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[1] This paper presents multiple parameter estimation using multivariate observations via
the ensemble Kalman filter (EnKF) for a physically based land surface hydrologic model. A
data assimilation system is developed for a coupled physically based land surface
hydrologic model (Flux-PIHM) by incorporating EnKF for model parameter and state
estimation. Synthetic data experiments are performed at a first-order watershed, the Shale
Hills watershed (0.08 km2). Six model parameters are estimated. Observations of discharge,
water table depth, soil moisture, land surface temperature, sensible and latent heat fluxes,
and transpiration are assimilated into the system. The results show that, given a limited
number of site-specific observations, the EnKF can be used to estimate Flux-PIHM model
parameters. All the estimated parameter values are very close to their true values, with the
true values inside the estimated uncertainty range (1 standard deviation spread). The
estimated parameter values are not affected by the initial guesses. It is found that discharge,
soil moisture, and land surface temperature (or sensible and latent heat fluxes) are the most
critical observations for the estimation of those six model parameters. The assimilation of
multivariate observations applies strong constraints to parameter estimation, and provides
unique parameter solutions. Model results reveal strong interaction between the van
Genuchten parameters a and b, and between land surface and subsurface parameters. The
EnKF data assimilation system provides a new approach for physically based hydrologic
model calibration using multivariate observations. It can be used to provide guidance for
observational system designs, and is promising for real-time probabilistic flood and drought
forecasting.
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1. Introduction

[2] Land surface models (LSMs) and hydrologic models
are important tools for the forecasting and study of land
surface and hydrologic processes. LSMs simulate the
exchange of mass, momentum and energy between the land
surface and the atmosphere. They play important roles in
weather and climate forecasting, and provide necessary
lower boundary conditions for atmospheric models. Hydro-
logic models simulate hydrologic system responses to
incoming precipitation. They are essential for predicting
flood and drought events and are routinely used for deci-
sions that have considerable societal impacts. Both LSMs
and hydrologic models are highly parameterized. Model
structures are complex and the number of involved parame-

ters is often large. The accuracy of LSMs and hydrologic
models is limited by, among other factors, the uncertainties
in model parameters. Parameter estimation of LSMs and
hydrologic models has been the focus of many studies
[e.g., Gupta et al., 1999; Xia et al., 2002; Jackson et al.,
2003].

[3] Uncertainties in model parameters are an especially
dominant source of uncertainty for hydrologic models
[Moradkhani and Sorooshian, 2008]. Hydrologic model
parameters nearly always require calibration for specific
watersheds before they can produce realistic responses to
environmental inputs such as precipitation. For hydrologic
models, the physical parameter values in actual field condi-
tions might be substantially different from those measured
in laboratory; the range of variation in parameter values
spans orders of magnitude [Bras, 1990]. Some physical
parameters may be heterogeneous in space, which compli-
cates the task of obtaining accurate parameter estimates.
Consequently, model calibration is one of the most
demanding and time-consuming tasks in applying hydro-
logic models, and the resulting parameter values often have
considerable uncertainty even after optimization.

[4] In the past few decades, many hydrologic model cali-
bration methods have been proposed and studied. A basic
calibration approach is the trial and error method, i.e.,
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manual calibration. In manual calibration, model perform-
ances are visually inspected, and then model parameter val-
ues are tuned to minimize the differences between model
predictions and observations, based on human judgment
[Boyle et al., 2000; Moradkhani and Sorooshian, 2008].
This method is very labor intensive and time consuming.
Manual calibration of physically based hydrologic models
can be extremely difficult due to the high dimensionality of
the parameter space and the strong interaction between
model parameters. It is also important to note that manual
calibration does not lead to a rigorous (if any) quantifica-
tion of parameter uncertainty. Those difficulties motivated
the development of automatic calibration methods.

[5] Generally, there are two strategies for automatic cali-
bration: batch (iterative) calibration and sequential (recur-
sive) calibration. Batch calibration aims to minimize the
predefined objective functions by repeatedly searching in
the parameter space and evaluating long period model per-
formances [e.g., Ibbitt, 1970; Johnston and Pilgrim, 1976;
Pickup, 1977; Gupta and Sorooshian, 1985; Duan et al.,
1992; Sorooshian et al., 1993; Franchini, 1996; Wagener
et al., 2003; Kollat and Reed, 2006; Yu et al., 2013]. Batch
calibration requires previously collected historical data for
model evaluation and is thus restricted to offline applica-
tions. Batch calibration has limited flexibility in dealing
with the possible temporal evolution of model parameters
[Moradkhani et al., 2005a; Moradkhani and Sorooshian,
2008].

[6] Sequential calibration (data assimilation) methods
can take advantage of measurements whenever they are
available and are thus useful in both online and offline
applications. They have more flexibility in dealing with
time-variant parameters, compared with batch calibration
methods. Some sequential calibration methods also explic-
itly address uncertainties in input data and model struc-
tures. Frequently used data assimilation methods for LSMs
and hydrologic models include variational methods [e.g.,
Reichle et al., 2002a; Lee et al., 2011], the particle filter
[e.g., Moradkhani et al., 2005b; Weerts and El Serafy,
2006; Salamon and Feyen, 2009], and different forms of
Kalman filter, especially the ensemble Kalman filter
[EnKF; e.g., Reichle et al., 2002a, 2002b; Crow and
Wood, 2003; Francois et al., 2003; Moradkhani et al.,
2005a; Pan and Wood, 2006; Vrugt et al., 2006; Clark
et al., 2008; Kumar et al., 2008; Camporese et al., 2009a;
Xie and Zhang, 2010; Cammalleri and Ciraolo, 2012; Han
et al., 2012; Flores et al., 2012; Hain et al., 2012]. Varia-
tional methods depend on the development of adjoint mod-
els. The application of variational methods to LSMs and
hydrologic models is thus difficult, because adjoints of
LSMs and hydrologic models are not always available and
are difficult to derive [Reichle et al., 2002a, 2002b; Moran
et al., 2004; Vrugt et al., 2006; Salamon and Feyen, 2009].
The particle filter [Arulampalam et al., 2002] has no
assumptions on the form of the prior probability density
function (PDF) of the model states and the model errors. It
can maintain the predicted spatial pattern of distributed var-
iables, because the particle filter updates the weights of dif-
ferent ensemble members, instead of directly updating the
state variables. However, the particle filter requires many
more ensemble members than EnKF to produce good esti-
mates of model errors, and is thus more computationally

expensive [Weerts and El Serafy, 2006; Clark et al., 2008;
Salamon and Feyen, 2009]. EnKF [Evensen, 1994] has
been widely used for parameter estimation in recent years.
EnKF has a simple conceptual formulation, relative ease of
implementation (no adjoint needed), and affordable compu-
tational requirements [Evensen, 2003]. EnKF is not only
useful in improving state and parameter estimations, but
can also provide uncertainty estimations of variables and
parameters. Compared with other forms of Kalman filters,
EnKF is capable of handling strongly nonlinear dynamics,
high dimensional state vectors, and to some degree non-
Gaussian parameter and state probability distributions.

