�kL(e�imz � e�z)/(2v̂2 1 2k2), v̂ , 0,

�

(16)

where m 5 k/jv̂j is the nondimensional vertical wave-

number (defined to always be positive). Note that the

selection of the vertical mode is determined by the in-

trinsic phase propagation rather than the phase propaga-

tion relative to the ground. Leftward-propagating modes

in the intrinsic frame (v̂ . 0) all have negative phase tilts

(i.e., eimz modes) whereas rightward-propagating modes in

the intrinsic frame (v̂ , 0) all have positive phase tilts

(e2imz modes). The solution for a given mode then follows

from (14), with the full solution to (13) being the super-

position of the eit and e2it cases.

According to (11), the Fourier transform for w is

given by ~w 5 �ik~c, whereas the solution for ~u follows

from the appropriate z derivatives of (16).

3. Review: The no-wind case

The solution for U 5 0 has been described in some

detail by R83. Here the basic properties of this solution

are reviewed in preparation for the U 6¼ 0 case described

in section 4.

a. Computation

Setting U 5 0 in (12) leads to the Fourier solution

c 5 I1 1 I2, where

I1 5� 1

2p

ð‘

0

e�kL

k2 1 1
(eimz � e�z)ei(kx1t)dk and (17)

I2 5� 1

2p

ð‘

0

e�kL

k2 1 1
(e�imz � e�z)ei(kx�t)dk (18)

consist of the leftward- and rightward-propagating modes,

respectively. It should be understood that only the real

parts in (17) and (18) are physically meaningful. As in

section 2, the vertical wavenumber m is defined so that
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m 5 k. Solutions for u and w follow from the derivatives

of (17) and (18), as described in section 2.

Inspection of the integrals shows that the integrands

in (17) and (18) are well behaved everywhere along the

real k axis. Numerical computation of the integrals is

thus straightforward and follows methods outlined for

the I1 case in the appendix.

b. Basic morphology

With U 5 0 the only nondimensional control param-

eter for the flow is the coastal width L, with the figures

in R83 being for L 5 0.2. An analogous calculation

for L 5 0.1 is shown in Fig. 1. The solution is localized

along two parallel wave beams with centers at z 5 x and

z 5 2x. As shown by R83, the slopes of these wave

beams correspond to energy propagation for diurnal

gravity modes. In the present case the energy propa-

gates away from the heat source gradient near x 5 0.

With L 5 0.1, the vertical scale of the wave beams is

set by the heating depth, while the dominant horizontal

scale is obtained through the aspect ratio d (as in section

2). These length and depth scales form the basis of our

scaling, so that in nondimensional terms both the width

and depth of the wave beams are roughly one. The

phase lines of the modes propagate downward as time

evolves (as seen in Figs. 1a,c or 1b,d). Surprisingly, the

cross-coastline winds are nearly p out of phase with the

heating. Broadly speaking, this p phase lag results from

the p/2 lag between the heat source and the tempera-

ture (and hence pressure) gradient, as well as from the

p/2 lag between the pressure gradient and the wind. A

detailed explanation can be found in R83.

Finally, Figs. 1e,f exhibit the decomposition of the

horizontal velocity u into leftward- and rightward-

propagating modes. As expected, the branch at x . 0

consists of rightward-propagating modes, whereas

the branch at x , 0 consists of leftward-propagating

modes.

c. L dependence

For reference, suppose we pick characteristic dimen-

sional values of N 5 0.01 s21, v 5 2p day21, H 5 800 m,

and L 5 10 km. Combining these then gives a charac-

teristic nondimensional coastal width of L ; 0.1, as

considered above. But in reality, L might be larger or

smaller than this value, depending on the values of N, H,

and L in a given case.

The sensitivity of the U5 0 solution to changes in L is

illustrated by Figs. 1c and 2. As expected, for small L
(Figs. 2a and 1c) the depth scale is set by the heating

depth whereas the length scale follows from the dy-

namical aspect ratio. The result is that the dominant

horizontal and vertical scales are both roughly inde-

pendent of L for small L, with the dominant wave-

number given by m 5 k’ 1. However, according to (17)

and (18) the power at this dominant wavenumber varies

roughly as e2L, so that as L increases the amplitude of

the solution becomes smaller (cf. Figs. 1c and 2a). As L
is made still larger (as shown in Fig. 2b with L5 0.5 and

Fig. 2c with L5 1), the scales start to change so that the

horizontal scale is set by L while the vertical scale fol-

lows from the aspect ratio, and the amplitude continues

to decrease.

