
Prediction of Lake-Effect Snow Using Convection-Allowing
Ensemble Forecasts and Regional Data Assimilation

SETH SASLO AND STEVEN J. GREYBUSH

Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

(Manuscript received 22 November 2016, in final form 14 July 2017)

ABSTRACT

Lake-effect snow (LES) is a cold-season mesoscale convective phenomenon that can lead to significant

snowfall rates and accumulations in the Great Lakes region of the United States. While limited-area nu-

merical weather prediction models have shown skill in prediction of warm-season convective storms, fore-

casting the sharp nature of LES precipitation timing, intensity, and location is difficult because of model error

and initial and boundary condition uncertainties. Ensemble forecasting can incorporate and quantify some

sources of forecast error, but ensemble design must be considered. This study examines the relative contri-

butions of forecast uncertainties to LES forecast error using a regional convection-allowing data assimilation

and ensemble prediction system. Ensembles are developed using various methods of perturbations to

simulate a long-lived and high-precipitation LES event in December 2013, and forecast performance is

evaluated using observations including those from the Ontario Winter Lake-Effect Systems (OWLeS)

campaign. Model lateral boundary conditions corresponding to weather conditions beyond the Great Lakes

region play an influential role in LES precipitation forecasts and their uncertainty, as evidenced by ensemble

spread, particularly at lead times beyond one day. A strong forecast dependence on regional initial conditions

was shown using data assimilation. This sensitivity impacts the timing and intensity of predicted precipitation,

as well as band location and orientation assessed with an object-based verification approach, giving insight

into the time scales of practical predictability of LES. Overall, an assimilation-cycling convection-allowing

ensemble prediction system could improve future lake-effect snow precipitation forecasts and analyses and

can help quantify and understand sources of forecast uncertainty.

1. Introduction

In the Great Lakes region of the United States, lake-

effect snow (LES) is a common cold-season mesoscale

phenomenon, often accompanied by intense snowfall

rates and accumulations, which accounts for a large

portion of the seasonal precipitation (Jiusto and Kaplan

1972; Niziol 1987; Kristovich and Steve 1995; Veals and

Steenburgh 2015). LES occurs when moisture and sen-

sible heat flux from a warm lake surface destabilize a

cold Arctic air mass above (Kristovich and Laird 1998;

Markowski and Richardson 2010), which can result in

shallow convection. This convection takes many forms,

but very often it develops into banded features charac-

terized by the wind direction, lake orientation, and

large-scale environment (Niziol et al. 1995). These

bands result in sharp gradients of precipitation that

prove challenging to forecast accurately at short- to

medium-range lead times.

The synoptic environment is a significant influence on

LES events; in the eastern Great Lakes, LES is com-

monly triggered during cold-air outbreaks following the

passage of wintertime cyclones (Wiggin 1950; Niziol

1987). Some of the earliest forecast guidelines that in-

corporate the synoptic environment, such as the tem-

perature difference between the lake surface and the

850-hPa level (Niziol 1987), were moderately successful

at predicting the likelihood of an LES event. More re-

cently, though, the shape, structure, and precipitation of

these storms have been shown to have strong sensitiv-

ities to surface and smaller-scale features. For instance,

surface wind speeds and lake fetch can very often pre-

dict the morphology of an LES event (Laird et al. 2003;

Laird and Kristovich 2004). Ice cover strongly affects

these storms by controlling heat fluxes from the lake

(Cordeira and Laird 2008; Gerbush et al. 2008) and by

modifying the low-level winds through frictional effects

(Wright et al. 2013), changing the precipitation field.

Regions of complex topography can affect LES events

by altering wind fields and creating local orographic liftCorresponding author: Seth Saslo, sfs153@psu.edu
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(Onton and Steenburgh 2001; Alcott and Steenburgh

2013). This can result in localized precipitation en-

hancement (Veals and Steenburgh 2015), although the

mechanisms associated with this are still under in-

vestigation (Minder et al. 2015; Campbell et al. 2016). It

follows that an accurate LES precipitation forecast

needs to account for large-scale synoptic forcing, as well

as local features and mesoscale variables.

As a result, regional mesoscale models have been

successfully used for some time in real-data cases to

simulate LES events (e.g., Ballentine et al. 1998),

benefiting from advanced physics and higher model

resolution. However, model error often hinders forecast

accuracy. For example, Ballentine and Zaff (2007)

observed a consistent southern bias in their simulations

of eastern Great Lakes LES events that appeared to be

linked to the choice of dynamical core. Different choices

of model physical parameterization schemes, such as

microphysics (Theeuwes et al. 2010; Reeves and

Dawson 2013; McMillen and Steenburgh 2015) and

boundary layer schemes (Conrick et al. 2015) show sig-

nificant differences in the locations and amounts of

precipitation in short-term LES forecasts. Thus, there is

considerable forecast uncertainty associated with LES

stemming from multiple sources that cannot be con-

veyed by a deterministic forecast alone.

Regional convection-allowing model ensembles have

been shown to have skill in short-range forecasts of warm-

season convective events (e.g., Clark et al. 2009; Schwartz

et al. 2010), with the benefit of providing probabilistic

guidance based on forecast uncertainties as well as the

advantages of higher model resolution. The introduction

of data assimilation to these ensemble forecasts has also

shown to improve skill by reducing initial condition errors

(Romine et al. 2013; Sobash and Stensrud 2015; Schwartz

et al. 2015a,b). However, the optimal design of these

ensembles is strongly dependent on the phenomenon

simulated as well as the background forcing (Stensrud

et al. 2000; Clark et al. 2008). Arnott (2010) concluded

that an ensemble prediction system may be a useful

forecast tool for a lake-effect event but that ensemble

design should be more thoroughly explored. With this in

mind, this paper designs and evaluates a regional

convection-allowing ensemble for lake-effect snow, with

the goal of improving forecast accuracy while capturing

and understanding the sources of forecast uncertainty.

