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a b s t r a c t

The capability of an ensemble Kalman filter (EnKF) to simultaneously estimate multiple parameters in a

physically-based land surface hydrologic model using multivariate field observations is tested at a small wa-

tershed (0.08 km2). Multivariate, high temporal resolution, in situ measurements of discharge, water table

depth, soil moisture, and sensible and latent heat fluxes encompassing five months of 2009 are assimilated. It

is found that, for five out of the six parameters, the EnKF estimated parameter values from different test cases

converge strongly, and the estimates after convergence are close to the manually calibrated parameter val-

ues. The EnKF estimated parameters and manually calibrated parameters yield similar model performance,

but the EnKF sequential method significantly decreases the time and labor required for calibration. The results

demonstrate that, given a limited number of multi-state, site-specific observations, an automated sequential

calibration method (EnKF) can be used to optimize physically-based land surface hydrologic models.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Uncertainties in model parameters are a dominant source of un-

ertainty for hydrologic models [28]. The ensemble Kalman filter

EnKF) [13] provides a promising approach for the automated cal-

bration of hydrologic models [26,29,39,46]. Most previous stud-

es applied EnKF to conceptual or process-based hydrologic mod-

ls. Shi et al. [39] performed a multiple-parameter estimation for a

hysically-based land surface hydrologic model, Flux-PIHM [37], via

nKF and assimilating multivariate synthetic observations including

ischarge, water table depth, soil moisture, land surface tempera-

ure, sensible and latent heat fluxes, and transpiration. The model-

ng and data assimilation system was implemented at the Shale Hills

atershed (0.08 km2) in central Pennsylvania, the site of the Susque-

anna/Shale Hills Critical Zone Observatory (SSHCZO). Results from

he synthetic data experiments indicated that EnKF is capable of pro-

iding accurate estimation of multiple Flux-PIHM model parameters,

nd the assimilation of multivariate observations including those cur-

ently available at the SSHCZO applied strong constraints to model

arameters.
∗ Corresponding author: Tel.: 8148657393.
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Real-data experiments, however, have notable difficulties that do

ot exist with synthetic data experiments, because the errors in

odel predictions expand to include the errors from forcing data,

omain configuration, observation bias, and model structure. When

nKF is used to estimate parameter values, over-adjustment may oc-

ur, which may cause large changes in parameter values and param-

ter uncertainties, and lead to system “shocks”, when the dynamic

alance of model system is destroyed and the model attempts to re-

tore the dynamic balance [18].

The goal of this research effort is to test the ability of the EnKF

ystem to estimate multiple parameters in Flux-PIHM with the as-

imilation of real multivariate observations at a field site with co-

ocated measurements. Extensive and detailed field site characteri-

ation along with a broad array of observations is available at the

SHCZO. This study site thus provides an unprecedented opportunity

or real-data assimilation experiment. We test the EnKF system’s abil-

ty to estimate Flux-PIHM model parameters with SSHCZO observa-

ions. Model performances with the EnKF-estimated parameter val-

es and manually calibrated values are compared to assess the qual-

ty of the EnKF-estimated parameter values. In addition, we test the

erformance of the data assimilation system when driven by atmo-

pheric reanalysis and remotely-sensed forcing data, to evaluate the

bility of the data assimilation method to adapt to commonly avail-

ble continental-scale driver data.

http://dx.doi.org/10.1016/j.advwatres.2015.06.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2015.06.009&domain=pdf
mailto:yshi@psu.edu
http://dx.doi.org/10.1016/j.advwatres.2015.06.009
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Table 1

Flux-PIHM model parameters, their plausible ranges of calibration coefficients, estimates from different test cases, and manual calibration values [37]. The test cases

are 1: Case0, 2: Case+, 3: Case−, 4: NLDAS, 5: MODIS, and 6: NLDAS+MODIS.

