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ABSTRACT

Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a
synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with
approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates
along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50
days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertia–
gravity waves that are embedded within and stationary relative to the dipole. The waves form elongated
bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and
vertical shear, the waves’ horizontal scale shrinks and the vertical slope varies as they approach the leading
stagnation point in the dipole’s flow. Because the waves persist for tens of days despite explicit dissipation
in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be
inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave
amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical
vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation
are spontaneous wave emission and the instability of the underlying balanced dipole.

1. Introduction

Prominent inertia–gravity waves are often found be-
neath the downstream portion, or exit region, of local-
ized upper-tropospheric jets (see the review by Uccel-
lini and Koch 1987). Upward-propagating waves can
also appear with a similar relation to the wind speed
maximum, but in the stratosphere, above the tropo-
spheric jet (e.g., Guest et al. 2000; Plougonven and

Teitelbaum 2003). While the source of these observed
waves is not yet settled, one possibility is that they arise
spontaneously from the larger-scale jet. We examine
that possibility in the present paper using numerical
simulations of a dipole vortex in a rotating, stratified
fluid. Because it possesses a localized jet between the
two counter-rotating constituent vortices, the dipole
vortex is a natural idealization of atmospheric “jet
streaks” (Houghton et al. 1981; Van Tuyl and Young
1982; Cunningham and Keyser 2004).

Large-scale atmospheric and oceanic flows outside
the Tropics are nearly balanced; that is, they can be
described to a reasonable approximation by reduced
equations sets, such as the quasigeostrophic (QG)
equations, that filter inertia–gravity waves. In certain
situations, however, inertia–gravity waves may arise
spontaneously in an otherwise balanced flow. Examples
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include fronts undergoing rapid frontogenesis (Snyder
et al. 1993; Griffiths and Reeder 1996); elliptical vorti-
ces (Ford 1994a; Plougonven and Zeitlin 2002); ideal-
ized baroclinic waves (O’Sullivan and Dunkerton 1995;
Zhang 2004; Plougonven and Snyder 2005, 2007); and
rotating, stratified flows subjected to horizontal shear
(Vanneste and Yavneh 2004). Fluid instabilities that
couple balanced motions and inertia–gravity waves (Sa-
kai 1989; Ford 1994b; Schecter and Montgomery 2003;
Plougonven et al. 2005; Molemaker et al. 2005;
Dritschel and Vanneste 2006) may also lead to the ap-
pearance of gravity waves in originally balanced flows.
Though our intention is not to imply a single mecha-
nism, for convenience we will use the term “wave gen-
eration” for all these instances in which balanced flows
inherently produce inertia–gravity waves or are un-
stable to instabilities involving inertia–gravity waves.

Theory for inertia–gravity wave generation is most
mature for rotating shallow-water flows having a
Rossby number R of the order of one and a small
Froude number (Ford et al. 2000). (Following typical
notation, R � U/fL, where U is a horizontal velocity
scale, L is a horizontal length scale, and f is the Coriolis
parameter.) There is a direct mathematical analogy for
this case to Lighthill’s (1952) theory for the spontane-
ous emission of acoustic waves by vortical motion. The
analysis proceeds by manipulating the governing equa-
tions into a single equation whose lhs is the linear op-
erator for waves (acoustic or inertia–gravity, as the case
may be) and whose rhs consists of terms of the form of
two spatial derivatives acting on quadratic products of
the dependent variables such as the components of ve-
locity. Emitted waves in this case have spatial scales
that are large compared to the characteristic scale of
the balanced flow and phase speeds that are large com-
pared to advective velocities.

Localized atmospheric jets (and our simulated vortex
dipoles), on the other hand, are characterized by small
R and are continuously stratified. These flows obey QG
dynamics to a first approximation and have an aspect
ratio H/L of the order of f/N, where N is the buoyancy
frequency. The Froude number F � U/NH is then also
small, in contrast to the shallow-water theory for wave
generation. When R is small, the time scales for inertia–
gravity waves are much shorter than the advective time
L/U that characterizes the balanced motion. Equiva-
lently, for a stationary solution such as the dipole, R K

1 implies that the wavelengths of stationary inertia–
gravity waves, which must be less than or comparable to
2�f/U, are small relative to the length scale L of the
dipole. We are interested in how waves appear in these
otherwise balanced flow as R increases, but is still less
than unity.