In the first part of this paper, several ensembles are

designed and then the corresponding error, spread, and

precipitation forecast characteristics are compared for a

Lake Ontario LES event. In the second part, the impact

of data assimilation is investigated in order to provide

some insight into the predictability of LES, the forecast

sensitivity of these storms to initial conditions, and the

practical forecasting challenges of using an ensemble

prediction system for this unique mesoscale event.

2. Data and methods

a. Event

Lake-effect snowstorms have lifetimes ranging from

hours to several days. To evaluate the predictability of

LES at these time scales, we choose to simulate a rela-

tively long-lived event that impacted the eastern shores

of Lake Ontario and the Tug Hill Plateau region of

upstate New York during 10–12 December 2013. The

event initiated after the passage of a trough eastward

across the lower Midwest and Great Lakes set up colder

west-northwesterly flow over the eastern Great Lakes;

a more detailed overview of the synoptic and mesoscale

evolution of this event can be found in Campbell et al.

(2016). This particular snowstorm was characterized

by a long-lake-axis parallel (LLAP) snowband (Fig. 1)

that produced snowfall from early on 10 December until

early 12 December. It was a high-precipitation event

that was well observed and documented, as it occurred

during the field campaign part of the NSF-sponsored

OntarioWinter Lake-Effect Systems (OWLeS; Kristovich

et al. 2017) project. In situ observations at North Redfield

on the western Tug Hill Plateau recorded average snow

accumulations of 3–5 cmh–1 over several consecutive 6-h

periods during the height of the storm and snowfall

totals exceeding 80 cm (Minder et al. 2015; Campbell

et al. 2016).

b. Simulations and ensemble design

The model used is the Weather Research and Fore-

casting (WRF; Skamarock et al. 2008) Model, version

3.7, with the ARW dynamical core. Three one-way

nested domains are used (Fig. 2): a 27-km coarse outer

grid that includes the entire Great Lakes region, a 9-km

grid, and 3-km inner grid centered on Lake Ontario, all

with 43 levels in the vertical with a model top of 50 hPa.

Grell 3D cumulus parameterization is used on all but the

innermost domain. Lake surface temperature lower

boundary conditions are taken from the National Cen-

ters for Environmental Prediction (NCEP) 0.0838 real-
time global sea surface temperature analysis product.

Lake Ontario had little ice at this time, so lake ice is not

prescribed beyond that provided by the initial condition

source. Forecasts are initialized 1200 UTC 9 December

and run until 1200 UTC 12 December; as the most sig-

nificant precipitation began on 11 December, this allows

us to examine ensemble characteristics at longer (361 h)

lead times. Different ensemble designs, discussed below,

are summarized in Table 1.
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First, one ensemble (Table 1) is created using initial

condition (IC) perturbations generated by the ‘‘CV3’’

background error covariance option in the WRF data

assimilation (WRFDA) system (Barker et al. 2012).

Here, initial perturbation amplitude and correlation

length scales are related to climatological forecast error

and variance derived using the National Meteorological

Center (NMC) method (Parrish and Derber 1992),

FIG. 1. Observed composite reflectivity mosaic during the main LES band event. Location of

theRedfield snow study station, one site where SWEobservations were taken during the storm,

is indicated. The black contour represents the identified band object, used later for verification.

FIG. 2. Model domain setup for all ensembles. Domains 1–3 have horizontal grid spacings of

27, 9, and 3 km, respectively. Colors indicate the model terrain. White box shows area over

which precipitation is integrated in Fig. 8.
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resulting in horizontal length scales O(1000) km. Per-

turbations are centered around initial and lateral

boundary conditions derived from GFS deterministic

forecast output. The WRF lateral boundary conditions

are not perturbed in time. Physical parameterizations

used in the model are the same for each of the 21 en-

semble members and include the Thompson double-

moment microphysics scheme (Thompson et al. 2008)

and the MYJ boundary layer scheme (Janjić 1994).

Next, an ensemble is created by using perturbed initial

and boundary conditions (IC/BC). While some methods

exist for generating boundary condition perturbations

for limited-area models (LAM) that vary in time and

space (Torn et al. 2006), the simplest method is to use

values from a global model ensemble. Here, each IC/BC

WRF member receives initial and boundary conditions

from one member of the NCEP Global Ensemble

Forecast System (GEFS) for a total of 21 members. This

incorporates different initial condition perturbations

than the IC ensemble and provides flow-dependent

boundary condition perturbations that evolve with

time. All WRF members share the same physics con-

figuration as the IC ensemble. It should be therefore

noted that IC and IC/BC compare different methods of

ensemble generation beyond the addition of perturbed

boundary conditions.

Physics parameterizations can introduce model biases

and errors as well. By varying one or more combinations

of parameterization schemes, such as convective,

boundary layer, surface layer, microphysics, and radia-

tion schemes, an ensemble can be generated that can

help understand the magnitude of the forecast un-

certainty stemming from model error and lend insight

into critical physical processes. These ‘‘multiphysics’’

ensembles have shown skill in forecasts of warm-season

convective events, in some cases producing more spread

in the short-term forecast than an ensemble with per-

turbed initial conditions alone (e.g., Stensrud et al. 2000;