Parameter Description Range of calibration coefficient Test cases

1 2 3 4 5 6 Manual

�e Effective porosity (m3 m−3) 0.3–1.2 0.62 0.67 0.65 0.60 0.63 0.61 0.52

α van Genuchten soil parameter (m−1) 0–2.5 1.50 1.57 1.49 1.31 1.38 1.33 1.50

β van Genuchten soil parameter (dimensionless) 0.95–2.5 1.34 1.29 1.34 1.40 1.35 1.37 1.30

Rc min Minimum stomatal resistance (s m−1) 0.3–1.2 0.41 0.49 0.43 0.48 0.63 0.65 0.50

S Reference canopy water storage (mm) 0–5 3.15 4.53 1.13 3.80 3.45 0.55 2.00

Czil Zilitinkevich parameter (dimensionless) 0.1–10 1.15 1.09 1.23 0.81 1.32 0.93 0.70
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2. Flux-PIHM EnKF system

Flux-PIHM [37] is a coupled land surface hydrologic model. Flux-

PIHM incorporates a land surface scheme into the Penn State Inte-

grated Hydrologic Model (PIHM) [21,33,34], which is a fully-coupled,

physically-based, spatially-distributed hydrologic model. The land

surface scheme in Flux-PIHM is adapted from the Noah land surface

model (LSM) [8,12]. The land surface and hydrologic components are

coupled by exchanging water table depth, infiltration rate, recharge

rate, net precipitation rate, and evapotranspiration rate between the

two model components.

A Flux-PIHM data assimilation system has been developed by in-

corporating EnKF for model parameter and state estimation [39] us-

ing the EnKF formulation from Snyder and Zhang [40]. In the Flux-

PIHM EnKF system, the Flux-PIHM model variables and the global

calibration coefficients of model parameters are concatenated into

a joint state parameter vector x, and are updated simultaneously

by EnKF using the state augmentation approach [1,3,19,25,46]. The

global calibration coefficient [32,37,44] is a scalar multiplier applied

to the corresponding soil or vegetation related parameter for all soil

or vegetation types, and is used to decrease the dimension of the joint

state parameter vector. The covariance relaxation method of Zhang

et al. [48, Eq. (5)] is applied on model parameters and variables in

order to avoid filter divergence [2]. In addition, the conditional co-

variance inflation method [1] is applied to model parameters. A qual-

ity control process [39] is performed after each EnKF analysis step to

ensure the parameters and state variables remain within physically

realistic or plausible ranges. Please see Shi et al. [37,39] for detailed

descriptions.

3. Experimental setup

The Flux-PIHM EnKF data assimilation system is implemented

at the Shale Hills watershed (0.08 km2) in central Pennsylvania.

The Shale Hills watershed is a small-scale, forested, V-shaped catch-

ment characterized by relatively steep slopes and narrow ridges. The

SSHCZO exists in this watershed. A real-time hydrologic monitoring

network (RTHnet) is operating in the SSHCZO, which provides real-

time and high-frequency observations from bedrock to the atmo-

spheric boundary layer.

The Shale Hills watershed model domain is decomposed into 535

triangular grids and 20 river segments, with an average grid size of

157 m2. There are five soil types and three vegetation types in the

model domain. The grid configuration, vegetation map, soil map, me-

teorological forcing, and a priori input data are the same as in Shi

et al. [37]. Given the small scale (0.08 km2) of the watershed, spatially

uniform forcing is used. The meteorological forcing (precipitation, air

temperature, relative humidity, downward longwave and solar radi-

ation, wind speed, and surface air pressure) data are obtained from

the RTHnet weather station and the surface radiation budget network

(SURFRAD) Penn State University station. The moderate resolution

imaging spectroradiometer (MODIS) 8-d leaf area index (LAI) data

[20,30] are rescaled based on the comparison between the MODIS
roduct and the CZO field measurements to drive the model [37]. The

arameters to be estimated are: effective porosity �e, van Genuchten

42] soil parameters α and β , Zilitinkevich [49] parameter Czil, mini-

um stomatal resistance Rc min, and reference canopy water capacity

. The estimation of those parameters has been tested in synthetic

xperiments [39]. The physically plausible ranges of the calibration

oefficients are presented in Table 1. Detailed descriptions and a pri-

ri values of those parameters can be found in Shi et al. [37,38].