No general theory exists for fully stratified flows with
small R, but both analytic examples and numerical
simulations demonstrate that wave generation does oc-
cur. Vanneste and Yavneh (2004) show that plane-wave
disturbances in sheared, rotating stratified flow gener-
ate inertia–gravity waves whose amplitude scales as
aR�1/2 exp(�b/R), where a and b are known constants.
Both Snyder et al. (1993) and Reeder and Griffiths
(1996) present numerical simulations of wave genera-
tion by frontogenesis. They argue that wave generation
at fronts follows from a mechanism, similar to that of
Lighthill (1952), in which the balanced frontal circula-
tion forces a gravity wave response that increases as the
front contracts and the Lagrangian time scale for the
frontogenesis decreases. Reeder and Griffiths have cal-
culated the far-field wave response to the forcing and
shown reasonable agreement with full simulations.

Our approach is to simulate numerically an idealized
vortex dipole. The numerical solutions begin from the
surface-trapped QG dipole for a uniform potential vor-
ticity fluid of Muraki and Snyder (2007). This dipole is
associated with a potential temperature anomaly on a
flat horizontal boundary. In terms of atmospheric jet
streaks, the rigid boundary may be thought of as a
simple model for the tropopause and the computational
domain can represent either the stratosphere above the
jet streak or, inverting the vertical coordinate, the tro-
posphere below the jet streak.

These initial conditions and the numerical model are
described in section 2. We then present the numerical
solution in section 3. After some transient adjustment
associated with the initial conditions, the dipole begins
to propagate nearly steadily and exhibits embedded,
upward-propagating inertia–gravity waves of smaller
scale that are stationary with respect to the dipole. To
remove some residual oscillations and to rule out any
association of those with the stationary inertia–gravity
waves, we calculate (in section 4) time-averaged fields
in a frame of reference moving with the dipole and then
use them as initial conditions for additional simulations
(in section 5). The stationary inertia–gravity waves are
largely unaltered by this change of initial conditions.
Section 6 analyzes the characteristics of the stationary
waves, and section 7 presents the dependence of the
waves on the Rossby number. Our results are summa-
rized in section 8.

2. Preliminaries

a. Equations and the numerical model

As in previous idealized simulations of baroclinic
waves (Snyder et al. 1991; Rotunno et al. 1994, 2000),
we begin from the Boussinesq, f-plane primitive equa-
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tions. Both nonhydrostatic and compressible terms are
included, though they are negligible for the present
simulations. The equations are summarized in Snyder
et al. (1991).

The numerical techniques used in solving the equa-
tions of motion are also similar to those employed by
Snyder et al. (1991), Rotunno et al. (1994), and Ro-
tunno et al. (2000). The spatial discretization uses a C
grid and centered fourth-order differences for the ad-
vective terms, while the temporal discretization is as in
Klemp and Wilhelmson (1978) with a split-explicit
scheme in which acoustic modes are integrated with a
shorter time step that is implicit in the vertical. In ad-
dition, the numerical model includes damping of three-
dimensional divergence, which further stabilizes the
acoustic modes, and incorporates vertical advection of
a reference profile of potential temperature on the
small time step following Skamarock and Klemp
(1992). An explicit, fourth-order horizontal diffusion is
applied to the velocity and potential temperature with a
coefficient of 0.01 times the ratio of the fourth power of
the horizontal grid spacing to the time step.

The model has a domain of 3000 km in both hori-
zontal directions and 15 km in the vertical. Vertical
velocity is zero on the rigid upper and lower boundaries
and the horizontal boundary conditions are periodic.
The model includes a sponge layer above 12.5 km
where the damping rate increases linearly from zero at
the bottom of the layer to 10�4 s�1 at the model top.

For general aspects of the solution, we performed
low-resolution runs, with 128 points in each horizontal
direction and 64 points in the vertical, giving a grid
spacing of 23.4 km horizontally and 250 m vertically.
Runs with doubled horizontal and vertical resolution
are used in the analysis of the inertia–gravity waves and
to check for numerical artifacts.

b. Initial conditions

Initial conditions for the simulations are taken from
the QG vortex dipole of Muraki and Snyder (2007).
This dipole is a steadily propagating solution of the
inviscid QG equations and is surface trapped, having
uniform interior pseudopotential vorticity and a dipole
in potential temperature on the lower boundary. Hori-
zontal winds, pressure, and potential temperature are
set to their geostrophic counterparts from the QG so-
lution.