[7] Because of the high computational demands of
process-based and physically-based hydrologic models, it
is very difficult to use batch methods for calibration [Tang
et al., 2006]. Their high dimensional parameter space and
high nonlinearity pose difficulties for sequential methods
as well. Currently manual calibration, i.e., trial and error
procedure, is still the prevalent choice for physically based
hydrologic model calibration [e.g., Pisinaras et al., 2010;
Leimer et al., 2011; Shi et al., 2011; Shih and Yeh, 2011;
Dechmi et al., 2012; Yao et al., 2012; Shi et al., 2013a].
The EnKF provides a promising approach for distributed
physically based hydrologic model auto calibration. Mor-
adkhani et al. [2005a] applied EnKF to a lumped concep-
tual rainfall runoff (R-R) model to estimate the values of
five model parameters using real observations, and found
that the obtained parameter set from EnKF was similar to
the results from batch calibration. The ensemble discharge
prediction also agreed well with observations. Xie and
Zhang [2010] applied EnKF to a spatially distributed con-
ceptual hydrologic model to estimate a spatially distributed
model parameter, which had different values in different
hydrologic response units (HRUs). In the synthetic data
experiments, at most HRUs, the estimated values of the
parameter were very close to the true values when dis-
charge observations were assimilated. L€u et al. [2013]
applied EnKF to a lumped conceptual R-R model and
found that using dual state-parameter estimation improves
model streamflow estimation compared to the test case
which only used state estimation. There are also studies
implementing EnKF in groundwater models to estimate
model parameters such as hydraulic conductivities [e.g.,
Chen and Zhang, 2006; Liu et al., 2008; Hendricks Frans-
sen et al., 2011; Kurtz et al., 2012]. Although EnKF has
been proven effective for lumped and distributed concep-
tual watershed models and some physically based ground-
water models, the effectiveness of EnKF in parameter
estimation for spatially distributed physically based water-
shed models, or land surface hydrologic models is still
untested.

[8] Data assimilation for fully coupled physically based
hydrologic models using EnKF is difficult. Compared with
conceptual models, physically based spatially distributed
models generally have more model parameters, more
model grids, and more state variables at each grid. A rela-
tively large number of model grids with more state varia-
bles and model parameters results in a high dimensional
joint vector of states and parameters, which makes the
implementation of EnKF difficult and increases the compu-
tational cost. Physically based models require a long adjust-
ment period or spin-up after observations are assimilated
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and model states are updated. In physically based models,
model formulations and parameters define the equilibrium
among model state variables in the system. The equilibrium
of the system does not only include the equilibrium
between surface water, saturated water storage, and unsatu-
rated water storage within a model grid, but also the equi-
librium among different grids. The update of state variables
and parameters via EnKF can disrupt the equilibrium in the
system [Pan and Wood, 2006] which requires a time period
for adjustment. The equilibrium needs to be reestablished
through the exchange of water among different water com-
ponents in a single water grid (e.g., infiltration, ground-
water recharge, and root zone uptake), and through the
exchange of water among different grids (e.g., horizontal
groundwater flow and surface flow). During this adjustment
or spin-up period, the covariance matrix between the model
predictions and the joint vector of states and parameters is
contaminated by this spin-up effect. If the assimilation
interval is shorter than the adjustment period, the EnKF
will update the state variables and model parameters using
a contaminated covariance matrix, which will degrade the
accuracy of the EnKF analysis. A long assimilation inter-
val, however, means fewer observations can be assimilated,
which can affect model performances due to the lack of
observations. Therefore, finding the optimal assimilation
interval is important.

[9] Identifying critical observations for model parameter
estimation is important for model calibration, for enhancing
the understanding of the inverse problem of parameter esti-
mation, and for the observational system design at experi-
mental sites. Classically, only discharge data are used for
R-R model data assimilation, while soil moisture and land
surface temperature data are used for LSMs [e.g., Houser
et al., 1998; Crow and Wood, 2003; Pauwels and De Lan-
noy, 2006; Pan and Wood, 2006; Clark et al., 2008]. Some
recent studies have assimilated multiple types of observa-
tions (multivariate observations) into hydrologic models
(see a review by Montzka et al. [2012]). It has been shown
that the assimilation of soil moisture in addition to dis-
charge into R-R model improves the forecast of discharge
[e.g., Oudin et al., 2003; Aubert et al., 2003; Francois
et al., 2003; Camporese et al., 2009a, 2009b; Bailey and
Ba�u, 2010; Lee et al., 2011], especially during flood events
[Aubert et al., 2003]. Xie and Zhang [2010] also found that
in synthetic experiments, the assimilation of soil moisture
in addition to discharge improves the estimation of model
parameters.

[10] This paper presents a demonstration of multiple
parameter estimation for a coupled physically based land
surface hydrologic model (Flux-PIHM) using multivariate
observations via EnKF. The hydrologic land surface model
used in this study is Flux-PIHM [Shi et al., 2013a], which
is based on the Penn State Integrated Hydrologic Model
(PIHM) [Qu, 2004; Qu and Duffy, 2007; Kumar, 2009]
and the land surface scheme from the Noah LSM [Chen
and Dudhia, 2001; Ek et al., 2003]. Six Flux-PIHM param-
eters, including three hydrologic parameters and three land
surface parameters are estimated using EnKF. Synthetic
experiments are performed to test the accuracy of EnKF in
multiple parameter estimation and to find the optimal time
interval for data assimilation. Synthetic observations of
discharge, water table depth, soil moisture content, land

surface temperature, sensible and latent heat fluxes, and
canopy transpiration, and various subsets of those observa-
tions are assimilated to identify the observations critical for
parameter estimation. The model is implemented at the
Shale Hills watershed (0.08 km2) in central Pennsylvania,
where the broad array of observations provides the possibil-
ity for a future real-data test.

2. Development of the Flux-PIHM Data
Assimilation System

2.1. Flux-PIHM

[11] Flux-PIHM [Shi et al., 2013a] is a coupled land sur-
face hydrologic model. Flux-PIHM incorporates a land-
surface scheme into the Penn State Integrated Hydrologic
Model (PIHM) [Qu, 2004; Qu and Duffy, 2007; Kumar,
2009]. PIHM is a fully coupled, physically based, and spa-
tially distributed hydrologic model. It simulates channel
flow, 2-D overland flow, 1-D unsaturated flow, and 2-D
groundwater flow (with dynamic coupling to the unsatu-
rated zone) in a physically based and fully coupled scheme.
The land surface scheme in Flux-PIHM is adapted from the
Noah LSM [Chen and Dudhia, 2001; Ek et al., 2003]. The
land surface and hydrologic components are coupled by
exchanging water table depth, infiltration rate, recharge
rate, net precipitation rate, and evapotranspiration rate
between the two model components. Because Flux-PIHM
is based on a spatially distributed, physically based, and
fully coupled hydrologic model, the computational cost is
relatively high. It has previously been manually calibrated
and tested at the Shale Hills watershed (0.08 km2) [Shi
et al., 2013a].

2.2. The Ensemble Kalman Filter

[12] After its introduction by Evensen [1994], EnKF has
been widely used in atmospheric, geographic, and oceanic
sciences. It was first developed for dynamic state estima-
tion to improve initial conditions for numerical forecasts,
and was later applied to model parameter estimation.

[13] The EnKF formulation used by Snyder and Zhang
[2003] is adopted in this study. In EnKF, the posterior esti-
mate xa, i.e., the analysis is given by

xa5xf 1K y2Hxf
� �

; (1a)

and the analysis error covariance Pa is given by

Pa5 I2KHð ÞPf ; (1b)

where xf is the prior estimate with n state variables, y is the
observation vector of m observations, H is the observation
operator matrix (dimension m 3 n) which maps state varia-
bles to observations, I is an identity matrix (dimension n 3
n), and Pf is the forecast background error covariance
(dimension n 3 n). The Kalman gain matrix K (dimension
n 3 m) is defined as

K5Pf HT HPf HT1R
� �21

; (2)

where R is the observation error covariance (dimension
m 3 m). Pf HT is the forecasted covariance between the
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states and observed variables, and HPf HT is the forecasted
error covariance of the observed variables.

[14] The state augmentation approach, which has been
tested in many studies [e.g., Annan, 2005; Aksoy et al.,
2006; Hu et al., 2010; Xie and Zhang, 2010], is adopted for
parameter estimation. In the state augmentation approach,
parameters and state variables are concatenated into a joint
state vector x, and are updated simultaneously by EnKF.