4. Adding the background wind

The character of sea breeze in a background wind is

examined in this section. As will be seen, the Doppler

shifting of the modes can lead to significant differences

from the U 5 0 solution.

a. Computation

With U 6¼ 0 in (16), the Fourier integral solution be-

comes

c 5 I1 1 I2 1 I3,

where the three different branches are defined by the

following:

Left-moving waves with v̂ 5 1 1Uk . 0; that is,

I1 5� 1

2p

ð‘

0

e�kL

k2 1 (1 1Uk)2
(eimz � e�z)ei(kx1t)dk;

(19)

Right-moving waves with v̂ 5 �1 1Uk , 0; that is,

I2 5 � 1

2p

ðkU

0

e�kL

k2 1(Uk� 1)2
(e�imz� e�z)ei(kx�t)dk; and

(20)

Right-moving waves with v̂ 5 �1 1Uk . 0; that is,

I3 5 � 1

2p

ð‘

kU

e�kL

k2 1 (Uk� 1)2
(eimz � e�z)ei(kx�t)dk.

(21)

The cutoff wavenumber kU 5 1/U in (20) and (21)

is the critical wavenumber at which the rightward-

propagating phase speed matches the background wind

speed. The vertical wavenumber is m 5 k/ v̂j j for all

three branches.
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It is worth noting that the integrands in both (20)

and (21) become singular in the limit k ! kU because

v̂ 5 �1 1Uk! 0 in this limit, so that m ! ‘. The

result is that the e6imz terms oscillate infinitely fast with

k in this limit, which in turn complicates the numerical

computation of the Fourier integrals. This is especially

true for the horizontal velocity u 5 ›c/›z because the

vertical derivative produces an amplitude singularity as

well as a singular oscillation. Our approach to over-

coming these problems is based on a method first pro-

posed by Muraki (2000) in the context of flow past to-

pography. Broadly speaking, the basis of the method is

to first remove the singular oscillation with an analyti-

cally integrable function and to then apply the numer-

ical quadrature only to the difference integral. Details

of the method can be found in the appendix.

b. Basic inferences

To simplify terminology, we refer to the flow pattern

illustrated by Fig. 1 as the R83 pattern and to the

wavenumbers near m ;1 (which dominate the U 5 0

FIG. 1. (a),(c) Horizontal and (b),(d) vertical velocity components for U 5 0 and L 5 0.1,

with horizontal velocity u at times t 5 (a) 0 and (c) p/2 [contour interval (c.i.) 5 0.1; solid

contours, positive; dotted contours, negative] and vertical velocity w at times t 5 (b) 0 and (d)

p/2 (c.i. 5 0.05 with zero contour straddled). (e) Leftward-moving (or I1) and (f) rightward-

moving (or I2) parts of u at t 5 p/2. Solutions for t 5 p and 3p/2 are simply the negatives of the

solutions at t 5 0 and p/2, respectively.
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solution) as the R83 modes. Inspection of (19)–(21) then

suggests two main impacts of the background wind:

(i) the R83 modes in I1 and I2 will become Doppler

shifted and dispersive and (ii) the contribution from I3

will become stronger as U increases. Here we briefly

consider the U and L dependence of these effects.

For sufficiently small U, the cutoff wavenumber kU in

(21) is relatively large and the contribution from I3

is therefore negligible. The two branches I1 and I2 in

this limit are then analogous to the U 5 0 cases in (17)

and (18), except that the R83 modes in the branches

will be Doppler shifted to higher and lower intrinsic

frequencies. Because the scale of the R83 modes is

roughly k ’ m ; 1, the extent of this frequency shifting

will be determined primarily by U (and not by L).