The QG dipole is determined solely by its nondimen-
sional phase speed, which we take to be 1/9. The solu-
tion of Muraki and Snyder (2007) is then dimensional-
ized according to standard QG scaling using a horizon-
tal length scale of L � 500 km, a horizontal velocity
scale of U � 10 m s�1, and values of f � 10�4 s�1 for the

Coriolis parameter, N � 10�2 s�1 for the Brunt–Väisälä
frequency, and �0 /g � 30.6 K m�1 s2 for the ratio of the
reference potential temperature to the gravitational ac-
celeration. The dimensional phase speed of the QG
dipole is then roughly 1.1 m s�1.

c. Estimating propagation speed

We estimate the dipole’s propagation speed over a
given time period by finding the translating reference
frame in which the solution is most nearly steady. The
time dependence is quantified by first time averaging
the solution in the translating frame and then comput-
ing �, the time average of the rms differences of the full
solution from the time-averaged solution. We then seek
the propagation speed c that minimizes � by evaluating
� on a grid of values for c and refining that grid until the
desired accuracy for c is achieved.

All propagation speeds given here are based on
analysis of the two-dimensional field of potential tem-
perature at the lowest model level. Other fields, such as
low-level winds or vertical vorticity, give very similar
propagation speeds.

Because of the initial adjustment of the dipole away
from the QG dipole of Muraki and Snyder (2007), the
potential temperature surrounding the dipole contains
debris, which does not move with the dipole. This de-
bris is excluded from the analysis of propagation speed
by setting the differences from the time-averaged solu-
tion in a given frame to zero wherever their absolute
value is less than 0.04 K.

3. Evolution from QG initial conditions

As discussed in section 2b, the initial conditions for
the simulation are the geostrophic winds, potential tem-
perature �, and hydrostatic pressure from the QG di-
pole solution of Muraki and Snyder (2007). These ini-
tial conditions do not directly yield a steadily propagat-
ing solution of the primitive equations for two reasons.

First, because the initial conditions are purely geo-
strophic, the solution undergoes transient adjustment in
which strong inertia–gravity waves radiate away from
the dipole. These waves are clearly apparent in the ver-
tical velocity w at early times as arcs of upward and
downward motion expanding outward from the dipole
(not shown). Consistent with this adjustment, time se-
ries of maximum and minimum w at a height of 5 km
(Fig. 1) show large values and rapid variations at early
times and then a decrease to much smaller values by 20
days.

Second, the full QG dipole (including ageostrophic
winds) only approximates a steadily propagating solu-
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tion of the primitive equations. Thus, the dipole evolves
away from the initially symmetric cyclone–anticyclone
pair over the first few days. At the surface, the warm
anomaly (associated with the cyclonic vortex) becomes
elongated in the direction of propagation and shrinks in
area, while the cold anomaly (associated with the anti-
cyclone) becomes more circular and spreads in area
(Fig. 2). Some of the warm air initially at the leading
edge of the dipole passes southward around the anticy-
clone and is ejected from the rear of the dipole.

Following the initial radiation of gravity waves and
evolution of its structure, however, the dipole propa-
gates with minimal further structural changes and along
a curved path for the remainder of the 40-day simula-
tion (Fig. 2). Thus, the dipole has returned to an ap-
proximately steadily propagating solution, albeit with
asymmetries between its cyclonic and anticyclonic sides
and a curved, rather than linear, path. The latter be-
havior resembles dipole solutions with a cyclonic
“rider,” which propagate in a large circle.

The dipole also exhibits slower, secular trends in its

evolution. Time series of � and the vertical vorticity � at
the lowest model level, displayed in the bottom panel of
Fig. 1, show a weakening of the warm anomaly and a
steady, almost linear increase in the (magnitude of the)
anticyclonic vorticity over 40 days. The minimum � and
the cyclonic � are both more variable but appear to
have downward trends. While the model’s weak fourth-
order hyperdiffusion may account for the decrease of
� anomalies, the causes of the increase of � in the an-
ticyclone are less obvious and are an open question for
future work.