A total of 30 ensemble members are used for each test case. The

nsemble members are generated by randomly perturbing the cal-

bration coefficients of those six parameters within their plausible

anges (Table 1). The parameters that are not estimated are set to

heir manually calibrated values as in Shi et al. [37]. The manual cal-

bration was performed using the “trial and error” strategy, using

utlet discharge, water table depth, soil water content, soil temper-

ture, and surface heat flux data from June to July 2009 to optimize

odel parameters [37]. For each parameter (calibration coefficient)

, the values are randomly drawn from a Gaussian distribution, with

n initial standard deviation of σ0 = 0.2(φmax − φmin), where φmax

nd φmin represent the upper and lower boundaries of the plausible

ange, respectively. Among those parameters, Czil is perturbed in log

pace. Shi et al. [39] showed that EnKF is capable of identifying the

nteracting parameters and quantifying the correlations between pa-

ameters, without the need of a priori parameter correlation informa-

ion. We thus perturb the parameters such that the initial correlation

oefficient (the absolute value) between any two of those parame-

ers is less than or equal to 0.25, to avoid artificially high correlations

etween parameters and observable variables.

All ensemble members start from 0000 UTC 1 January 2009, from

aturation in the relaxation mode [37]. The model time step is 1 min

nd the output interval is 1 h. The first set of observations is assimi-

ated at 1700 UTC 4 April 2009. The calibration period is from 4 April

o 1 September, 2009. Shi et al. [39] found that the assimilation in-

erval for synthetic experiments at the Shale Hills watershed should

e larger than 72 h to avoid system “shocks” caused by EnKF updates.

n real-data experiments, however, we found that the system shocks

re often larger than with synthetic data, probably due to additional

rrors such as model structural errors. Thus we set the assimilation

nterval to 168 h to avoid any potential shocks to the system. The time

or assimilating the first set of observations is chosen to include the

ischarge peak on 20 June 2009 considering the assimilation interval.

Six test cases, Case0, Case+, Case−, NLDAS, MODIS, and

LDAS+MODIS are executed. The test cases Case0, Case+, and Case−
ave different initial guesses of parameter values. For Case0, the ini-

ial ensemble means of parameters are set to the center of the physi-

ally plausible range, i.e., 0.5(φmax + φmin). For Case+ and Case−, the

nitial ensemble means of parameters are set to 0.5(φmax + φmin) +
0 and 0.5(φmax + φmin) − σ0, respectively. These three test cases

re driven by locally-measured meteorological forcing and rescaled

ODIS LAI data. The test cases NLDAS, MODIS, and NLDAS+MODIS

ave the same initial ensemble members as Case0. The test case NL-

AS is driven by the forcing data for Phase 2 of the North Ameri-

an Land Data Assimilation System (NLDAS-2) [10,45] and rescaled
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Fig. 1. (a) Comparison of precipitation between RTHnet observation and NLDAS-2 forcing, and comparison of LAI between rescaled and unchanged MODIS product. Observations of

(b) discharge, (c) water table depth (WTD), and (d) soil water content (SWC). The shaded areas in (b–d) represent observation errors and the stars represent assimilated observations

in the real data experiments.

Table 2

Forcing data used for different test cases.

Test cases Meteorological forcing LAI forcing

Case0 Locally measured Rescaled MODIS LAI

Case+ Locally measured Rescaled MODIS LAI

Case− Locally measured Rescaled MODIS LAI

NLDAS NLDAS-2 forcing Rescaled MODIS LAI

MODIS Locally measured Unchanged MODIS LAI

NLDAS+MODIS NLDAS-2 forcing Unchanged MODIS LAI
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ODSI LAI data; the test case MODIS is driven by the locally-

easured atmospheric forcing and unchanged MODIS LAI data; and

he test case NLDAS+MODIS is driven by the NLDAS-2 forcing and un-

hanged MODIS LAI. The hourly NLDAS-2 forcing data are bilinearly

nterpolated from 1/8° resolution to the location of SSHCZO. These

hree test cases are used to test the robustness of the data assimila-

ion system when driven by reanalysis and remotely-sensed forcing

ata. The forcing data used for each test case are listed in Table 2.

ig. 1a shows the difference of precipitation between RTHnet obser-

ation and NLDAS-2 forcing, and the difference of LAI between MODIS

roduct and rescaled LAI.