[15] In EnKF applications, filter divergence [Anderson
and Anderson, 1999] occurs when the uncertainties of prior
state variables and parameters become so small that the
assimilated observations have little impacts on the posterior
analysis. In order to avoid filter divergence, the covariance
relaxation method of [Zhang et al., 2004, equation (5)] is
used. After the state variables and model parameters are
updated by EnKF, the analysis error covariance is inflated
using a weighted average between the prior perturbation
and the posterior perturbation. The inflated analysis is
given by:

ðxa
new Þ

0
5 12að ÞðxaÞ01aðxf Þ0; (3)

where a is a weighting coefficient. In this study, a is set to
be 0.5 as in the study by Zhang et al. [2006]. Because
model parameters are not dynamical variables, the values
of parameters remain constant in each forecast step. There-
fore, the adoption of covariance relaxation is not sufficient
to avoid filter divergence caused by constantly decreasing
covariance of model parameters. The conditional covari-
ance inflation method [Aksoy et al., 2006] is applied to
model parameters in addition to equation (3): the posterior
standard deviation of model parameter r is inflated back to
a predefined threshold when the standard deviation is
smaller than the threshold. The threshold is chosen as 0.25
r0 as in Aksoy et al. [2006], where r0 is the initial standard
deviation of model parameters.

2.3. Implementation of EnKF in Flux-PIHM

[16] The EnKF algorithm is implemented in the Flux-
PIHM model system for state and parameter estimation.
Flux-PIHM has a large number of model parameters and
many of them are soil or vegetation dependent. To decrease
the dimension of the joint state-parameter vector, EnKF in
our case is applied to global calibration coefficients

[Pokhrel and Gupta, 2010; Wallner et al., 2012]. A global
calibration coefficient is a scalar multiplier applied to the
corresponding soil or vegetation related parameter for all
soil or vegetation types. By applying global calibration
coefficients, the dimension of parameter space for calibra-
tion is reduced, and the soil and vegetation parameters of
all soil and vegetation types are adjusted in a coherent fash-
ion. The calibration coefficients of those parameters for
estimation are included in the joint state-parameter vector.
For the sake of simplification, the calibration coefficients
of those parameters are represented by the symbols for
those original parameters in this paper. Note that this
approach requires sound prior knowledge of the relative
differences in soil and vegetation parameters across soil
and vegetation types.

[17] The model variables included in the augmented state
vector are listed in Table 1. Among them, outlet discharge
(Q), sensible (H) and latent (LE) heat fluxes, and canopy
transpiration (Et) are diagnostic instead of prognostic varia-
bles, i.e., the values of those variables in the future time
steps do not depend upon their values at present or previous
time steps. They are included in the augmented vector
because they are important observable variables, and the
observations of those variables can be assimilated into the
system to improve state and parameter estimations.
Although the augmented vector includes some diagnostic
variables, we will still use the term ‘‘joint state-parameter
vector.’’ The global calibration coefficients of those param-
eters that need to be estimated are also included in the joint
state-parameter vector. If needed, meteorological forcing
variables, e.g., precipitation and air temperature, can be
regarded as model parameters and concatenated into the
joint state-parameter vector as well.

[18] Physical constraints need to be added to ensure the
analysis of parameters and model variables in physically
realistic or plausible ranges. A quality control of EnKF
analysis is performed after each analysis step. For a param-
eter / constrained in the range between /min and /max , the
ensemble mean is constrained in the range of ð/min 1D;
/max 2DÞ to make sure the ensemble has a reasonable
spread. In this study, D is set to be 0.25 r0. If the analysis
of ensemble mean given by EnKF is out of the range of
ð/min 1D;/max 2DÞ, the analysis will be rejected and the
parameter values will not be updated. If the analysis of
ensemble mean given by EnKF lies in the range of

Table 1. Model Variables Included in the Joint Flux-PIHM State-Parameter Vectora

Variable Description Dimension Physically Allowable Range

Wc Water stored on canopy Ng [0,1) m
hsnow Snow stored on ground and canopy Ng [0,1) m
hovl Overland flow depth Ng [0,1) m
hsat Groundwater level Ng 1 Nr [0, DBR]
hus Unsaturated zone soil water storage Ng [0, DBR]
hriv River water level Nr [0,1)
Ts124 Soil temperature at four layers 4 Ng [–273.15,1)�C
Tsfc Surface skin temperature Ng [–273.15,1)�C
H Sensible heat flux Ng (21,1) W m22

LE Latent heat flux Ng (21,1) W m22

Et Canopy transpiration Ng [0,1) m d21

Q Outlet discharge 1 [0,1) m d21

aNg and Nr represent the numbers of triangular grids and river segments, respectively, and DBR is the bedrock depth.
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ð/min 1D;/max 2DÞ, but some ensemble members are out
of the range of ð/min ;/max Þ, each ensemble member is
adjusted using

/QC
i 5

max /að Þ2/a

/max 2/a2�
/a

i 2/a
� �

1/a ; (4a)

or

/QC
i 5

/a2min /að Þ
/a2/min 2�

/a
i 2/a

� �
1/a ; (4b)

where /QC
i is the parameter value of the ith ensemble mem-

ber after quality control, /a is the ensemble mean, and � is
a very small number. When equation (4a) or (4b) is applied,
the standard deviation of parameters could be smaller than
the predefined value in conditional covariance inflation.
For model variables, the physically allowable ranges listed
in Table 1 are applied. If the analysis of any ensemble
member given by EnKF is out of range, the boundary value
will be assigned to the analyzed ensemble member. For
example, if the analysis of outlet discharge rate of any
ensemble member is negative, it will be set to 0.

[19] The workflow of Flux-PIHM parameter estimation
using EnKF is presented in Figure 1:

[20] 1. At the beginning, initial conditions of state varia-
bles (x), or model parameters (A), or both are perturbed to
generate initial conditions and model parameters for the ith
ensemble member, xi and /i.

[21] 2. In the forecast step, each ensemble member is put
into Flux-PIHM to perform hydrologic and land surface
forecasting.

[22] 3. When observations are available, the forecasted
variables for each ensemble member xf

i and the parameters
for each ensemble member /f

i are updated using EnKF by
assimilating the observations.

[23] 4. The covariance relaxation method (equation (3))
is applied to both model variables and parameters while
conditional covariance inflation [Aksoy et al., 2006] is
applied to model parameters if needed.

[24] 5. The quality control process is applied to the anal-
ysis of model variables xa

i and model parameters /a
i to

ensure both model variables and model parameters are con-
strained in their physically allowable or plausible ranges.

The obtained state variables xQC
i and parameters /QC

i are
used as initial conditions and parameters for the next fore-
cast step.

[25] 6. Steps 2–5 are repeated until the end of
simulation.

[26] In the current methodology, EnKF analysis does not
conserve mass and energy. Mass and energy conservation
can be achieved by using constrained EnKF [Pan and
Wood, 2006], which adds another constraint filter for mass
and energy budgets after EnKF updates, or by simply
rescaling model variables using the ratio between the prior
total mass (energy) and the posterior total mass (energy).
Those methods both depend on the linearization of mass
and energy budget equations. The rescaling method has
been tested with Flux-PIHM (results are not shown here),
and the system needs a longer adjustment period when
mass and energy conservation is applied. Because the
objective of the current data assimilation system is to esti-
mate the parameter values, mass and energy conservation
does not need to be strictly satisfied at analysis steps.
Therefore, mass and energy conservation is not applied to
the current data assimilation and parameter estimation
experiments, but the option is available if so desired.