Figure 3 illustrates the structure of the dipole once it
has returned to a nearly steadily propagating state. For
�, differences from the symmetric, QG solution are no-
ticeable but not huge. The low-level w, however, has
only a hint of the quadrupole of the QG solution, which
has descent in the northeast and southwest quadrants
and ascent to the southeast and northwest. Instead, w is
organized into elongated bands, centered roughly on
the dipole’s central axis and with the amplitude increas-
ing and the local wavelength decreasing toward the
leading edge of the dipole (Fig. 3a). The bands are
more prominent on the anticyclonic side of the dipole.

A vertical cross section along the central jet of the
dipole reveals that the bands in w extend upward from
the surface and tilt against the jet (i.e., to the east) with
height (Fig. 3b). The pattern of w suggests an inertia–
gravity wave and is consistent with upward group ve-
locity. In sections 5 and 6, we will examine these bands
in w in a higher-resolution simulation and present fur-
ther evidence that they are in fact inertia–gravity
waves.

As already noted, the dipole propagates almost
steadily by this time. Animations of the fields shown in
Fig. 3 indicate that the bands in the low-level vertical

FIG. 1. Time series of maxima (black lines) and the negative of
minima (gray) of (top) � at the lowest model level, z � 0.125 km,
(middle) w at z � 5.25 km, and (bottom) � at the lowest model
level.

FIG. 2. Potential temperature � at z � 125 m after t � 12.5, 25,
and 37.5 days. Contour interval is 1/10 of the difference between
the initial maximum and minimum of �, or roughly 0.56 K, with
positive and negative values shown in black and gray, respectively.
Two periods of the domain are shown in x for clarity; in reality the
dipole crosses the lateral boundary at x � 3000 km between days
12.5 and 25.
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velocity are, to a large extent, stationary with respect to
the propagating dipole.

Time dependence remains, however, even in a frame
of reference moving with the dipole. In addition to the
slow decay of the dipole’s signature in � (Fig. 1), an
elliptical distortion of � that rotates anticyclonically
with time is apparent within the low-level cold air. At
higher levels (near z � 5 km), bands in w with wave-
lengths between 300 and 500 km propagate to the
southwest. The amplitude of these bands is largest in an
envelope centered to the southwest of the dipole and
outside the dipole’s horizontal perimeter as defined by
surface �. The next section gives a more detailed de-
scription of both these disturbances.

4. Time-averaged fields and deviations

Next we partition the dipole simulation between days
20 and 22 into a time-averaged component in the frame
of reference moving with the dipole and deviations
from that time average. This decomposition will sub-
stantiate our claims that the dipole is close to a steadily
propagating solution and that the bands in the low-level
vertical velocity seen in Fig. 3 are stationary with re-
spect to the dipole. It also allows a clearer description
of the remaining, time-dependent aspects of the simu-
lation. Finally, in section 5, we will test whether the
time dependence in these solutions is an inherent char-
acteristic of the dipole or arises from the details of the
initial conditions (through geostrophic adjustment or
balanced remnants of the QG initial conditions).

The algorithm described in section 2c yields an esti-

mate of c � (0.86; 0.15) m s�1 for the propagation ve-
locity between days 20 and 22. Since the dipole propa-
gates neither precisely in a straight line nor precisely at
constant speed, this value differs by up to 10% from
estimates of c over 1-day intervals beginning between
days 20 and 21. Some artifacts of the variations in the
dipole’s propagation will be apparent in the deviations
from the time-averaged fields.

Time averages moving with the dipole are then cal-
culated by integrating the governing equations in a
frame of reference moving with velocity c and simply
accumulating the average at each time step. Through-
out the rest of the paper, we will work exclusively in this
moving reference frame, where the dipole becomes a
nearly steady solution.

We first consider w near the surface. Figure 4 shows
a profile of w(x) and its time average at the midpoint of
the domain in y and z � 250 m. The banding in w is
clearly evident and is well approximated by the time-
averaged solution. Thus, the dipole’s low-level w is
nearly steady in this moving reference frame and the
bands in w are, to a good approximation, stationary
with respect to the dipole.

Figure 5 displays � and �� at the lowest model level at
day 21, where overbars and primes denote time-
averaged fields and deviations from the time average,
respectively. Throughout the 2-day period, the devia-
tion field is no more than 3% of the amplitude of � and,
as can be seen by comparing Figs. 2 and 5, � is close to
the instantaneous �. Again, the simulation is approxi-
mately steady in the frame moving with the dipole.