As U increases, kU becomes smaller and the I3 modes

will gradually become more important. Because v̂ for

these modes is dominated by Uk (instead of by the di-

urnal frequency), the general behavior of these I3 modes

is expected to be broadly similar to flow past a station-

ary heat source (or equivalently to flow past topogra-

phy). As in the stationary heating or topography prob-

lems, we expect that the dominant w forcing for these

modes will be near k ; 1/L. A reasonable expectation

then is that the I3 modes will become important only

once kU , 1/L, or equivalently U/L . 1.

c. U dependence

The U dependence of the solution for the case L5 0.1

is illustrated in Figs. 3 and 4 . Figure 3 shows the vertical

velocity for increasing values of U; Fig. 4 shows the

decomposition into I1, I2, and I3 modes. For reference,

thick solid lines in Fig. 4 show the raypaths for the U5 0

solution, while the thick dashed lines show the raypaths

for the R83 modes (i.e., modes with m ; 1) as Doppler

shifted for U 6¼ 0. Details of the raypath calculations can

be found in section 5.

As expected, for U 5 0.075 the solution in Fig. 3a is

composed primarily of the I1 and I2 branches (see Figs.

4a–c). For I1, the Doppler shifting of the modes leads to

higher intrinsic frequencies, and the phase lines and

raypaths for this branch are thus more steeply inclined

to the vertical than for U 5 0. The energy of the branch

is also more widely dispersed, with shorter wavelengths

having steeper energy propagation (see discussion in

section 5). By contrast, the I2 modes are shifted to lower

v̂j j and the phase lines and raypaths are therefore less

steeply inclined (Fig. 4b).

With increasing U the raypaths for the I1 and I2 R83

modes become further rotated from the U 5 0 case (see

the second through fourth rows in Fig. 4). However, a

more significant change is the gradual appearance of the

FIG. 2. Horizontal velocity u at time t 5 p/2 with U5 0 and coastal

width L 5 (a) 0.01, (b) 0.5, and (c) 1 (contours as in Fig. 1).
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I3 branch. The I3 branch is composed of rightward-

propagating waves (relative to the ground) with nega-

tive phase tilts, and the character of this branch is thus

fundamentally different from I1 and I2. Qualitatively,

the wave pattern for I3 more closely resembles flow past

a steady heat source or a topographic obstacle (see, e.g.,

Lin 2007, chapters 5 and 6) than it does a stationary

diurnal oscillation as in Fig. 1.

As suggested in section 4b, the I3 modes in Fig. 4 only

become significant once U/L is sufficiently large (roughly

U/L’ 2 in present case). For U5 0.25 and U5 0.625 the

flow consists of relatively high-wavenumber (because

kU is still relatively large) I3 modes superimposed on a

Doppler-tilted R83 pattern (see Figs. 3b,c and the sec-

ond and third rows of Fig. 4). However, by U 5 1.25 (or

U/L 5 12.5) the I3 branch is the dominant part of the

solution.

Figure 5 shows the horizontal velocity u correspond-

ing to the vertical velocity shown in Fig. 3. The general

trend in the solution with increasing U—Doppler tilting

of the R83 modes and the gradual increase in I3—is the

same as for vertical velocity. The main difference is that

for large U, the I3 part of the u disturbance is localized

downstream and closer to the ground (cf. Figs. 3d and

5d). Further discussion of this point is given in section

5c. Note that the U dependence in Figs. 3 and 5 explains

some of the asymmetric features observed in previous

analytical and modeling studies, such as that of Walsh

(1974).

d. Time evolution

Figure 6 displays the time evolution for both the

decomposition and total vertical velocity fields with

U 5 0.875 and L 5 0.1. As in the U 5 0 case (cf. Fig. 1),

the phase lines in the I1 and I2 branches (Figs. 6a,d,g)

propagate downward through the respective wave en-

velopes with time. However, in the ground-relative

frame the I3 modes are rightward propagating, and the

phase lines for the I3 branch (Figs. 6b,e,h) thus propa-

gate upward and downstream. The phase evolution for

the total fields thus has elements of both these behaviors.

e. L dependence

The L dependence of the I1, I2, and I3 modes at fixed

U 5 0.5 is illustrated by Fig. 7. As expected, for the

I1 and I2 branches the Doppler tilting and general wave

patterns are essentially independent of L (for suffi-

ciently small L). However, the amplitudes of the two

branches increase as L decreases, much as in the U 5 0

case of section 3c. For the I3 branch the disturbance

FIG. 3. Vertical velocity w at t 5 p/2 with L 5 0.1 and U5 (a) 0.075, (b) 0.25, (c) 0.625, and (d)

1.25 (c.i. 5 0.04; solid lines, positive; dotted lines and shaded, negative).
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becomes relatively more important (compared to I1 and

I2) as L decreases so that U/L increases.3 As in Fig. 4,

the noticeable onset of the I3 branch occurs roughly

near U/L ’ 2.