3. Experimental Setup

[27] The Flux-PIHM EnKF data assimilation system is
implemented at the Shale Hills watershed in central Penn-
sylvania (Figure 2). The Susquehanna Shale Hills Critical
Zone Observatory (SSHCZO) now exists in this watershed.
A real-time hydrologic monitoring network (RTHnet) is
operating in the SSHCZO. The Shale Hills watershed (0.08
km2) is a small-scale, forested, V-shaped catchment, char-
acterized by relatively steep slopes and narrow ridges. The
surface elevation varies from 256 m above sea level at the
watershed outlet to 310 m above sea level at the ridge top.
The Shale Hills watershed is in temperate continental cli-
mate, with a mean annual temperature of 10�C and a mean
annual precipitation of 107 cm. Precipitation is relatively
well-distributed year-round. A first-order headstream forms
within the watershed, which is mostly dry during summer
months. The small scale and the steep slopes make it chal-
lenging to perform model calibration, because streamflow
and groundwater have larger variability in low-order water-
sheds than in larger basins [Reed et al., 2004]. Shi et al.
[2013a] have manually calibrated and evaluated Flux-
PIHM at the Shale Hills watershed. The same domain setup
and meteorological forcing as in Shi et al. [2013a] are
adopted in this study. For the synthetic experiment, a truth
model run is performed using the manually calibrated
parameter values from Shi et al. [2013a] starting from the
relaxation mode. The truth run starts from 0000 UTC 1 Jan-
uary 2009. The period from 0000 UTC 1 January to 1700
UTC 1 March 2009 is the spin-up period. After the spin-up,
predictions from the truth run are used to generate synthetic
observations from 1700 UTC 1 March to 0000 UTC 1
August 2009. The outputs from 0000 UTC 1 August to
0000 UTC 1 December 2009 are used to evaluate the esti-
mated model parameters.

[28] The hourly predictions of the following observable
variables from the truth run are used:

[29] 1. Outlet discharge rate (Q) ;

Initial
conditions

Ensemble 
members

Forecast Analysis

Constrained
analysis

Perturbation

Flux-PIHM EnKF Quality 
control

Observations

Figure 1. Flowchart of Flux-PIHM data assimilation
framework for parameter and state estimation.
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[30] 2. Water table depth at the model grid that repre-
sents the RTHnet wells (WTD);

[31] 3. Integrated soil moisture content over the soil col-
umn at the model grid that represents the RTHnet wells
(SWC);

[32] 4. Land surface temperature averaged over the
model domain (Tsfc) ;

[33] 5. Sensible heat flux averaged over the model
domain (H) ;

[34] 6. Latent heat flux averaged over the model domain
(LE); and

[35] 7. Canopy transpiration rate averaged over the
model domain (Et).

[36] To account for the observation uncertainties, synthetic
observations are obtained by adding Gaussian white noise to
the true time series. The imposed observation errors for dif-
ferent observation types are independent. The white noise
added to the truth (Table 2) is designed to represent realistic
errors in observational precision. Note that these errors do
not represent potential systematic biases in observations.
WTD, for example, is a highly precise measurement, but can
have systematic offsets that are considerably larger than the
precision of the measurement. We do not attempt to simulate
the impact of systematic errors on the EnKF system in this
manuscript. We determine observational precisions with a
combination of instrument specifications and prior literature.

[37] At the Shale Hills watershed, discharge is measured
with a V-notch weir at the outlet of the catchment. A
Campbell CS420-L (0–10 psi) pressure transducer meas-
ures the water level, which is then converted to discharge
rate using a rating curve developed by Nutter [1964] for the
V-notch weir at the Shale Hills watershed. The calibrated
rating curve is:

Q5

2446:5831025:561181:6722778:15x2

; 0 < x � 0:034 m;

3:083104x2:46; 0:034 m < x � 0:100 m;

3:123106x4:47; x > 0:100 m;

8>><
>>:

(5)

where x is the measured water level (m), and Q is the dis-
charge rate (m3 d21). The precision of Campbell CS420-L
transducers is 60.1% full scale (0–10 psi), which is equiva-
lent to about 7 mm of water level [Campbell Scientific Inc.,
2007]. Figure 3a shows the rating curves with 7 mm errors
in measured water level (Q1 and Q2). Clark et al. [2008]
found that converting discharge to log space improves
EnKF performance. Their strategy is adopted in this study.
Prior to each analysis step, the discharge observation Qo is
converted to ln ðQo1�Þ, and for each ensemble member i,
model discharge forecast Qf

i is converted to ln ðQf
i 1�Þ,

where � is a very small discharge rate (set to 1024 m3 d21

in this study) used to avoid taking the logarithm of a zero
discharge rate. The precision of discharge measurement in
log space at the Shale Hills watershed is approximated by

rln Q50:5 ln Q12ln Q2ð Þ; (6)

as shown in Figure 3b. To simplify the calculation of rln Q,
two linear segments are used to fit the rln Q curve:

Figure 2. Grid setting for the Shale Hills watershed model domain. The watershed boundary, stream
path, surface elevation, and locations of RTHnet measurements used in this study are shown.

Table 2. Standard Deviation of Gaussian White Noise Added to
Each Observation Data Set

Data Set
Standard Deviation of
Gaussian White Noise

Outlet discharge rate (m3 d21) Equation (7)a

Water table depth (m) 0.007 ma

Integrated soil moisture (m3 m23) 0.01 m3 m23b

Land surface temperature (�C) 1�Cc

Sensible heat flux (W m22) 10% of fluxd

Latent heat flux (W m22) 10% of fluxd

Transpiration rate (mm d21) 10% of fluxd

aPrecision of Campbell CS420-L pressure transducers.
bPrecision of Decagon Echo2 EC-20 soil moisture sensors.
cWan and Li [1997]; Yu et al. [2008]; Coll et al. [2009]; Wang and

Liang [2009].
dLenschow and Stankov [1986]; Lenschow et al. [1994]; Baldocchi

et al. [1996]; Finkelstein and Sims [2001]; Baldocchi [2003]; Richardson
et al. [2006]; Salesky et al. [2012].
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rln Q5
20:509 ln Q1�ð Þ11:448; Q1� � 8:731m3d21;

20:0332 ln Q1�ð Þ10:417; Q1� > 8:731m3d21:

(
(7)

[38] Equation (7) is used in this study to estimate the
observation error of discharge in log space. The ground-
water level at the RTHnet wells are also measured with
Campbell CS420-L (0–10 psi) pressure transducers, with a
precision of 7 mm. The soil moisture contents are measured
using Decagon Echo2 EC-20 soil moisture sensors. Czar-
nomski et al. [2005] examined the precision of the EC-20
sensors and found that the precision of which is about
4.8%. Because the annual average soil moisture content at
the Shale Hills watershed is about 0.2 m3 m23, we thus
assume that the precision of the soil moisture sensors is
0.01 m3 m23. The observation error of land surface temper-
ature is assumed to be 1.0�C, based on prior validations of
MODIS land surface temperature product [Wan and Li,
1997; Yu et al., 2008; Coll et al., 2009; Wang and Liang,

2009]. The observation errors of sensible and latent heat
fluxes (H and LE) are assumed to be 10% based on exten-
sive prior study of the nature of random errors in eddy
covariance flux measurements [Lenschow and Stankov,
1986; Lenschow et al., 1994; Baldocchi et al., 1996; Fin-
kelstein and Sims, 2001; Baldocchi, 2003; Richardson
et al., 2006; Salesky et al., 2012]. Careful assessment of
the precision of watershed-scale transpiration measure-
ments (Et) is lacking, so we have used the same precision
estimate as for eddy covariance flux measurements.