The deviation field �� at day 21 consists of a small-

FIG. 3. The dipole at day 22. (left) Horizontal section of w at z � 250 m (colored, with red
positive and blue negative) and � at z � 125 m (thin black contours). (right) Vertical section
along the thick line indicated in (a) of w (colored) and section-parallel horizontal velocity
(black and gray contours). The contour interval for w in both panels is one-eighth the maxi-
mum value in the section of 0.8 � 10�3 m s�1 and that for the section-parallel velocity is
1 m s�1. The potential temperature � is shown as in Fig. 2. The gray contour in the right panel
indicates where the section-parallel velocity is equal to 0.87 m s�1, the propagation speed of
the dipole.
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scale couplet within the time-averaged anticyclone.
Nearer the beginning and end of the averaging period,
�� also includes deviations with spatial scale compa-
rable to the original dipole and amplitude comparable
to that shown in Fig. 5 (not shown). This larger-scale
component of �� is associated with the variation of the
dipole’s propagation about the estimated velocity c.

The small-scale couplet, in contrast, rotates anticy-
clonically and with roughly constant amplitude about

the center of the time-averaged anticyclone, completing
somewhat more than a full rotation over 2 days. The
nature of this feature is not clear; it may be a near-
inertial gravity wave trapped within the low absolute-
vorticity fluid, or it may be a balanced wave propagat-
ing on the surface-� gradient. We will show in section 5
that this feature depends on the detailed initial condi-
tions chosen for the simulation and is not an inherent
part of the dipole solution.

The horizontal structure of the time-dependent sig-
nal in w at midlevels is shown in Fig. 6. As already
mentioned in section 3, the vertical velocity is orga-
nized into mesoscale bands. These bands are the domi-
nant component of the deviations from w at this level.
The time-averaged w is close to the synoptic-scale qua-
drupole that is expected from QG considerations to
accompany the dipole. (Only one “quadrant” of w ap-
pears in Fig. 6, since only one-quarter of the domain is
shown.)

The propagation of the mesoscale bands at 5.25 km,
and of the couplet of �� within the anticyclone, is illus-
trated by Fig. 7, which displays time series of �� and w�
at the locations of the black dots in Figs. 5 and 6. Both
time series are roughly sinusoidal, with periods a little
less than 2 days for �� and a little less than 1 day for w�.
Phase propagation, which can be inferred by the rela-
tion of time series at the three locations, is anticyclonic
for �� and southward for w�.

FIG. 5. Potential temperature � (black contours) and �� (white
contours, with positive and negative values shaded light and dark
gray, respectively) at z � 125 m and t � 21 days. Contours for �
are the same as in Figs. 2 and 3, while those for �� are shown at
	0.01 K and every 0.02 K thereafter. Black dots indicate the
locations of the time series in Fig. 7.

FIG. 6. Same as in Fig. 5, but for w and w� at z � 5.25 km and
t � 21 days and for the southwestern quadrant of the dipole only.
Contours for both fields are shown at 	1 � 10�5 m s�1 and every
2 � 10�5 m s�1 thereafter. Values of w are negative except along
the upper edge of the figure. Black dots indicate the locations of
the time series in Fig. 7.

FIG. 4. Vertical velocity as a function of x at y � 1500 km and
z � 250 m. Values from Fig. 3a (i.e., from the original simulation
at day 22) are shown with a thick black line, while w, the time
average between days 20 and 22 in the moving reference frame, is
shown in gray. The thin black line indicates w from a 2-day simu-
lation that uses time averages of all fields as initial conditions (see
section 5). In some locations, the curves differ by so little that only
the thick black line is visible.
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5. Simulations initialized with time-averaged fields

Next we examine a simulation beginning from time-
averaged fields, as in section 4, between days 20 and 22
and in a frame of reference moving with the dipole.
This simulation tests the influence of the details of the
initial conditions both on the stationary bands in w and
on the time dependence that remains in the dipole.

The new simulation proceeds for two days, at which
point we again perform time-averaging moving with the
dipole over the 2 days. Figure 8 shows the time series of
deviations of � and w from the time average as in Fig.
7 (i.e., at the locations shown in Figs. 5 and 6). The time
series begin at t � 0, the beginning of the new simula-
tion, and continue for 2 days.