. Assimilated observations and observation errors

The observations assimilated into the system are:

1. hourly outlet discharge rate (Q);

2. hourly average water table depth (distance from the land sur-

face to the groundwater table) at three RTHnet wells (WTD);

3. hourly average integrated soil moisture content over the soil

column (0–50 cm) at three RTHnet wells (SWC);

4. hourly average sensible heat flux (H) via above-canopy eddy

covariance measurements (average of two 30-min flux mea-

surements); and

5. hourly average latent heat flux (LE; the same as above).

Please see Shi et al. [37,39] for the locations of the measurements.

Stream discharge integrates outflow across the entire water-

hed. These observations are compared to the simulations of whole-
atershed discharge. The discharge is measured with a V-notch weir.

he water level at the weir is measured using a Campbell CS420-L

ransducer with a precision of 7 mm [7], and is converted to discharge

ate using a rating curve developed by Nutter [31]. The observed dis-

harge is converted into log space to improve EnKF performance [9].

hi et al. [39, Eq. (7)] calculated the random error of discharge in log

pace at the Shale Hills watershed. The observations and errors in

bserved discharge are shown in Fig. 1b. Converting discharge to log

pace may improve the EnKF performance [9], but it can also exag-

erate model errors for low flows. For example, when the forecast is

.1 m3 d−1 and the observation is 0.01 m3 d−1, the forecast error is

he same in log space as when the forecast is 1000 m3 d−1 and the

bservation is 100 m3 d−1. To avoid exaggerated errors and associ-

ted system shocks at low flows, and to avoid taking log of a zero dis-

harge, a 1.0 m3 d−1 discharge rate is added to both the observation

nd the forecasts before calculating the Kalman gain.

Observations of WTD and SWC are calculated by averaging mul-

iple groundwater level measurements and volumetric soil moisture

ontent measurements at the RTHnet wells near the stream. For the

hale Hills simulation, the model domain is discretized as such that

he three RTHnet wells are located at three vertices of one model grid

or the convenience of model-data comparison. Thus, the measure-

ents at the RTHnet wells represent the observed WTD and SWC at

he model grid that is surrounded by RTHnet wells. These data are not

ompared to any other grid points in the simulation, thus the point

ature of these measurements is preserved. Each well is equipped

ith one water level sensor (Druck pressure transducer CS420-L

anufactured by Campbell Scientific) and three soil moisture sen-

ors (Decagon Echo2 probes) at different levels below ground. The

TD and SWC observations from different wells show considerable

patial variability. Because the representation uncertainties (the stan-

ard errors among three wells) of WTD and SWC are always much

arger than their instrumental errors (about 0.007 m for WTD and

.01 m3 m−3 for SWC [7,11]), we conclude that representation uncer-

ainties dominate the uncertainty for these measurements. For every

ourly WTD and SWC, we use the computed standard errors among

he three RTHnet wells as the observation errors for WTD and SWC,

hich are shown in Fig. 1c and d.
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In Flux-PIHM, the surface energy balance is closed, i.e., Rn − G =
H + LE, where Rn is the net radiation, and G is the ground heat flux.

Eddy covariance measurements, however, always fail to close the en-

ergy budget, and H + LE tends to be less than Rn − G [15,16,27,41]. The

surface heat fluxes measured at the SSHCZO using eddy-covariance

(H and LE) likely have this consistent low bias. Since it is a densely

forested site, ground heat fluxes at the Shale Hills watershed are

likely to be small. At the Shale Hills watershed in the growing sea-

son, simulated mid-day ground heat fluxes are always below 3% of

Rn, and the average ratio between simulated ground heat flux and

net radiation in 2009 is about 4% [37]. We therefore treat G as neg-

ligible, and rescale H + LE using Rn. When the sum of hourly aver-

aged surface heat fluxes H0 + LE0 < Rn, the surface heat fluxes are

rescaled as

H = H0

H0 + LE0
Rn, (1)

LE = LE0

H0 + LE0
Rn. (2)

The eddy covariance flux observations represent a flux footprint of

approximately 1 km2 [17]. The flux measurements are thus compared

to simulated watershed-average fluxes. The H and LE fluxes are cal-

culated following the quality control methods documented by Vick-

ers and Mahrt [43]. The processed 30-min H and LE fluxes are ag-

gregated into hourly fluxes. Then the aggregated hourly sensible and

latent heat fluxes are rescaled using hourly average net radiation ob-

servations according to Eq. (1). This rescaling closes the surface en-

ergy balance on average, but does not eliminate the random vari-

ability in H and LE that occurs with half-hourly flux measurements

[6,35]. The rescaling, however, only works when both H and LE obser-

vations are available. If either H or LE is missing, the rescaling cannot

be applied and neither H nor LE will be assimilated into the system.