[39] The parameters to be estimated in this study and
their a priori values are presented in Table 3: the effective
porosity He, the van Genuchten [1980] soil parameter a,
the van Genuchten soil parameter b, the Zilitinkevich
[1995] parameter Czil, the minimum stomatal resistance Rc

min, and the reference canopy water capacity S. These six
parameters show high distinguishability, observability, and
simplicity [Zupanski and Zupanski, 2006; Nielsen-Gam-
mon et al., 2010] in the parameter sensitivity analysis [Shi
et al., 2013b]. High distinguishability, observability, and
simplicity have been proven critical for EnKF parameter
estimation [Nielsen-Gammon et al., 2010; Hu et al., 2010;
Aksoy et al., 2006]. Therefore these six parameters are
selected for EnKF parameter estimation. The physically
plausible ranges of those parameters are obtained from pre-
vious studies [e.g., Beven and Binley, 1992; Chen et al.,
1997; Gupta et al., 1999; Eckhardt and Arnold, 2001;
Anderton et al., 2002; Tang et al., 2006] and experience
from manual calibration [Shi et al., 2013a], and are pre-
sented in Table 3. Details about those parameters can be
found in Shi et al. [2013a, 2013b]. The parameters that are
not estimated are set to their manually calibrated values as
in Shi et al. [2013a]. The Flux-PIHM Shale Hills watershed
model domain has 535 triangular grids and 20 river seg-
ments. Including the variables in Table 1 and the six
parameters (global calibration coefficients) in Table 3, the
total dimension of the joint state-parameter vector is 7002.

[40] Several test cases are used for the synthetic data
experiments (Table 4). For each test case, a total of 30
ensemble members are involved. Ensemble runs with 50
ensemble members have been tested, but the increase in
ensemble members does not measurably improve the
results in terms of the mean squared errors of the estimated
parameters. Therefore, 30 ensemble members are used to
reduce computational cost. To generate different ensemble
members, calibration coefficients of those six parameters
are randomly perturbed within their plausible ranges. For

Figure 3. (a) Rating curves for the Shale Hills watershed
outlet V-notch weir and (b) representative discharge mea-
surement error. The dashed and dotted lines in Figure 3a
represent rating curves with 7 mm error in measured water
level. The dashed line in Figure 3b represents the manual
fitting curve for the representative error.

Table 3. Flux-PIHM Model Parameters to be Estimated and the Plausible Ranges of Their Calibration Coefficients

A Priori Value

Soil Type Range of Calibration
Parameter Description Weikert Berks Rushtown Blairton Ernest Coefficient

He Effective porosity (m3 m23) 0.48 0.32 0.33 0.29 0.34 0.3–1.2
a Van Genuchten soil parameter (m21) 2.46 2.51 2.84 2.79 3.27 0–2.5
b Van Genuchten soil parameter 1.20 1.21 1.33 1.33 1.32 0.95–2.5

Vegetation Type
Decidous Forest Evergreen Forest Mixed Forest

Rc min Minimum stomatal resistance (s m21) 100 150 125 0.3–1.2
S Reference canopy water storage (mm) 0.20 0.20 0.20 0–5

Other
Czil Zilitinkevich parameter 0.10 0.1–10
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each parameter (calibration coefficient) /, the values are
randomly drawn from a Gaussian distribution, with an ini-
tial standard deviation of r050:2 /max 2/minð Þ. The initial
ensemble means for different test cases are presented in
Table 4. The parameter Czil is perturbed in log space
because the plausible range for Czil spans orders of magni-
tude. The correlation coefficients between different param-
eters among all ensemble members are examined to
guarantee that the initial correlation coefficient (absolute
value) between any two of those parameters is �0.25.
Same as the truth run, all of the ensemble members start
from 0000 UTC 1 January 2009, and the calibration period
is from 1700 UTC 1 March to 0000 UTC 1 August 2009.
All model runs start from saturation in relaxation mode.
Because accurate in situ meteorological observations (e.g.,
precipitation and temperature) are collected at this small-
scale watershed (0.08 km2), we assume that the uncertain-
ties in meteorological forcing are negligible, compared
with the uncertainties in model parameters. Therefore, the
meteorological forcing used for each ensemble member is
the same as for the truth run. The first set of observations is
assimilated at 1700 UTC 1 March 2009. We choose to
assimilate observations at the midday time steps (1700
UTC) because the land surface fluxes have the strongest
correlation with model parameters at midday. Thus, assimi-
lating observations at midday is the most effective in cor-
recting the biases in model states and parameters. Different
assimilation intervals (24, 48, 72, and 96 h) and different
combinations of observations are tested (Table 4).

[41] The assumption of homogeneous atmospheric forc-
ing is well justified given the very small (microscale) grid
sizes in our model [Mahrt, 2000]. We conducted a single
test of our assumption that meteorological forcing uncer-
tainties are negligible and found no impact of 10% random
errors in precipitation, the meteorological input variable
most likely to suffer from random observational errors.

[42] Each parameter is judged to have converged when
the standard deviation of the parameter decreases to 0.25
r0, where 0.25 r0 is also the threshold specified for the con-
ditional covariance inflation method. The temporal average
of the ensemble mean after convergence is considered to be
the calibrated value of each parameter. If the parameter
does not converge during the calibration period, i.e., the
standard deviation of parameter is always >0.25 r0, the
temporal average of the parameter values between 0000
UTC 1 July and 0000 UTC 1 August 2009 is calculated as
the calibrated value for the parameter.

[43] Flux-PIHM runs using the calibrated parameter val-
ues from different test cases are performed and compared
with the truth run to evaluate the estimated parameter val-
ues. Besides those test cases in Table 4, a NoPE (no param-
eter estimation) run is also performed. In the NoPE
evaluation run, the calibration coefficients for those six
parameters are set to 1.0, which means those parameters
are uncalibrated and the a priori parameter values in Table 3
are used. All of the evaluation runs start from 0000 UTC 1

January 2009 from the relaxation mode. Model forecasts
from 0000 UTC 1 August to 0000 UTC 1 December 2009,
which is the period right after the calibration period, are
used to evaluate the model performance. The predictions of
all observable variables are compared with the truth run.
For hydrologic variables (Q, WTD, and SWC), compari-
sons are made at every hour. For land surface variables
(Tsfc, H, LE, and Et), comparisons are made only at 1700
UTC on every day to filter out the diurnal cycles of surface
fluxes.

4. Results

4.1. Accuracy of EnKF Parameter Estimation

[44] The control run is used to examine the accuracy of
EnKF parameter estimation. In the control run, the initial
guess of parameter values is at the center of their uncer-
tainty ranges (Table 4). Figure 4 presents the true values
and the temporal evolutions of the parameters from the
control run. All of the six parameters approach their true
values (Figure 4). After about 10 observation cycles (about
1 month simulations after the first set of observations is
assimilated), all parameters are very close to their true val-
ues, with the true values inside or close to the 1 standard
deviation (1-r) spreads. The estimated parameter values
oscillate around the true values after they approach them
(Figure 4).

[45] The standard deviations of those parameters are
decreasing over time before convergence (Figure 4), which
indicates the decrease in parameter uncertainties. All of the
parameters have converged (i.e., the standard deviations of
the parameters have decreased to 0.25 r0). Among the six
parameters, the standard deviations of a, b, and Czil drop
the fastest because of their strong correlations with state
variables [Shi et al., 2013b]. The standard deviations of He

and S drop the slowest because the identifiability of He is
only high at discharge peaks, and S is only effective when
the canopy is wet, as found in Shi et al. [2013b].