Taken together, the results shown in Figs. 3–7 gen-

erally reinforce the basic inferences made in section

4b—specifically, that the I1 and I2 branches are deter-

mined largely by U whereas the importance of the I3

branch (relative to I1 and I2) depends primarily on U/L.

Various different values of U and L can thus lead to

various combinations of these two effects (as seen by

comparing Figs. 4 and 7). In the following section we

consider the overall spatial structures of these three

branches in greater detail.

FIG. 4. I1, I2, and I3 branches of vertical velocity w (c.i. 5 0.04) at t 5 p/2 with L 5 0.1 and different background

wind U. (a) I1, (b) I2 and (c) I3 with U 5 0.075. (d)–(l) As in (a)–(c), but with (d)–(f) U 5 0.25, (g)–(i) U 5 0.625, and

(j)–(l) U5 1.25. Thick solid lines for I1 and I2 show the raypaths for the U5 0 solution of R83. Thick dashed lines show

raypaths for the Doppler-shifted R83 modes.

3 To see this, consider the changes in amplitudes for the three

branches as L decreases. Between L 5 0.2 and L 5 0.04 in Fig. 7,

the amplitudes of the I1 and I2 branches increase by 50%, whereas

the increase in the I3 amplitude is nearly a factor of 3.
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5. Group propagation and wave scales

The present section explores the structure and spatial

scales of the three branches in terms of group propa-

gation arguments.

Generally, the solution (19)–(21) consists of Fourier

wave modes of the form of exp(ikx 1 ilz 1 ist), where

in the present case l 5 6m, s 5 61, and k is positive.

The dispersion relation for these Fourier modes can be

described uniformly by

s 1Uk 5
k

l
, (22)

where the sign of l accounts for the direction of intrinsic

phase propagation. The corresponding group propaga-

tion is given by

cgx 5 �›s

›k
5 �1

l
1U and cgz 5 �›s

›l
5

k

l2
,

which implies raypaths of slope

tan u 5
cgz

cgx
5

k

�l 1Ul2
, (23)

where u is the angle between the raypath and the posi-

tive x axis. Note that for given U the raypath for fixed k

and l is a straight line (i.e., u is fixed).

Because s is known, (22) and (23) can be combined to

give the angle of the raypath in terms of either k or l

independently. The result is

tan u 5 �(s 1Uk)2

s
or tan u 5 � s

(1� Ul)2
. (24)

a. I1 modes

For the I1 branch we have s 5 1 and l 5 m . 0.

Solving (24) for the horizontal and the vertical wave-

numbers then gives

k 5 (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� tan u
p

� 1)/U and m 5 (1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1/ tan u
p

)/U,

(25)

where u must satisfy p/2 , u , 3p/4 to give both posi-

tive k and m. Inspection of (25) shows that both k and m

are zero at u 5 3p/4 and increase as u decreases toward

the vertical. Shorter horizontal waves thus have more

steeply inclined raypaths and smaller vertical wave-

lengths (cf. Fig. 4). The largest vertical wavenumber of

m 5 1/U occurs at u 5 p/2.

As described in section 4, for small and moderate

values of U we expect I1 to be dominated by modes with

m ; 1 (i.e., the R83 modes). The raypath for these R83

FIG. 5. Horizontal velocity u at t 5 p/2 withL5 0.1 and U5 (a) 0.075, (b) 0.25, (c) 0.625, and (d)

1.25 (c.i. 5 0.1; solid lines, positive; dotted lines and shaded, negative).
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modes (shown by the thick dashed line in Figs. 4a,d,g,j)

is computed by setting l 5 1 [or k 5 1/(1 2 U)] in (24).

(For U . 1 the R83 modes do not exist—because the

maximum wavenumber of m 5 1/U is less than 1—and

we simply set u 5 p/2). Note that the R83 raypaths give

a good sense of the maximum disturbance envelope

even for relatively large U.

b. I2 modes

For the I2 branch we have s 5 21 and l 5 2m , 0.