Clark et al. 2008, 2010).Model simulations of lake-effect

events have shown strong sensitivities to the choice of

microphysical and boundary layer schemes and combi-

nations thereof (Reeves and Dawson 2013; McMillen

and Steenburgh 2015; Conrick et al. 2015). In this

PHYS ensemble, seven microphysics schemes [Goddard,

WSM6, WRF double-moment 6-class microphysics

scheme (WDM6), Thompson, Morrison, Milbrandt–Yau,

and NSSL] and three boundary layer (with associated

surface layer) schemes [Mellor–Yamada–Nakanishi–

Niino 2.5 (MYNN2.5), MYJ, and Yonsei University

(YSU)] are mixed to create 21 total members [see

Skamarock et al. (2008) for information and refer-

ences regarding physics schemes]. The initial and

boundary conditions are taken from the same GFS

deterministic forecast as the IC ensemble but are not

perturbed. As a final component to this experiment,

each unique physics combination is given to one

member of the IC/BC ensemble to create a new ‘‘IC/BC

PHYS’’ ensemble to examine any nonlinear contribu-

tions to ensemble spread.

c. Data assimilation

Data assimilation (DA) has been used for decades as a

tool to improve numerical model forecasts by reducing

initial condition error and involves statistically com-

bining model forecasts and observations (Kalnay 2003).

In particular, the ensemble Kalman filter (EnKF;

Evensen 1994) is a DA technique that uses a flow-

dependent background error covariance from a forecast

model ensemble, which often improves the final analysis

compared to other methods, such as three-dimensional

variational data assimilation (3DVAR; e.g., M. Zhang

et al. 2011; Miyoshi et al. 2010; Buehner et al. 2010), and

has been successfully applied at global, regional, and

even convection-allowing scales. The technique can also

be used as a tool to understand forecast sensitivities,

predictability time scales, and contributions of initial

condition error to forecast confidence. In this experi-

ment, after ensemble performance is evaluated and

compared, one ensemble (from Table 1) is selected for

EnKF to create a regional analysis system. This system

will be used to lend insight into forecast and pre-

dictability questions that arise during this LES event.

The DA system used for this experiment is the

Pennsylvania State University (PSU) WRF-EnKF

TABLE 1. Ensemble design parameters.

Ensemble name ICs, IC perturbation BCs, BC perturbation Physics

IC GFS, climatology background error

statistics (CV3)

GFS, only initial BC perturbation

from CV3

Fixed

PHYS GFS, none GFS, none Varying combinations of

microphysics and

boundary layer schemes

IC/BC GEFS, GEFS member perturbation GEFS, GEFS member perturbation Fixed

IC/BC PHYS GEFS, GEFS member perturbation GEFS, GEFS member perturbation Same as PHYS
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system (Zhang et al. 2006; Meng and Zhang 2007, 2008a,b;

F. Zhang et al. 2009, 2011; Weng and Zhang 2012). The

filter used is a serial square root variant of EnKF

(Whitaker and Hamill 2002). Ensemble perturbations

are not inflated before assimilation, but ensemble anal-

ysis spread is relaxed to 80% of the prior spread. A fixed

observation localization radius of influence is used to

minimize spurious analysis increments as a result of

undersampling (e.g., Greybush et al. 2011). The locali-

zation function applied to the background error co-

variance follows that of Gaspari and Cohn (1999) and

uses a horizontal radius of influence of 500 and 1000km

for surface and upper-air observations, respectively. In

the vertical, this radius is 15 model levels. Observations

assimilated are those conventionally available from the

NOAA Meteorological Assimilation Data Ingest Sys-

tem (MADIS), and include surface-, aircraft-, and

radiosonde-based temperature, wind, pressure, and hu-

midity observations. No radar products or satellite

brightness temperatures are used. Observations from

OWLeS are not assimilated in order to be used as an

independent verification dataset. Details about the

EnKF ensemble design and assimilation cycles are dis-

cussed in section 4a.

d. Verification datasets and metrics

Ensemble forecast performance is evaluated using

several different metrics. The root-mean-square error

(RMSE) of each ensemble is used to assess overall

forecast accuracy. RMSE is evaluated using conven-

tional observations from MADIS; specifically, surface

and upper-air temperature and wind are examined be-

cause of their importance in LES morphology and

forecasting. Ensembles are also compared with respect

to spread characteristics, normally computed as the en-

semble variance or standard deviation. Typically, spread

is used as a measure of forecast confidence; for example,

higher spread among ensemble members indicates

larger forecast uncertainty. However, this measure can

also be used to evaluate and compare forecast perfor-

mance. An ideal ensemble should exhibit consistency

(Wilks 2006), in which it correctly reproduces the actual

forecast probability distribution. To reach this condi-

tion, mean RMSE should be roughly similar to the sum

of ensemble spread and observation error (Desroziers

et al. 2005). Likewise, as forecast uncertainty generally

increases at increasingly longer lead times, so too should

ensemble spread increase with forecast hour.

Quantitative precipitation forecast (QPF) perfor-

mance is evaluated using both point and gridded ob-

servations. The NCEP/Environmental Modeling Center

(EMC) Stage IV multisensor precipitation analysis

(Lin and Mitchell 2005) is used for storm-total QPF

evaluation across the spatial domain. Stage IV has lim-

itations owing to the shallow depth of LES and poor

detection of low levels from the local Montague, New

York (KTYX), radar (Brown et al. 2007), as well as an

underestimation of sometimes half the total pre-

cipitation during this event likely due to poor calibration

of the reflectivity–precipitation rate relation (Welsh

et al. 2016). However, Stage IV does provide some es-

timates of precipitation location, area, timing, and rel-

ative intensity with which to compare the spatial QPF.