Table 4. Initial Ensemble Mean Of Parameters, Assimilation Intervals, and Assimilated Observations of Different Test Casesa

Case Initial Ensemble Mean Assimilation Interval Q WTD SWC Tsfc H LE Et

Control run (CR) 0:5 /min 1/maxð Þ 72 h X X X X X X X
Case1 0:5 /min 1/maxð Þ2r0 72 h X X X X X X X
Case2 0:5 /min 1/maxð Þ1r0 72 h X X X X X X X
96 h Same as CR 96 h X X X X X X X
48 h Same as CR 48 h X X X X X X X
24 h Same as CR 24 h X X X X X X X
Q Same as CR 72 h X
SSHCZO Same as CR 72 h X X X X X
NoSWC Same as CR 72 h X X X X X X
NoWTD Same as CR 72 h X X X X X X
QST Same as CR 72 h X X X

aX indicates the listed observation is assimilated, and blank indicates the observation is not assimilated.
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[46] Figure 5 demonstrates the capability of EnKF in
state estimation, and two representative observable varia-
bles Q and Tsfc are presented. Figure 5 shows that EnKF is
effective in optimizing model variables. It is especially
apparent in the second assimilation cycle for Q (Figure
5a): although the prior (ensemble prediction) of Q has a
relatively large error, EnKF successfully corrects the error

in Q and significantly improves the estimate. Before the
calibration period, the model errors and uncertainties (espe-
cially for Tsfc) are both relatively large. When more obser-
vations are assimilated, the errors and uncertainties of
model parameters decrease (Figure 4), thus the model
errors and uncertainties of variables decrease (Figure 5).
Figure 5a shows some spin-up effects in Q. There is always

Figure 4. True values and temporal evolutions of parameters from the control run. The dashed lines
represent the true parameter values, and the shaded areas represent the one standard deviation (1-r)
spread.

Figure 5. Temporal evolution of the ensemble prediction of (a) discharge and (b) mid-day land surface
temperature in the control run from 0000 UTC 1 February to 0000 UTC 1 May 2009. The shaded area
represents the 1-r spread of the ensemble prediction.

SHI ET AL.: PARAMETER ESTIMATION USING ENKF

714



an increase in model error and uncertainty at the beginning
of each forecast cycle, because the update of state variables
and parameters via EnKF disrupts the equilibrium in the
system. This spin-up effect is more significant in hydro-
logic variables (Q, WTD, and SWC) than in land surface
variables (Tsfc, H, LE, and Et). Figure 5b shows an over-
shooting effect. When the first set of observations is assimi-
lated, the analysis (posterior) of Tsfc overshoots the
observation of Tsfc, due to the effects of other types of
observations on Tsfc.

[47] The calibrated parameter values are listed in
Table 5. Errors of calibrated parameter values in the control
run are all <0.25 r0. Because 0.25 r0 is the threshold speci-
fied for the conditional covariance inflation method, an
error< 0.25 r0 indicates that the true parameter value is
within the 1-r spread of ensemble mean after convergence.
The comparisons between the evaluation run using the cali-
brated parameter set and the ‘‘truth’’ are presented in Fig-
ure 6. Note that the evaluation run is the deterministic
model run using the calibrated parameter set in Table 5, but
not the ensemble calibration run shown in Figure 5. Com-
pared with the NoPE run, calibrated parameter values from
the control run significantly improve the model predictions,
especially for the hydrologic variables (Figure 6). Predic-
tions of all observable variables from the evaluation run
agree well with the truth (Figure 6). Both the correlation
coefficients and the normalized root-mean-square errors
(RMSEs) of the predictions are very close to 1.0. The mean
biases in different predictions are negligible.

4.2. Optimal Assimilation Interval

[48] The control run (with a 72 h assimilation interval),
96, 48, and 24 h cases (Table 4) are used to find the optimal
assimilation interval for parameter estimation. The same 30
ensemble members are used to start each test case. Figure 7
presents the true values and the temporal evolutions of the
parameters from those test cases. Generally, as shown in
Figure 7, the performance of parameter estimation is the
worst when the assimilation interval is 24 h. For the 24 h
case, EnKF keeps increasing a, and decreasing b and He to
compensate the spin-up effect. Differences among 48 h,
control run (72 h), and 96 h are not significant in Figure 7.

[49] The RMSEs and absolute biases of the estimated
parameter values for those test cases after convergence are
calculated to quantify the effects of assimilation intervals.
The results are presented in Figure 8. The RMSEs pre-
sented here are normalized by the RMSEs in the control

run. For all the parameters except for Czil, RMSEs and
absolute biases decrease monotonically when the assimila-
tion interval increases from 24 to 72 h (Figure 8). For the
parameter Czil, there is no obvious tendency with respect to
the assimilation interval. This spin-up effect is the most
prominent in the parameter a. When the assimilation inter-
val increases from 72 to 96 h, no significant improvement
in parameter estimation (in terms of RMSEs and absolute
biases) is found (Figure 8). It suggests that the assimilation
interval of 72 h is long enough to eliminate the impacts of
spin-up effect in the synthetic experiments. Although lon-
ger assimilation intervals would also be sufficient to avoid
the spin-up effect (e.g., the 96 h case), longer assimilation
intervals mean that fewer observations would be assimi-
lated into the system during the same simulation period.
Therefore, 72 h is the optimal assimilation interval for the
synthetic experiments at the Shale Hills watershed.

4.3. Sensitivity to Initial Parameter Values

[50] The control run, Case1, and Case2 (Table 4) are
used to demonstrate the sensitivity of EnKF parameter esti-
mation to different initial parameter values. Figure 9
presents the true values and the temporal evolutions of the
estimated parameters from those three test cases. In all of
the three test cases, all six parameters approach their true
values (Figure 9). Starting from different initial guesses, the
estimated parameter values from different test cases become
close after about 2 month simulation and data assimilation.
The temporal fluctuations of parameter values from different
test cases are similar. Those fluctuations are mostly caused
by the observation errors in the synthetic observations.

[51] All of the parameters from those three test cases
have converged (i.e., the standard deviations of the parame-
ters have decreased to 0.25r0). Errors of the calibrated
parameter values from those three test cases are all <0.25
r0 (Table 5), indicating that the true parameter values are
within the 1-r spread of the ensemble prediction after con-
vergence. The comparisons between the evaluation runs
using the calibrated parameter sets and the truth are pre-
sented in Figure 6. The performances of the evaluation runs
using Case1 and Case2 parameters are very similar to the
control run, and show significant improvements in model
predictions over the NoPE run.

4.4. Efficiency of Assimilating Different Observations

[52] The control run, Q, SSHCZO, NoSWC, NoWTD,
and QST cases are compared to illustrate the efficiency of

Table 5. Calibrated Parameter Calibration Coefficients From Different Test Casesa

Case He a b Czil Rc min S

True value 0.52 1.50 1.30 0.70 0.50 2.00
Control run 0.51 1.48 1.32 0.70 0.47 2.02
Case1 0.52 1.59 1.30 0.71 0.48 1.87
Case2 0.54 1.50 1.32 0.70 0.48 1.91
Q (0.49) 0.81 (1.51) (0.46) (0.60) (1.93)
SSHCZO 0.49 1.46 1.33 0.88 0.45 (2.40)
NoSM 0.52 0.91 1.46 0.70 0.48 2.01
NoWTD 0.48 1.46 1.33 0.70 0.47 1.89
QST 0.48 1.38 1.36 0.66 0.52 (3.44)
NoPE 1.00 1.00 1.00 1.00 1.00 1.00

aCalibrated values in bold font indicate that the estimated values have errors >0.25r0. Estimated values in parentheses indicate that the estimation of
the parameter does not converge, i.e., the standard deviation of the parameter is always >0.25r0 during the calibration period.
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Figure 6. Evaluation of the model predictions using the estimated parameter sets from the control run
(CR), Case1, Case2, and NoPE. Correlation coefficient, normalized standard deviation, and root mean
squared error are presented in Taylor diagrams. Insets show the average hourly biases.
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assimilating different observations. Among them, the Q
case only assimilates the discharge observations as in most
previous studies of hydrologic model calibrations. The
SSHCZO case uses those synthetic observations that repre-
sent the observations available at the Shale Hills Critical
Zone Observatory (SSHCZO) within the Shale Hills water-
shed. The NoSWC and NoWTD test cases eliminate soil
moisture and water table depth observations, respectively.
The QST case assimilates the discharge, soil moisture, and
land surface temperature observations, which are assumed
to be the essential observations for Flux-PIHM at the Shale
Hills watershed. Figure 10 presents the true values and the

temporal evolutions of the parameters from those test cases.
The same 30 ensemble members are used to start each test
case. The calibrated values for each parameter in different
test cases are listed in Table 5. The comparisons of observ-
able variables between evaluation runs using the calibrated
parameter sets and the truth are presented in Figure 11.