Solving (24) for the horizontal and the vertical wave-

numbers then gives

k 5 (1�
ffiffiffiffiffiffiffiffiffiffi
tan u
p

)/U and m 5 (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/ tan u
p

� 1)/U,

(26)

where u must satisfy 0 , u , p/4 to give positive k and

negative l. Inspection of (26) indicates that both k and

m are zero at u 5 p/4 and increase as u decreases.

Shorter horizontal waves thus have less steep raypaths

and smaller vertical wavelengths. The largest horizontal

wavenumber of k 5 1/U occurs at u 5 0.

As for I1, the solution for I2 is dominated by modes

with m ; 1 (i.e., the R83 modes). The raypath for these

R83 modes (shown by the thick dashed line in Figs.

4b,e,h,k) is computed by setting l 5 21 [or k 5 1/(1 1 U )]

in (24).

c. I3 modes

For the I3 branch we have s 5 21 and l 5 m . 0. The

horizontal and the vertical wavenumbers are then given

by

k 5 (
ffiffiffiffiffiffiffiffiffiffi
tan u
p

1 1)/U and m 5 (1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/ tan u
p

)/U,

(27)

where u satisfies 0 , u , p/2 to give both positive k and

l. The horizontal wavenumber increases with increasing

u, with a minimum value of k 5 1/U occurring at u 5 0.

FIG. 6. Time evolution of both decomposed and total vertical velocity w (c.i. 5 0.04) with U 5 0.875 and L 5 0.1.

Sum of I1 and I2 modes at t 5 (a) 0, (d) p/3, and (g) 2p/3. (b),(e),(h) As in (a),(d),(g), but for I3 modes; (c),(f),(i) As in

(a),(d),(g), but for total w.
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The vertical wavenumber decreases with u, reaching

m 5 1/U at u 5 p/2.

Note that these results provide some insight into the

differences between u and w as observed in Figs. 3 and 5.

Specifically, the u field has more amplitude near k 5 kU
than does the w field [because ›ĉ/›z! ‘ as k ! kU
for I2 and I3; see the appendix]. As seen in (26) and (27),

for I2 and I3 the k ; kU modes propagate close to the

ground.

d. Discussion: Wave scales at large U and U/L

The group velocity results suggest that when U and

U/L are large, the dominant spatial scales in the solution

are fundamentally different from those at U 5 0. For

large U, the I1 part of the disturbance is found mainly

over the coastline (cf. Fig. 4), and the dominant vertical

scale for the I1 branch is then 1/m ; U. In dimensional

terms this translates to U/N, which is also the scale for

flow past a steady, nonoscillating source—that is, for

large U the effect of flow past the local heating gradient

dominates the diurnal oscillation.

The I2 disturbance at large U is found mainly near

u 5 0 (cf. Fig. 4), where the dominant horizontal scale is

1/k ; U. In dimensional terms this scale is U/v, which

measures the distance traveled by a fluid particle during

one oscillation cycle. The basis for this advective scale is

seen most easily from (3). At u 5 0 we have w* 5 0, so

that (3) becomes

›b*

›t*
1 U

›b*

›x*
5 Q*,

showing that the buoyancy is simply advected at speed

U while undergoing heating and cooling by the source.

The anomaly at any point downstream thus retains a

memory of the heating phase present when the particle

first entered the coastal zone, and the distance between

relatively warm and relatively cold particles is measured

by the advective distance U/v.

Finally, the spatial scales for I3 (which dominates at

large U/L) are the same as the large U limits for I1 and I2.

That is, over the coastline the I3 branch has a depth scale

of U/N, while along u50 the length scale for I3 is U/v.

FIG. 7. Decomposition of w (c.i. 5 0.04) into I1, I2, and I3 branches for U5 0.5 and varying L at time t 5 p/2. (a) I1, (b)

I2, and (c) I3 for coastal width L 5 0.2. (d)–(f) As in (a)–(c), but for L 5 0.08; (g)–(i) as in (a)–(c), but for L 5 0.04.