Additionally, for this particular event, in situ manual

snow depth and snow water equivalent (SWE) accu-

mulation observations are available from OWLeS

campaign researchers. Manual SWE observations at the

North Redfield and Sandy Creek snow study stations

were taken every 6 h, beginning late on 10 December

and continuing until the end of the event, early on

12 December (Steenburgh et al. 2014a,b). These obser-

vations are used later to assess some aspects of the

predictability of the sometimes intense precipitation

documented on the Tug Hill during this event. Here,

predictability is described as the ability to provide a

confident and accurate forecast at a given lead time, in

which an ideal ensemble forecast initially detects and

then finally converges on a solution for an event; further

discussion of predictability horizons for winter storms

can be found in Greybush et al. (2017). The limits of

predictability can be understood as having two parts:

practical predictability, imposed by the limits of model

and initial condition error; and intrinsic predictability, in

which forecasts diverge even when given a nearly per-

fect model and the initial state is known nearly perfectly

(Lorenz 1996; Melhauser and Zhang 2012). This study

focuses on the practical predictability of LES pre-

cipitation, using a convection-allowing ensemble DA

and forecasting system.

3. Ensemble forecast results

a. Ensemble design and performance

First, the free ensemble forecasts (no DA) are

assessed for their performance in simulating the envi-

ronment of this wintertime convective event. The time

evolution of error (ensemble RMSE) and spread during

the event for each ensemble is shown in Fig. 3. For

clarity, spread is shown as ensemble standard deviation

rather than total spread, as large observation error can

mask important temporal characteristics. Forecasts are

verified against conventionally available temperature

and u-component wind observations, both critical

quantities in being able to accurately forecast LES.

Verification is separated between surface-level and
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lower-tropospheric (900–600 hPa) observations; the

lower atmosphere is highlighted because lake-effect

cloud is typically found at these levels.

In terms of error characteristics, no free run ensemble

appears to perform consistently better than the others

across all variables throughout the forecast period. In-

terestingly, all forecasts show sudden error growth in

surface variables and winds around 0000 UTC 11 Decem-

ber, which coincided with an observed sudden enhance-

ment in storm intensity and organization and the passage

of a 500-hPa shortwave trough (Campbell et al. 2016).

While there is some difference among error characteristics

in the surface variables, that difference is also less clear

aloft; the IC and PHYS ensembles appear similar, as do

both ensembles with GEFS IC/BC. This is likely the result

of the global model data used for initial and boundary

conditions, as well as the choice of perturbations, which is

highlighted in the ensemble spread characteristics below.

In terms of spread (Fig. 3), there are unique patterns

among the ensembles. For instance, while IC was ini-

tialized with large variance, the ensemble spread rap-

idly declines during the event, unlike IC/BC, PHYS, and

IC/BC PHYS. This collapse can be linked to the initial

condition perturbations as well as to the use of un-

perturbed boundary conditions, the domain size, and the

large-scale environmental forcing. The random initial

condition perturbations introduced by the WRFDA

CV3 option in IC (not shown) were of larger variance

and had a different spatial structure than the perturba-

tions in IC/BC; if inconsistent with the background dy-

namics, ensemble members could be expected to return

toward the attractor (Lorenz 1996) and the perturba-

tions would not be preserved in time (e.g., Gutierrez

et al. 2008). This evolution points to the importance of

introducing information about the ‘‘errors of the day’’

(Kalnay 2003) and tuning perturbation parameters ac-

cordingly for medium-range LES forecasts. Later, other

limited-area model considerations became additional

factors limiting the ensemble spread in IC. At the time

of the event, a strong zonal midlevel jet with winds ex-

ceeding 50m s21 had moved into the domain, a synoptic

situation common during LES. As a result, advective

time scales across even the largest domain were short-

ened considerably. Back trajectories from the HYSPLIT

model (not shown) show that tracers in the vicinity of

the Ontario snowband had originated west of Lake

FIG. 3. Ensemble mean RMSE (solid) and spread (standard deviation; dashed) in domain 3 during the event as

compared to observed (a) surface temperature, (b) surface u component of wind, (c) lower-tropospheric tem-

perature, and (d) lower-tropospheric u component of wind. Breaks imply that no data were available for

verification.
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Michigan, over 1000km away, only 24 h prior. This

strong boundary forcing meant that the homogeneous

lateral boundary conditions from GFS could sweep

through the domain (Warner et al. 1997), effectively

wiping the initial condition perturbations, further re-

tarding ensemble spread growth. These results suggest

that for longer lead times beyond the short term, per-

turbed boundary conditions may be an important con-

sideration in a limited-area model ensemble forecast

during an LES event, and also indicate that large-scale

flow from beyond the Great Lakes region plays an im-

portant role in defining the lake-effect environment and

its uncertainty for lead times beyond one day.

While IC/BC, PHYS, and IC/BC PHYS retain and

sometimes grow ensemble spread, there are distinct dif-

ferences in both the vertical distribution and the temporal

evolution between them. The three ensembles showed

comparable amounts of forecast spread near the surface

through the first 48 forecast hours, but this equivalence

breaks down strongly in the lower troposphere. This is

also shown in Fig. 4, which compares rank histograms

(constructed as in Hamill 2001) using lower-tropospheric

u-component wind observations over the forecast period.

Ideally, a histogram should follow a uniform distribution

(shown by the red line), indicating that the observations

are predicted as equiprobable members of the ensemble

(Wilks 2006). The root-mean-square deviation (RMSD)

and chi-squared (X2) metrics are different measures of

deviation from the expected value for each bin in a uni-

form distribution, and with larger values indicating in-

creasing departure from ‘‘flat.’’ In the histograms, all

ensembles show a peak in the lowest value, potentially

indicating a high wind speed bias. However, the IC and

PHYS ensemble histograms appear more right skewed

and have much larger X2 values than IC/BC and IC/BC

PHYS, suggesting that the latter two may have improved

bias characteristics.