[53] Figure 10 and Table 5 show that when discharge is
the only observation data set assimilated into the system,
EnKF can only provide good estimates for model parame-
ters He and S, the errors of which are <0.25r0. Except for
the parameter a, the other calibrated parameters do not con-
verge in this test case (Table 5), and the calibrated parame-
ter values still have relatively large uncertainty. Compared
with the NoPE evaluation run, although this test case (Q)
provides good estimates for only two of the six model
parameters, the calibrated parameters from this test case
strongly improve the prediction of discharge (Figure 11a).
Comparison of the discharge prediction with the truth
shows a high correlation coefficient (about 0.99) and a nor-
malized standard deviation comparable with other test
cases, although this test case underestimates the total dis-
charge by 10.31 m3 d21 (10.59%; Figure 11a). The assimi-
lation of discharge observations helps the system obtain
model parameters that can produce reasonable discharge
predictions. For the other two hydrologic variables (WTD
and SWC), the correlation coefficients are only better than
the NoPE run, but lower than the other test cases, especially
for SWC. It indicates that parameters obtained in the Q
case have limited ability in resolving the temporal pattern
of wetting and drying in WTD and SWC. The SWC simula-
tion also significantly overestimates the amplitude of tem-
poral variation in SWC, and has a relatively large model
bias. Due to the lack of land surface variable observations,
estimations of land surface parameters (Rc min and Czil) are
poor (Figure 10 and Table 5). The calibrated parameters in

Figure 7. True values and temporal evolutions of parameters from the control run (CR; 72 h), 96, 48,
and 24 h. The dashed lines represent the true parameter values.

Figure 8. RMSEs and absolute biases of the estimated
parameter values after convergence. RMSEs from all test
cases are normalized by the RMSEs in control run (CR).
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this test case (Q) cannot reproduce the temporal variation
of land surface variables well (Figures 11d–11g).

[54] When SWC is not assimilated into the system (the
NoSWC test case), EnKF cannot provide good estimates of
a and b, and the errors in a is much >0.25r0 (Figure 10
and Table 5). The sensitivity analysis of Flux-PIHM
showed that the effect of a is the most significant in SWC
[Shi et al., 2013b]. In this test case, EnKF underestimates

a, and thus produces a relatively large bias in SWC (Figure
11c). Although the parameter values of a and b estimated
in this test case have relatively large errors, the discharge
and WTD predictions using these estimated parameter val-
ues are comparable to the control run.

[55] The calibrated parameter values from the NoWTD
case are very close to the control run (Figure 10 and
Table 5). The predictions using those calibrated parameter

Figure 9. True values and temporal evolutions of parameters from the control run (CR), Case1, and
Case2. The dashed lines represent the true parameter values.

Figure 10. Same as Figure 9, but for the control run (CR), Q, SSHCZO, and NoSWC, NoWTD, and
QST.
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Figure 11. Same as Figure 6, but for the control run (CR), Q, SSHCZO, NoSWC, NoWTD, QST, and
NoPE.
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values are as good as the control run (Figure 11), which
suggests that effect of assimilating WTD observations is
limited.

[56] The QST case is used to test the most essential
observations. Assimilating only three types of the seven
available observations, the estimated parameter values
from the QST case are close to the control run, except for
the parameter S, which does not converge during the cali-
bration period (Figure 10 and Table 5). The evaluation run
predictions of the QST test case are comparable to other
test cases (Figure 11), although the calibrated parameter set
produces relatively large biases in discharge and transpira-
tion rate compared with other test cases. On average, this
test case overestimates the discharge by 8.11% (Figure
11a), and underestimates the midday transpiration by
6.26% (Figure 11g).

[57] The SSHCZO case does not assimilate Tsfc and Et.
The calibrated values of parameters, except for Rc min and S,
are very close to the true values (Figure 10 and Table 5).
The predictions of the hydrologic variables are almost as
good as in the control run (Figures 11a–11c). For the land
surface variables, the prediction of the SSHCZO case over-
estimates Tsfc by 1.10�C, because observations of Tsfc are
not assimilated, but the predictions of H, LE, and Et are only
slightly worse than the control run (Figures 11d–11g). In
spite of the lack of Tsfc and Et observations, the assimilation
of H and LE are sufficient to represent land surface states.

4.5. Parameter Interaction

[58] Because EnKF is based on ensemble generation, the
relationship among different ensemble members reveals the
interactions between model parameters. Table 6 presents
the temporal average of correlation coefficients between
the estimated parameter values from 0000 UTC 1 June to
0000 UTC 1 August 2009 for three different test cases.
This period is chosen because all parameters from those
three test cases have converged during this period. Most of
the parameter pairs have relatively low correlation

coefficients between 20.2 and 10.2 after convergence
(Table 6). Although the initial ensemble is generated such
that the initial correlation coefficient (absolute value)
between any two of the parameters is �0.25, there are three
pairs of parameters, a-b, a-Rc min, and Czil-Rc min that show
correlations (absolute values) >0.25 after convergence
(Table 6). Among them, a-b and a-Rc min show relatively
high correlations in all three test cases. Because a and b are
hydrologic parameters, and Czil and Rc min are land surface
parameters, those three pairs of parameters, respectively,
represent the interaction between hydrologic parameters,
the interaction between land surface and subsurface, and
the interaction between land surface parameters.

5. Discussion and Conclusions

[59] This paper presents the multiple parameter estima-
tion of a coupled physically based land surface hydrologic
model (Flux-PIHM) using multivariate observations via
EnKF. Results demonstrate that, given a limited number of
site-specific observations, the EnKF can be used to provide
good estimates of Flux-PIHM model parameters, with asso-
ciated uncertainties. The EnKF data assimilation system
designed in this study provides a new approach for physi-
cally based hydrologic model calibration using multivariate
observations. The sequential parameter estimation can save
considerable manual labor required for the implementation
of hydrologic models, especially physically based models,
at different watersheds.

[60] The test cases with different assimilation intervals
show that the spin-up effect degrades the accuracy of the
estimated hydrologic parameters. The spin-up effect is
more prominent for the hydrologic parameters than the
land surface parameters. In this study at the Shale Hills
watershed, the assimilation interval of 72 h is found to be
optimal for the synthetic experiments.

[61] The performance of the test case Q indicates that
assimilating discharge alone can improve the prediction of
discharge, however, the improvement is limited compared
with other test cases. The predictions of subsurface varia-
bles (especially SWC) and land surface variables in this
test case are poor compared with other test cases (Figure
11). The prediction of discharge can be significantly
improved when SWC observations are assimilated. Those
findings agree with the findings of Camporese et al.
[2009a, 2009b], Bailey and Ba�u [2010], and Lee et al.
[2011]. This test case (Q) shows that assimilating discharge
observation alone cannot provide reliable land surface
parameter (Czil and Rc min) estimation.