JUNE 2009 Q I A N E T A L . 1759



These scales for large U and U/L are illustrated by

Fig. 8, which shows the w disturbance for varying values

of U and L, but with U/L held fixed at 15. The first col-

umn of the figure shows the total fields as displayed with

the standard diurnal axis scalings. The second and third

columns show the I1 1 I2 and I3 decomposition as dis-

played on axes using the modified scales described

above. As U increases, the fields in the first column ex-

pand spatially, reflecting the U dependence of the

dominant spatial scales. But when rescaled with the

appropriate large U and U/L scalings, the disturbance

structure is relatively uniform (apart from small changes

in I2 as U becomes sufficiently large).

It is worth pointing out that the importance of I3 (as

measured by the ratio of I3 amplitude to I1 1 I2 am-

plitude) in Fig. 8 is essentially constant. This reinforces

the notion that the relative amount of power in I3 is

determined largely by U/L (because U/L in the figure is

fixed).

6. Conclusions

Building on R83, this study has explored the linear wave

response to a diurnally oscillating heating gradient in a

background wind. This model can be considered a simple

analog to the equatorial coastal circulation. Under a diurnal

wave scaling, the wave response is a function of two control

parameters: a nondimensional coastal width L 5 vL/NH

and a nondimensional wind speed U 5 U/NH.

For U 6¼ 0 the Fourier integral solution consists of

three distinct wave branches: I1, I2, and I3. The I1 and I2

branches correspond directly to the two branches de-

scribed by R83, except with Doppler shifting and asso-

ciated tilting of the raypaths. The extent of this Doppler

shifting is determined directly by U, with larger U
leading to greater raypath tilting and more widely dis-

persed wave energy.

The I3 branch exists only for U 6¼ 0 and is shown to be

broadly similar to flow past a stationary heat source or a

FIG. 8. Total w and decomposition into I1 1 I2 and I3 branches for fixed U/L 5 15 at time t 5 p/2. (a) Total w,

(b) I1 1 I2, and (c) I3 (c.i. 5 0.0267) with U 5 2.25 and L 5 0.15. (d)–(f) As in (a)–(c), but for U 5 1.5 and L 5 0.1

(c.i. 5 0.04); (g)–(i) as in (a)–(c), but for U 5 0.75 and L 5 0.05 (c.i. 5 0.08). (a),(d),(g) use standard diurnal axis

scalings, all other panels use modified large U and U/L scalings. Contours vary with 1/L to account for increased

amplitude with decreasing L.
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topographic obstacle. The importance of this branch

(relative to I1 and I2) increases as U/L increases, with the

amplitude becoming similar to the other two branches

once U/L; 2. For typical dimensional parameters (such

as those given in section 3c), a characteristic thresh-

old wind for the importance of the I3 mode is roughly

U ; 1.5 m s21 (with smaller L implying smaller thresh-

olds). For still larger U/L, the I3 branch becomes the

dominant part of the solution.

The spatial scales present in all three branches can be

explained reasonably well using group velocity argu-

ments. At large U and U/L, the dominant scales are

fundamentally different from the U 5 0 case.

It should be emphasized that we do not expect our

simple linear theory to provide an accurate description

of the sea breeze in its entirety. Most notably, the model

completely misses the low-level sea breeze front and the

associated density current. However, it is reasonable to

expect that the model provides some insight into the

larger-scale wave response associated with the sea breeze.

Such waves are difficult to observe directly but have been

noted in some recent real-world modeling studies (e.g.,

Mapes et al. 2003b). There has also been speculation that

such coastally generated gravity waves are involved in the

observed diurnal propagation of convection off tropical

coastlines (see Mapes et al. 2003a and Yang and Slingo

2001, among others). At the very least, the current study

provides a simple conceptual reference point for the

study of these waves.
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APPENDIX

Computational Methods for I2 and I3

As noted in section 4a, the integrals I2 and I3 in (20)

and (21) feature rapid oscillations in the integrands near

k 5 kU. These oscillations lead to poor numerical res-

olution near the singularity, which in turn compromises

the accuracy of the quadrature. The problem is partic-

ularly acute for u 5 ›c/›z, because for u the amplitude

is singular as well as the phase.

To address this problem we use a method first intro-

duced by Muraki (2000) in the context of rotating flow

past topography. Details of the method are given below.