The IC/BC spread as a whole increases in time

(Fig. 3), which is expected as forecast confidence de-

creases at increasingly longer lead times. Conversely,

FIG. 4. Rank histograms for (a) IC, (b) PHYS, (c) IC/BC, and (d) IC/BC PHYS ensembles as compared to

lower-troposphere (900–600 hPa) u-component wind observations in domain 3 over the forecast period 0000 UTC

10 Dec–1200 UTC 12 Dec.
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while the spread in PHYS is at some points initially

comparable to IC/BC, there is minimal spread growth,

especially away from the surface. The difference in en-

semble spread characteristics between IC/BC and

PHYS shown in both Figs. 3 and 4 is likely due to the

conflation of several factors. The choice of physics per-

turbations (microphysics and boundary layer) in PHYS

would have limited vertical scope in this case, as vertical

mixing was capped by a strong wintertime inversion

around 3km above ground level; these perturbations

would likely generate little variance above this level.

Similarly, the synoptic signal largely controlled the

evolution of this event; model simulations typically show

less sensitivity to parameterization schemes when the

large-scale forcing is strong (e.g., Stensrud et al. 2000).

Thus, it was necessary to incorporate initial and

boundary condition perturbations representative of the

large-scale uncertainty to grow effective ensemble

spread within our model domain during this event.

b. Precipitation evaluation

While the ensembles have differing environmental

characteristics, it is not immediately clear whether their

perturbations should lead to significant differences in the

precipitation forecast. Figure 5 shows ensemble mean

forecasts of liquid water equivalent precipitation on the

east shore of Lake Ontario, accumulated from 0000UTC

10 December to 1200 UTC 12 December. The Stage IV

analysis is included as an estimate of the observed pre-

cipitation (Fig. 5f), and a deterministic WRF forecast

initialized using the 1200 UTC 9December GFS forecast

is provided as reference (Fig. 5c). Overall, all forecasts

have a precipitation field and a maximum that resemble

the observed pattern, indicating that this was well pre-

dicted as an LES event. However, there are indeed dif-

ferences. Most noticeable is the divide between the data

sources used to initialize the ensembles: IC and PHYS

have similar precipitation fields and carry the total pre-

cipitation maximum farther south than IC/BC and IC/BC

PHYS. The IC/BC ensemble produces a spatially larger

field of precipitation, and the addition of physics pertur-

bations in IC/BC PHYS does not largely change this, al-

though it does reduce the maximum value. While all

ensembles forecast precipitation in the vicinity of the

observed, it is unclear whether one ensemble QPF is

significantly better or worse, owing to the limitations in

the verification Stage IV product (particularly the un-

derestimation bias observed during this event). However,

FIG. 5. (a) IC, (b) PHYS, (d) IC/BC, (e) IC/BC PHYS ensemble mean forecast, (c) deterministic forecast, and

(f) observed (Stage IV analysis) accumulated liquid equivalent precipitation (mm), valid 0000 10 Dec–1200 UTC

12 Dec. Forecasts are from domain 3.
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it is apparent that initial and boundary conditions were

influential in determining the distribution of the general

shape and location of the ensemble mean precipitation

field for this event.

The reason for the differences in the mean storm-

total precipitation fields can be linked to ensemble

dispersion. Figure 6 shows ensemble spread (standard

deviation) in the storm-total liquid equivalent pre-

cipitation forecast. Most notable is the limited spread

in IC (Fig. 6a), which would appear to be a confident

forecast. However, PHYS (Fig. 6b) and IC/BC (Fig. 6c)

illustrate the additional contribution to QPF un-

certainty from sources not accounted for in IC. In

PHYS (Fig. 6b), the largest values of spread are located

near the ensemble mean maximum (Fig. 5b) on the

western face of the TugHill Plateau, which could be the

result of a bimodality among schemes regarding pre-

cipitation rate and spatial distribution in addition to

disagreement about localized precipitation enhance-

ment in that region. The results here from PHYS sug-

gest that physics uncertainties still have impacts on the

QPF by modulating precipitation intensity. In contrast,

IC/BC (Fig. 6c) shows a wider swath of spread along the

eastern lake shore as a result of differences in band

location. There is an enhancement of spread south to-

ward Oswego, New York, indicative of disagreement

about the southernmost extent of the storm. The ad-

dition of physics diversity in IC/BC PHYS (Fig. 6d)

captures the additional spread on the western Tug Hill

that is apparent in PHYS (Fig. 6b) but does not largely

alter the meridional extent of spread from IC/BC.

Figure 6 shows that in terms of the QPF, both model

error (sampled in the form of physics diversity) and

synoptic-scale error contributed considerable un-

certainty for this particular event.

4. Data assimilation and IC sensitivity

a. Ensemble selection and EnKF performance

Ensemble design is a critical concern for EnKF DA, as

having incorrect or insufficient ensemble spread can

strongly hinder the analysis. Using a global model en-

semble for initialization provided ensemble spread

growth coincident with a growth of large-scale un-

certainty at longer lead times, which is important in-

formation for an ensemble DA system. PHYS provided

consistent ensemble spread in environmental variables

early in the forecast period, and it showed there is con-

siderable uncertainty in how the model approaches QPF.

However, it is difficult to investigate potential biases in

multiphysics ensembles that may make physical in-

terpretation of the forecasts more unclear, and members

of a multiphysics ensemble may not be equally likely,

which challenges assumptions made by EnKF. For these

reasons, the IC/BC ensemble framework was selected to

test the impact of regional EnKFDAand the influence of

regional initial condition error on LES forecasts.

As background for the PSU WRF-EnKF system, 21

ensemble members are initialized at 1200 UTC 9 De-

cember 2013, drawing initial and boundary conditions

from the NCEP GEFS. After an initial 12-h spinup,

data are assimilated hourly starting from 0000 UTC 10

December until 1200 UTC 12 December. Observations

FIG. 6. Ensemble spread (standard deviation) of storm-total accumulated liquid equivalent precipitation (mm) in

domain 3, 0000 UTC 10 Dec–1200 UTC 12 Dec, for (a) IC, (b) PHYS, (c) IC/BC, and (d) IC/BC PHYS.