As a result, about 30% of 1700 UTC H and LE fluxes cannot be assim-

ilated. The random observation errors in H and LE are estimated to

be 10%, based on the site characteristics and extensive prior study of

the nature of random errors in eddy covariance flux measurements

[4,5,14,22,23,35,36].
. Results

Fig. 2 presents the temporal evolution of the calibration coeffi-

ients of the estimated parameters from April to August 2009; the

anually calibrated values are shown for reference. The temporal

volution of the standard deviations (σ ) of parameters for Case0 is

lso presented. The temporal evolutions of σ in the other test cases

re similar. To avoid using time-variant parameters [25], the average

f each parameter value from 1 August to 1 September, 2009 is taken

o be the EnKF calibrated parameter value. The EnKF calibrated values

re shown in Table 1, and are compared with the manually calibrated

arameter values.

In Case0, Case+, and Case−, for all parameters except for S, the

stimates from different test cases converge after about two months

f simulation and data assimilation, while the uncertainty ranges

represented by the standard deviation) decrease and then stabilize

Fig. 2). The temporal evolution of estimated parameters becomes

imilar after convergence. For those five parameters, especially α
nd β , the estimates converge towards the manually calibrated val-

es, and the calibrated parameter values are close to the manually

alibrated values (Table 1). The performances of the reanalysis and

emote-sensing driven test cases are similar to Case0 (Fig. 2). The

emporal fluctuations of parameter values, however, are stronger, es-

ecially in the NLDAS and NLDAS+MODIS test cases, probably due to

he errors in NLDAS-2 meteorological forcing (e.g., Fig. 1a). The esti-

ates of the parameter Rc min in the MODIS and NLDAS+MODIS test

ases are always larger than in Case0, because the unchanged MODIS

AI has larger values than the rescaled LAI (Fig. 1a).

Fig. 2 indicates that the parameters �e, α, β , and Czil are highly

dentifiable. The uncertainty in these parameters decreases fast and

he estimates from different test cases converge quickly. In contrast,

he uncertainty of S almost remains constant during the experiment

nd the estimates from different test cases do not converge at all. In

he summer months (June, July, and August), the rate at which the

ncertainty of Rc min decreases is larger than in April and May (Fig. 2).

To test the EnKF calibrated parameter sets, evaluation runs with

he calibrated parameter sets are executed. The parameter values cal-

brated by EnKF for different test cases in Table 1 are assigned to those
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and manual calibration for (a) discharge, (b) water table depth, (c) soil water content,

and (d) sensible and (e) latent heat fluxes from 0000 UTC 1 September to 0000 UTC 1

December, 2009. Flux-PIHM predictions using default parameters (not calibrated) are

also shown. In each subfigure, the plot on the left show the model predictions and ob-

servations (for H and LE, only 1 September to 20 September is shown due to limitation

of space), and the Taylor diagram on the right indicates correlation coefficient, normal-

ized standard deviation, and root mean squared error as well as average model bias in

the inset.
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ix parameters. The other parameters that are not calibrated in this

xperiment are set to their manually calibrated values as in Shi et al.