However, we begin by briefly describing the more

conventional methods used for I1.

a. Computation of I1

Inspection of (19) shows that the integrand is well

behaved for all k . 0; computation of the integral is

therefore straightforward. In the present study we use

the substitution k 5 k1(1/s 2 1) to map the indefinite

interval 0 # k , ‘ to the finite range 0 , s # 1. A

quadrature using the trapezoidal rule is applied using a

uniform discretization in s. Varying the parameter

k1 shifts the point density to smaller or larger k, with

half the total points at k , k1 and half at larger k. The

choice k1 5 5 was found to give reasonable results with

modest effort.

b. Desingularization for I2 and I3

To account for the singularities in I2 and I3, we use

two approaches in combination. First we identify an

integrable function whose behavior at the singular point

matches that of the function to be integrated. Sub-

tracting this matching function from the integrand then

effectively damps the singularity. The second step is to

then stretch the remaining singular oscillation using an

appropriate coordinate mapping.

To illustrate, we consider our most singular case,

specifically the I3 contribution to the horizontal velocity

u. Taking a vertical derivative of (21) gives

›I3

›z
5 � 1

2p

ð‘

kU

e�kL

k2 1 (Uk� 1)2
ei(kx�t)(im eimz 1 e�z) dk,

(A1)

where m 5 k/(Uk 2 1). The second term in the last

parentheses is well behaved, but the imeimz term has

both phase and amplitude singularities as k! k 1
U .

To transform to a finite range we use the trigono-

metric substitution

k 5 kU
1

1� sin u
,

which maps (A1) to

›I3

›z
5 � 1

2pkU

ðp/2

0

C3(u) e�z cos u du

� i

2p

ðp/2

0

C3(u) exp (ikUz csc u) cot udu, where

(A2)

C3(u) 5
k2e�kL

k2 1 (Uk� 1)2
ei(kx�t)
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is a well-behaved amplitude factor. The first integral in

(A2) can be directly discretized without problems. How-

ever, the second integral inherits the original phase and

amplitude singularities as u! 01.

To remove these singularities, we note that suffi-

ciently near the singular point the integrand in (A2)

matches that of a tabulated integral, specifically the

exponential integral E1 (e.g., Abramowitz and Stegun

1972, section 5.1). That is, with a change of variable

(Muraki 2000) the exponential integral can be written

for Re(j) $ 0 as

E1(j) 5

ðp/2

0

exp(�j csc u) cot u du, (A3)

which for imaginary j has the same singular phase and

amplitude behavior as (A2). Combining (A2) with (A3)

then gives

›I3

›z
5 � 1

2pkU

ðp/2

0

C3(u)e�z cos u du

� i

2p

ðp/2

0

A3(u) exp(ikUz csc u) cot udu (A4)

� i

2p
C3(0)E1(�ikUz)

where the difference amplitude

A3(u) 5 C3(u)� C3(0)

now has a first-order zero at u 5 01 so that A3(u)cotu

remains finite.

Because of the cotu term in (A2), the subtraction step

in (A4) damps the amplitude singularity but leaves a

finite-amplitude singular oscillation. To regularize this

oscillation we apply a second coordinate mapping

u 5
p

2
sa, (A5)

with s ranging from 0 to 1. Setting a . 1 causes the

singular oscillation near u 5 01 to be stretched, in the

sense that du 5 a(p/2)sa 2 1ds ! 0 as s ! 0. The re-

sulting integrand for 0 # s # 1 then has an order

a 2 1 zero at the singular endpoint.

Finally, the desingularized integral (A4) with (A5) is

computed with a trapezoidal quadrature using a uni-

form discretization in s. Similar methods are used to

compute the I2 integral for u as well as the w integrals

(which are one order less singular in amplitude and thus

easier to compute).

c. An example

Figure A1 shows an example calculation for the case

U 5 0.625 with L 5 0.1. Shown in Fig. A1a is a direct

quadrature of (A2)—that is, without the subtraction

step in (A4) and with a 5 1 in (A5)—using a uniform

discretization of ns 5 2000 points. The analogous de-

singularized quadrature of (A4) with a 5 3 and ns 5 2000

is shown in Fig. A1b. As can be seen, the direct trape-

zoidal quadrature of (A2) features significant numerical

artifacts due to the singular nature of the integrand. By

contrast, in the desingularized case these artifacts are

effectively removed.
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