OCTOBER 2017 SA S LO AND GREYBUSH 1735



within 30min of the analysis time are included, and as-

similation is performed on all three domains. While the

domain and physics configuration are the same as in

IC/BC, boundary conditions in this system are updated

with those from the most recent GEFS forecast avail-

able at analysis time, which arrive every 6h beginning

0000UTC 10December. As a comparison, we repeat this

ensemble setup but instead do not perform updates with

EnKF, allowing only the latest GEFS boundary condi-

tions to update the ensemble (‘‘BC update’’) so that we

can examine solely the impact of regional DA.

During EnKF cycling, the DA ensemble analysis

generally shows reduced error at both the surface and

the lower troposphere compared to the BC update

ensemble (Table 2), indicating a positive impact. Im-

provements appear largest in surface variables, and

although the impact is less substantial in the lower

troposphere, comparisons using independent OWLeS

radiosondes (Fig. 7) show improvements in tempera-

ture throughout much of the troposphere, including the

reduction of a general warm bias (Fig. 7a).While EnKF

improves near-surface wind errors when compared to

these radiosondes (Figs. 7c and 7d), the effect is unclear

aloft; less substantial changes heremay be due to strong

boundary forcing or the upper-air observation net-

work, mainly consisting of aircraft data with prescribed

observation error that may be artificially high

(Benjamin et al. 1999). While prior work has shown

improvements in analysis error by altering this value

TABLE 2. Domain-averaged ensemble mean RMSE 0000 UTC

10 Dec–1200 UTC 12 Dec for EnKF and BC update ensembles as

compared to both surface and lower-troposphere observations.

Surface

Lower

troposphere

Variable BC update EnKF BC update EnKF

Temperature (8C) 2.10 1.61 1.17 0.88

Wind, u component

(m s21)

3.12 2.23 4.11 3.34

Wind, y component

(m s21)

2.12 1.83 3.68 3.14

FIG. 7. BC update only (blue) and EnKF DA (red) ensemble mean (a) temperature bias, (b) temperature RMSE, (c) u-component wind

RMSE, and (d) y-component wind RMSE values in domain 3 as compared to 34 OWLeS soundings launched 10–11 Dec 2013.
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(e.g., Gao et al. 2012), this was not investigated during

this experiment.

b. IC error and LES predictability

The predictability of this LES event is first considered

by examining forecast uncertainty as a function of initial

condition error and lead time. After every EnKF anal-

ysis cycle, a deterministic forecast is initialized using the

analysis mean for initial conditions and taking boundary

conditions from the control member of the most recent

GEFS forecast available. These individual forecasts are

then aggregated into a time-lagged ensemble, where

each member represents a different initialization time.

Here, predictability is evaluated as a number of mem-

bers and thus lead times converge on a solution. In-

creasing ensemble spread would indicate reduced

predictability resulting from initial condition error. To

view precipitation forecast predictability, hourly accu-

mulated precipitation on the Tug Hill Plateau is in-

tegrated for each member over a region shown by the

box in Fig. 2. The temporal evolution from each forecast

is shown in Fig. 8, illustrating differences in total pre-

cipitation depending on the forecast initialization time.

Stage IV is included in Fig. 8 as an estimate of the

temporal evolution rather than the absolute magnitude

of precipitation.

First, we examine the start of the main organized LES

event that occurred just after 0000 UTC 11 December.

In Fig. 8, there is a convergence of solutions on the

sudden rise in precipitation at this time, even from

forecasts launched up to 24 h prior. The timing of the

start of the event had considerably high predictability;

however, older forecasts appear to initiate the event

with a greater intensity. The end of the event around

0600UTC 12December hadmore limited predictability,

as only forecasts initialized after approximately 0000 UTC

11 December capture the sharp decline. However,

during the period from 0000 UTC 11 December through

0000 UTC 12 December, forecasts show considerable

diversity depending on initialization time. The pre-

cipitation maximum around 1800 UTC 11 December is

not well recognized by older forecasts, and forecasts

initialized within 24 h prior to that event show large

variation in the intensity of precipitation around this

time, suggesting that predictability of the amount of

precipitation during this period was limited. These re-

sults show that while this particular LES event may have

been foretold at least 48–72 h in advance, variation in

precipitation timing and intensity may have far shorter

predictability time scales.

While this time-lagged ensemble is a useful tool, it

does not necessarily display the confidence of any single

forecast or the underlying, perhaps unknown, sources of

uncertainty surrounding an event. In the limit of prac-

tical predictability, ensemble forecasts initialized closer

to an event should grow increasingly more confident

around the solution. To further examine this for our

case, we initialize several ensemble forecasts from

EnKF analyses at several lead times prior to the peak

of the event on 11 December. Beginning 1200 UTC

10 December and continuing every 6h through 1200 UTC

11 December, an ensemble forecast is initialized after

the analysis cycle; each member draws initial conditions

from its respective EnKF analysis and boundary condi-

tions from the latest GEFS forecast. To explore the

impact of the regional EnKF system, at each time a

second ensemble is initialized using solely the latest

GEFS for initial and boundary conditions without

regional DA.