37]. A simulation using the default parameters with no calibration is

lso performed, driven by locally-measured atmospheric forcing and

escaled MODIS LAI. The evaluation runs start from 0000 UTC 1 Jan-

ary 2009, from the relaxation mode, and are driven by the forcing

isted in Table 2. The model predictions of Q, WTD, SWC, H, and LE

rom 0000 UTC 1 September, to 0000 UTC 1 December, 2009 are eval-

ated by comparing with the observations. Predictions of the evalua-

ion runs are also compared with the Flux-PIHM evaluation run with

he manually calibrated parameter set, which is driven by locally-

easured atmospheric forcing and rescaled MODIS LAI (Table 1).

ote that the surface heat flux observations used in the evaluation

re not rescaled. The comparisons are presented in Fig. 3.
Generally, performances of the Flux-PIHM evaluation runs with

he EnKF calibrated parameter sets are comparable to the Flux-PIHM

un with the manually calibrated parameter set (Fig. 3), and show

mprovements in forecasting skill compared with the simulation us-

ng default parameters, especially for discharge and SWC. The Tay-

or diagrams demonstrate that manual calibration only exceeds the

utomated calibration results in the discharge prediction. For the

ther observable variables, the differences of manual calibration and

nKF calibration are almost indistinguishable. For the discharge pre-

iction, the manually calibrated parameters provide better predic-

ion for the two highest discharge peak events (16 and 24 October,

009). The Taylor diagram in Fig. 3a shows that the manual calibra-

ion evaluation run has a higher correlation coefficient (about 0.9)

ith the observations than the EnKF calibrated parameter sets (about

.8), smaller average bias, and smaller root mean square errors. For

TD and SWC, the Case− evaluation run performs slightly worse

han the other runs, while performances of manual calibration, Case0

nd Case+ are very similar. For H and LE, all evaluation runs yield

igher surface heat fluxes than observed, but this is expected given

he rescaling of H and LE observation data (Fig. 3d and e).

The performances of the reanalysis and remote-sensing driven

imulations are limited by the quality of the reanalysis and remote-

ensing forcing, especially the NLDAS-2 forcing quality. The Taylor di-

gram shows that when driven by the NLDAS-2 forcing, Flux-PIHM

ischarge predictions are worse than the other evaluation runs for

he evaluation period (Fig. 3a), due to the errors in the NLDAS-2 pre-

ipitation forcing. During the evaluation period, the NLDAS-2 forc-

ng underestimates the total precipitation by 4.8 cm. The RMSE of

he NLDAS-2 hourly precipitation forcing is about 0.33 mm d−1, and

he correlation coefficient between the observed hourly precipitation

nd the NLDAS-2 hourly precipitation is 0.58. Flux-PIHM surface heat

ux predictions are also worse than the other evaluation runs when

riven by the NLDAS-2 forcing (Fig. 3d and e), primarily due to the

rrors of the NLDAS-2 downward solar radiation forcing. For exam-

le, as shown in Fig. 3d and e, the NLDAS and NLDAS+MODIS evalu-

tion runs significantly overestimate the mid-day surface heat fluxes

n 17 September, when NLDAS-2 overestimates the mid-day down-

ard solar radiation by about 360 W m−2. The MODIS evaluation run

erformance is very similar to Case0. Although MODIS overestimates

he LAI (Fig. 1a), the parameter Rc min estimated in the MODIS and

LDAS+MODIS simulations are higher than the other simulations,

hich compensate the high bias of the MODIS LAI forcing.

. Discussion and conclusions

The results of the multivariate real-data experiment demonstrate

he capability of EnKF in parameter estimation for a physically-based

and surface hydrologic model (Flux-PIHM) using multivariate field

bservations. The EnKF sequential calibration results are comparable

o the manual calibration while significantly improving the overall

fficiency in time and effort. Manual calibration took a large number

f repeated runs and many days to perform, while the EnKF data as-

imilation at the Shale Hills watershed took less than 6 h of wall time

sing 31 CPU processors (2.4 GHz) running in parallel.

The EnKF system is shown to be a powerful tool for multivariate

ata assimilation and parameter estimation. EnKF does not use ex-

licit objective functions, or assign explicit weights to each assim-

lated observation data set. The weights of observations in EnKF are

etermined by their observation errors and the ensemble forecast un-

ertainties and covariances [9]. Compared with other multivariate or

ulti-objective function calibration methods, which usually use em-

irical weights for different observations or objective functions, the

eights in EnKF are more physically meaningful.