[62] The effect of WTD observations is not strong when
discharge and SWC observations are assimilated. At the
Shale Hills watershed over 80% of annual discharge comes
from subsurface runoff [Shi et al., 2013a], thus the tempo-
ral variations of discharge and WTD are well correlated. In
addition, WTD and SWC observations are also highly cor-
related [Shi et al., 2013a]. Therefore, WTD is not an inde-
pendent data set, and the effect of WTD observations is
very limited at this small watershed when discharge and
SWC observations are both assimilated.

[63] The test cases QST and SSHCZO show that both
Tsfc and surface heat fluxes are good indicators of land sur-
face states. Assimilation of either Tsfc or surface heat fluxes

Table 6. Average Correlation Coefficients Between Estimated
Parameter Values From 0000 UTC 1 June to 0000 UTC 1 August
2009 in Three Different Test Casesa

He a b Czil Rc min S

He 1.00 20.04 20.06 20.02 0.07 20.06
1.00 0.10 20.11 0.02 0.03 0.00
1.00 20.03 20.03 0.01 0.02 20.02

a 1.00 20.47 0.08 20.29 0.06
1.00 20.36 0.00 20.26 20.06
1.00 20.31 0.02 20.45 20.02

b 1.00 20.09 20.05 0.00
1.00 20.06 20.05 0.05
1.00 20.07 0.11 0.04

Czil 1.00 20.26 0.00
1.00 20.20 0.03
1.00 20.25 20.02

Rc min 1.00 20.20
1.00 20.16
1.00 20.03

S 1.00
1.00
1.00

aThe correlation coefficients shown in each cell are in sequence for con-
trol run, Case1, and Case2 (from top to bottom).
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is sufficient for land surface parameter estimation. The test
case QST also demonstrates that Q, SWC, and Tsfc are the
essential observations for the estimation of those six model
parameters at the Shale Hills watershed. The SSHCZO test
case assimilates observations which are currently available
at the Shale Hills watershed. The results are very encourag-
ing. It indicates that using the currently available observa-
tion data sets for real data EnKF parameter estimation is
promising.

[64] There are several test cases that do not assimilate Et

observations: the test cases Q, SSHCZO, and QST. Results
from those test cases show that as long as Tsfc or surface
heat fluxes are assimilated into the system, the system is
able to obtain model parameters that could provide reason-
ably good Et prediction (Figure 11g). Therefore, the mea-
surement of Et is not critical for model calibration purpose.

[65] Results from different test cases imply that the
assimilation of multivariate observations improves the
accuracy of parameter estimation, and provides unique
parameter solutions. For example, when SWC observations
are not assimilated into the system (NoSWC and Q test
cases), EnKF cannot provide accurate estimates of the van
Genuchten parameters (Table 5), although both test cases
provide good discharge predictions (Figure 11a). More
interestingly, the a and b values estimated for those two
test cases (NoSWC and Q test cases) are very close (Table
5). From the equifinality [Beven, 1993] perspective, when
SWC is not assimilated, EnKF finds another point in the a-
b space, which produces almost equally good discharge
predictions as the true parameter values. Only when SWC
observations are assimilated, can EnKF find the unique and
accurate solutions of a and b. The assimilation of multivar-
iate observations can apply more constraints to model
parameters, avoid the difficulty brought by model equifinal-
ity, and provide unique parameter solutions. By testing the
influences of assimilated observations in synthetic experi-
ments, the required observations to identify the unique
parameter set can be found. The data assimilation system
developed in this paper can thus be used to provide guid-
ance of observational system designs.

[66] The EnKF provides the estimates of not only param-
eter values and model states, but also their uncertainties.
When more types of observations are assimilated into the
system (e.g., the control run), the uncertainties estimated
by EnKF decrease faster. When only limited types of obser-
vations are assimilated into the system (e.g., the Q,
SSHCZO, and QST test cases), the uncertainties estimated
by EnKF decrease slowly, and some of the parameters do
not even converge (Table 5). The uncertainties by EnKF
result from various sources, e.g., the uncertainties of obser-
vations and model parameters. The quantification of uncer-
tainties is very useful for practical application, because the
accurate estimates of uncertainty is required in the opera-
tional flood and drought forecasting. This EnKF data
assimilation system provides the possibility to perform
real-time online probabilistic forecasting using a determin-
istic model, which explicitly accounts for uncertainties
from different sources (e.g., parameter, model structure,
meteorological forcing, and assimilated observations).

[67] It needs to be pointed out that those results are based
on a perfect model, perfect forcing data, and a perfect
model domain configuration. Model structural errors,

forcing data errors, observation errors, and domain configu-
ration errors (e.g., errors in input topography, soil map, and
land cover map) would pose extra difficulties for parameter
estimation using real data. The synthetic observations used
in this study have Gaussian errors with no biases, and the
synthetic errors only include the random instrumental
errors. In reality, some observations (e.g., discharge and
surface heat fluxes) may have non-Gaussian errors, the
MODIS land surface temperature observations may have
systematic biases [Wan et al., 2002; Wang et al., 2008],
and the eddy covariance measurements fail to close the
energy budget [McNeil and Shuttleworth, 1975; Fritschen
et al., 1992; Twine et al., 2000]. Moreover, the soil mois-
ture and water table depth observations may have represen-
tativity errors in addition to the instrumental errors. Those
errors are not accounted for in this study, and need to be
taken into account for real data applications. Different
approaches have been used to assimilate observations
which have consistent biases, e.g., rescaling the observa-
tions, subtracting the long-term means from observations
and predictions, or assimilating the tendencies of observa-
tions instead of their absolute values [Hain et al., 2012;
Mackaro et al., 2012]. The impact of non-Gaussian, non-
zero-bias observations on Flux-PIHM parameter estima-
tion, however, still needs to be tested.

[68] Although the initial parameters are perturbed inde-
pendently, EnKF is able to identify the interacting parameters
(Table 6). Results from the control run, Case1 and Case2
reveal strong correlation between the van Genuchten parame-
ters a and b (Table 6). The negative correlation found
between a and b in these three test cases agree with the results
in other test cases. As shown in Table 6, whenever a is under-
estimated, b is always overestimated, and vice versa. The
strong correlation found between the van Genuchten parame-
ters suggests strong interactions between those parameters.
The interaction leads to model equifinality [Beven, 1993], and
explains why the test cases Q and NoSWC provide poor esti-
mates of a and b but acceptable discharge predictions. Bald-
win [2011] derived the van Genuchten parameters at 61 sites
in the Shale Hills watershed based on soil moisture observa-
tions at different depths, and analyzed the spatial relationship
between the van Genuchten parameters. The results showed
that the correlation coefficient between the van Genuchten
parameters from all depths and locations is 20.28. The corre-
lation coefficients between van Genuchten parameters at 10
cm and 20 cm below ground reach 20.44 and 20.48, respec-
tively. The correlation between the van Genuchten parameters
estimated by EnKF agrees well with Baldwin [2011] observa-
tional results.

[69] The relatively high correlation between the van
Genuchten parameter a and the minimum stomatal resist-
ance Rc min (Table 6) suggests interaction between land sur-
face and subsurface. The model sensitivity analysis shows
that the model soil moisture prediction is very sensitive to
the change in the parameter a [Shi et al., 2013b], and soil
moisture affects transpiration, which is also influenced by
Rc min. The parameters a and Rc min are therefore connected
through the effect of soil moisture on transpiration. The
correlations between the hydrologic and land surface
parameters represent the interaction between the subsurface
and land surface, which suggests that subsurface and land
surface systems are closely coupled.
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[70] The correlations between different parameters
revealed by the EnKF system are useful for the study of the
interaction between dynamic systems, and are useful for
the simplification of model parameterization schemes. The
ability of EnKF to identify the interacting parameters and
quantify the correlations between parameters suggests that
it may not be necessary to take into account the correlation
between parameters when generating the initial ensemble.
This is valuable because prior information describing
parameter correlation is frequently not available.
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