Figure 9 presents forecast 6-h accumulated liquid

equivalent precipitation at Redfield (Fig. 9a) and Sandy

Creek (Fig. 9b), New York, from these ensembles as

compared to in situ observations from the OWLeS field

campaign. The bar heights show the ensemble mean

forecast, while the black error bars indicate the 90th

(upper) and 10th (lower) percentile members. In each

frame representing a 6-h accumulation period ending at

the specified time, ensembles are grouped by their re-

spective initial conditions: GEFS (blue) and EnKF

(red). In each group, ensemble forecasts are ordered

from oldest (left; earliest initialized 1200 UTC 10 De-

cember) to latest (right) and are included as they be-

come available. BC update and EnKF analysis are

FIG. 8. One-hourly area-integrated liquid equivalent pre-

cipitation values on the Tug Hill Plateau from the 3-km domain of

deterministic forecasts launched after every EnKF analysis be-

ginning 0000 UTC 10 Dec and ending 1200 UTC 12 Dec. Colors

indicate analysis period, with increasingly warmer colors indicating

a later analysis time. Area-integrated Stage IV data (dark green

line) included as an estimate of relative intensity. Spatial domain

over which precipitation is integrated is indicated in Fig. 2.
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ordered last; EnKF mean precipitation is calculated as

the sum of the hourly forecasts between analysis cycles.

The Stage IV estimate is given along with the observed,

illustrating the large underestimation in the Tug Hill

region during periods of more intense precipitation.

As seen in Fig. 9, during the middle of the event

(periods ending 1200 and 1800 UTC 11 December),

there is fairly consistent run-to-run QPF, and forecasts

at Redfield (Fig. 9a) also appear to capture the trend in

observed precipitation. Barring the spinup of the most

recent GEFS-initialized ensemble, both GEFS- and

EnKF-initialized forecasts appear to converge toward

their respective analyses. EnKF forecasts perform better

early in the period (ending 0600 UTC 11 December) at

Redfield but overforecast at Sandy Creek; however,

there is sizable ensemble spread in all EnKF-initialized

forecasts, indicating increased forecast uncertainty at

this time. Most notably, during the storm maximum

at both locations during the period ending 0000 UTC

12 December, no single forecast recognizes and no

group trends toward the observed precipitation, which

was upward of 15mm at both locations. While the EnKF

analysis mean most closely matches the observed at

both locations, the most recent forecasts initialized at

1200 UTC 11 December tended to perform poorly.

To provide some insight into the considerable

underforecast from the most recently initialized en-

sembles, Fig. 10 shows the ensemble probability of radar

reflectivity exceeding 15dBZ at 1900 UTC 11 December,

a point during the precipitation maximum period. For

brevity, we show only results fromBC update, the EnKF

analysis, and forecasts initialized 0000 and 1200 UTC

FIG. 9. Ensemble mean 6-hourly accumulated liquid water equivalent in domain 3 (colored

bars) vs observed SWE during the storm at (a) Redfield and (b) Sandy Creek. Panels for each

location are divided into frames representing 6-h accumulation periods, with dates indicating

the ends of the periods. Black error bars indicate the 90th (upper) and 10th percentile (lower)

members. Ensemble forecasts initialized using GEFS (light blue bars), BC update (dark blue

bars), ensemble forecasts launched after EnKF analyses (light red bars), and EnKF analysis

(dark red bars). Light red (blue) bars in each frame are placed in order based on initialization

time; earliest/oldest on the left and latest/newest on the right; forecasts are initialized in 6-h

increments beginning 1200 UTC 10 Dec. Gold stars indicate the observed 6 h accumulated

precipitation, and blue dots are the Stage IV estimate.
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11 December from both GEFS and EnKF members.

Here, it is partially explained why the EnKF analysis

more closely matches the observations in Fig. 9: the

EnKF analysis had a cluster of high probabilities located

inside the observed (black contour) (Fig. 10d) and

therefore was confident in the correct band location.

The 1200 UTC EnKF member–initialized forecast also

had high confidence, but it was shifted south relative to

the observed, and the relatively narrow width of the

band at this time likely resulted in a miss, explaining

the underforecast. However, the 1200 UTC GEFS-

initialized forecast (Fig. 10c) did have higher probabilities

near the observed, yet also suffered from an under-

forecast. Part of this can be explained by band structure:

individual forecasts initialized from GEFS (not shown)

produced a double-banded storm structure, while fore-

casts initialized from EnKF analysis members tended to

produce the single-band structure that was observed

(Fig. 1). As an additional explanation for the pre-

cipitation underforecast, Fig. 11 shows the 90th per-

centile accumulated precipitation during the 6-h period

ending 0000 UTC 12 December, which presents some

of the largest values of precipitation these ensemble

forecasts expect. As shown in Fig. 11c, even the most

extreme values of precipitation from the 1200 UTC

GEFS-initialized forecast did not reach the values

observed on the Tug Hill Plateau. In fact, the EnKF

forecast initialized at this time (Fig. 11f) did, but it

was likely position error (Fig. 10f) that led to its poor

performance.

As shown in Figs. 10d and 11d, the EnKF analysis

appeared to more closely reproduce the intensity and

location of precipitation that was observed (Figs. 9a and

9b). However, the 1200 UTC EnKF member–initialized

forecast, as discussed above, performed poorly despite

its relatively short forecast lead time. To further in-

vestigate this, the LES band is identified in simulated

and observed radar imagery. This is accomplished by

applying an edge detection algorithm to identify strong

reflectivity gradients and classifying closed contours of

these gradients as LES band objects. An example of an

identified object is given by the black contour in Fig. 1.

Once an object is identified, attributes such as centroid,

length, area, and orientation can be calculated. Table 3

presents a comparison of performance between the

EnKF and BC update ensembles using some of these

FIG. 10. Ensemble probability of composite radar reflectivity greater than 15 dBZ at 1900UTC 11Dec for (a) BC

update, GEFS downscaled forecasts initialized at (b) 0000 and (c) 1200 UTC 11 Dec, (d) EnKF analysis, and

forecasts initialized from the EnKF ensemble analysis members at (e) 0000 and (f) 1200UTC 11 Dec. Forecasts are

from domain 3. Observed lake-effect band object is indicated (black contour).
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metrics. Figure 12a shows simplified LES band objects,

created as lines that approximately reproduce the

length, central location, and orientation of the band in

each member of the EnKF ensemble at the same time as

Figs. 10 and 11.