The fast decrease in parameter uncertainty and convergence

f parameter estimates suggest that �e, α, β , and Czil are

ighly identifiable parameters. This agrees with the Flux-PIHM
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sensitivity analysis results, which showed that these four parameters

have much higher identifiability, especially distinguishability, than

the parameters Rc min and S [38, Fig. 9]. In their synthetic experiments,

Shi et al. [39] also showed that when Q, WTD, SWC, H, and LE were

assimilated into the system, EnKF failed to provide accurate estimates

of the parameters Rc min and S [39, Table 5].

The temporal evolution of the parameter �e implies that the

performance of parameter estimation might be affected by errors

other than observational errors. The parameter �e has two signifi-

cant changes in parameter value during the calibration period (Fig. 2)

in all test cases. During the first few analysis steps, the estimates of

�e from different test cases converge to about 0.65, which is close

to the manually calibrated value. But a large change of �e appears

on 2 May, and the parameter value deviates from the manually cal-

ibrated value. The meteorology forcing shows there was a precipi-

tation event in the early morning on that day. In the manual cal-

ibration process we noticed that however we tuned the parameter

values, Flux-PIHM persistently predicted a discharge peak on 2 May

(see the results in [37]), which was not observed in the outlet dis-

charge (Fig. 1b). This error might be caused not only by parameter val-

ues, but also by the errors in model structures, static input data, me-

teorological forcing. Because of the discrepancy in model prediction

and observation, EnKF changes the �e value dramatically, to compen-

sate the other unidentified sources of error. The following low flow

discharge observations make little impact on �e. Another significant

change in parameter value appears on 20 June, when the peak dis-

charge event occurs (Fig. 1). After the observation of discharge peak

is assimilated, EnKF once again adjusts �e value towards the man-

ually calibrated value, and the parameter value generally stabilizes

afterwards. This suggests that discharge peak observations must be

assimilated to effectively estimate the value of �e.

Because of its role in transpiration prediction, Rc min is apparently

more identifiable in summer than in spring (Fig. 2), consistent with

the Flux-PIHM sensitivity analysis [38]. Yu et al. [47] divided PIHM

parameters into event-scale parameters and seasonal time scale

parameters. The parameter �e was categorized as an event-scale pa-

rameter and Rc min a seasonal time scale parameter. The temporal evo-

lutions of �e and Rc min in our experiment (Fig. 2) support their cat-

egorization: �e can only be effectively estimated when observations

from peak discharge events are assimilated, and Rc min can only be

effectively estimated in summer. It implies that the calibration pe-

riod and assimilation interval need to be chosen wisely, to cover im-

portant peak discharge events and also the time period when most

parameters are identifiable. Although a fixed assimilation interval is

used for this study, it is possible that a more sophisticated dynamic

assimilation period with mixed wet and dry periods would prove ef-

fective. Experiments with the calibration period variations and the

assimilation intervals will be addressed in future studies.

When estimating those six parameters using EnKF, other parame-

ters are fixed at their manually calibrated values. The impacts of the

other parameters and their potential interaction with the six param-

eters estimated in this paper are left for future studies. It is possible

that if more parameters are estimated using EnKF, the optimized pa-

rameters may provide better predictions. The efficiency of assimilat-

ing different observations is another future research topic.

The results of the NLDAS, MODIS, and NLDAS+MODIS test cases

demonstrate the robustness of the EnKF in land surface hydro-

logic model parameter estimation. The EnKF is capable of provid-

ing reliable estimates of model parameters when using atmospheric

reanalysis and remote sensing products to drive the model. In ad-

dition, most of the a priori soil, river bed, and vegetation parame-

ters used for the study are empirical or from a research database

[e.g., the Soil Survey Geographic (SSURGO) database and the modi-

fied International GeosphereBiosphere Programme (IGBP) MODIS 20-

category vegetation (land use) data, see Tables 1, 2, and 3 in 37]. These

input data are available with national and in some cases global spatial
overage. Therefore the EnKF data assimilation system is not limited

o measurement-rich watersheds like Shale Hills, but could readily

e extended to other watersheds. Data infrastructures like the Hy-

roTerre system [24] enable convenient expansion to different water-

heds. The rapid evolution of computing power and the rise of parallel

omputing technique will allow the Flux-PIHM EnKF data assimila-

ion system to be implemented at larger river basins.
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