While it was well forecast that an LES band would be

present, the central location and orientation at this time

had considerable forecast uncertainty. This is shown in

Fig. 12b, in which the LES band at 1900 UTC 11 De-

cember is identified in the time-lagged ensemble ini-

tialized previously fromEnKF ensemble mean analyses.

Lines are colored by initialization time. Figure 12b

shows that the final location, orientation, and even in-

land penetration of the band were largely dependent on

the initial conditions. More importantly, only the latest

forecasts initialized after 1200 UTC (dark red) re-

produce the skewed and more northerly band that was

observed. To understand why, the band analysis is re-

peated as in Fig. 12b but instead objects are colored by

average low-level (approximately 900 hPa) wind di-

rection in the vicinity of the band (Fig. 12c). Here, it is

illustrated that at this forecast hour, differences in wind

direction were very likely responsible for the position

and orientation error. Bands oriented more parallel to

the lake axis were embedded in a westerly flow, while a

more west-southwesterly flow produced LES that was

centered farther to the north and skewed toward the

northeast. Together, Figs. 12b and 12c suggest that the

information used to improve the EnKF analysis was

made available only recently before the period, in-

dicating the sensitive dependence on initial conditions

and potentially limited periods of predictability.

5. Summary and conclusions

A regional ensemble analysis and forecast system was

developed to help understand the sources of forecast

uncertainty during an LES event that occurred in De-

cember 2013. Ensembles using perturbed initial and

boundary conditions and varying physical parameteriza-

tions (representing regional-scale, synoptic-scale, and

FIG. 11. Ensemble 90th percentile accumulated liquid equivalent precipitation (mm) in domain 3 from 1800 UTC

11 Dec to 0000 UTC 12 Dec for the same ensembles as in Fig. 10.

TABLE 3. Mean ensemble lake-effect band object-based verifi-

cation metrics as compared to radar observations, averaged over

period 0000 UTC 11 Dec–0000 UTC 12 Dec.

Ensemble

Metric BC update EnKF

Length RMSE (km) 97.7 67.1

Distance from center RMSE (km) 29.4 21.5

Orientation RMSE (8) 8.2 8.1
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subgrid-scale model error) were constructed and evalu-

ated based on their ability to reproduce the LES envi-

ronment and precipitation as well as their ensemble

spread characteristics. The large-scale environment dur-

ing this event was a source of very strong forcing, typical

of eastern Great Lakes banded LES events, and it was

found that initialization from a global model ensemble,

which represented the synoptic-scale flow-dependent

uncertainties, provided better ensemble dispersion in the

short- to medium-range (1–3 day) forecast while giving

comparable error performance. Varying physical pa-

rameterizations among ensemble members added to

forecast uncertainty, with the largest impact on pre-

cipitation amounts rather than location.

The regional EnKF DA analysis improved both envi-

ronmental error characteristics and the short-term pre-

cipitation forecast as compared to in situ observations.

This sensitivity to initial conditions led to some exploration

of predictability aspects of LES. Using deterministic

forecasts launched from EnKF ensemble mean analyses

provided a time-lagged ensemble that showed pre-

cipitation sensitivity as a function of initial condition error,

and it was found that LES has modes of variability that

may have limited predictability time scales. Another in-

vestigation using ensemble forecasts launched during the

period showed that LES band position, orientation, and

intensity biases can be linked to errors in initial conditions,

sometimes leading to poor forecast performance even at

short lead times. Object-based classification of LES bands

provided an additional means of objectively comparing

band position, length, and orientation, and likewise illus-

trated sensitivity to forecast lead time and wind direction.

Forecasting lake-effect snow is notoriously difficult

because of the sharp gradients of precipitation that re-

sult. Additionally, as shown in this study, small changes

in initial conditions and environmental variables (e.g.,

lower-tropospheric wind) can lead to largely different

precipitation forecasts, especially at point locations.

While reducing initial condition error could improve

LES forecasts, a singular deterministic forecast does not

provide information related to this forecast uncertainty.

For this case, we show that uncertainty may have been

fairly large, owing to the mesoscale nature of the event

and the impact of large-scale uncertainty.

Overall, an ensemble DA–forecast system shows

promise in improving short-term precipitation forecasts

and could provide useful forecast information during

potential high-impact LES events. As a forecast tool, we

have shown that probabilistic guidance should include

the effects of the large-scale features while still permit-

ting the convective-scale features that are inherent in

LES structures, but other sources of uncertainty (e.g.,

model error in QPF, lake surface boundary conditions)

could still be incorporated. As a research tool, it is able

to provide some insight into LES processes, and the

short-term variability within the storm should be further

investigated, especially with other cases and LES band

types. Future work will seek to use ensemble sensitivity

FIG. 12. (a) Simplified LES bands at 1900 UTC 11 Dec from the EnKF DA ensemble:

ensemble mean (thick line), truth (green), and Redfield (star) are indicated. (b) Simplified

LES bands identified in deterministic forecasts launched from EnKF analyses, valid 1900 UTC

11 Dec. Lines are colored by forecast initialization time. (c) As in (b), but colored by near-

surface wind direction (8) at 1900 UTC 11 Dec. All forecasts are from domain 3.
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techniques and data assimilation to better understand

and quantify the scales and sources of error and model

biases. New data sources, such as radar, should be in-

cluded to examine the implications for short-term

forecasts and to evaluate how best to improve and ex-

tend the forecast skill of this regional ensemble analysis

and prediction system.
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