The different initial conditions for the new simula-
tion greatly reduce the amplitude of the temporal os-
cillations seen in Fig. 7. The magnitude of the devia-
tions from the time mean is also significantly reduced.
Animations of � and w at low levels confirm that the
time dependence is greatly reduced relative to the origi-
nal simulation. Nor do the temporal oscillations reap-
pear in longer simulations (not shown). Thus, the os-
cillations identified in Figs. 5–7 are tied to the initial
conditions for the simulation and are not directly asso-
ciated with the dipole.

At the same time, the dipole and its associated bands
in w are little changed between the two simulations.

Vertical velocities from the two simulations are com-
pared in Fig. 4, which shows w(x) for y � 1500 km,
more or less along the central axis of the dipole, and
z � 250 m. Though there are differences, the overall
structure, amplitude, and phase of the waves agree well
between the two simulations, demonstrating that the
stationary bands (in contrast to the temporal oscilla-
tions) are robust to variations in the initial conditions.

Consistent with Fig. 4, horizontal and vertical sec-
tions of w at day 2 in the new simulation (not shown)
are very similar to those from the previous simulation.
The bands again extend in arcs along the dipole’s lead-
ing edge, superposed on a weak signature of the QG
quadrupole, and tilt toward the interior of the dipole
with height.

We conclude that the stationary bands in w are in-
herent features of the dipole solution whose presence
and structure are not sensitive to the initial conditions
for the simulations. The time-dependent aspects of the
simulations initialized from the QG dipole, on the other
hand, appear to be related to the detailed initial condi-
tions in that simulation. Since the waves shown in Fig.
3 are near the grid scale, especially in the vertical and
near the dipole’s leading edge, we have also investi-
gated how they depend on the numerical resolution and
the explicit dissipation included in the model.

a. Simulations with doubled resolution

In Fig. 9 and subsequent figures, we present results at
day 22 from simulations using doubled resolution. The
horizontal grid has 2562 points and spacing of roughly

FIG. 7. Time series of (top) �� at z � 125 m at the locations
shown in Fig. 5 and (bottom) w� at z � 5.25 m at the locations
shown in Fig. 6. Gray curves correspond to locations with positive
values at day 21, black curves correspond to locations with nega-
tive values, and dotted curves correspond to “nodal” locations
with values near zero.

FIG. 8. Same as in Fig. 7, but for the simulation whose initial
conditions are fields averaged in time between days 20 and 22.
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12 km, while the vertical grid has 128 levels and spacing
of 125 m. The dimensional horizontal hyperdiffusion,
which is tied to the spatial resolution and the time step,
decreases by a factor of 8.

The evolution and overall structure of the dipole
changes little in the higher-resolution simulation. The
dipole still moves along a slightly curved path, although
its propagation velocity c � (0.70, 0.15) m s�1 is some-
what slower than in the original simulation. The asym-
metry between the warm and cold anomalies is also
more pronounced.

The bands in this simulation are again stationary with
respect to the dipole and have broadly similar spatial
structure. The higher-resolution simulation produces
larger-amplitude bands and yields additional detail in
w, particularly along the outer edge of the warm, cy-
clonic vortex and within the cold anticyclone (cf. Figs.
9a and 3a). At the leading edge of the dipole, where the
bands in the low-resolution simulation are almost at the
grid scale, the high-resolution simulation clearly main-
tains the bands with larger amplitude and allows propa-
gation farther aloft (Figs. 9b and 3b).

Away from the leading edge, however, the cross sec-
tion along the dipole’s axis reveals a very similar struc-
ture in the two simulations. Moving to the east along
the section at low levels, both simulations have a broad
region of descent centered near 400 km, followed by
broad ascent near 700 km, then smaller-scale bands of
descent and ascent near 800 and 850 km. Away from
the leading edge, the bands are also reasonably well
resolved in the high-resolution simulation, with hori-
zontal and vertical wavelengths of around 100 km and
650 m, respectively.

Thus, while it is clear that the original simulations are
not fully resolved, the low-level structure of the bands

away from the dipole’s leading edge is not sensitive to
a doubling of resolution. We conclude that the bands
are not numerical artifacts. Moreover, the dependence
on resolution of the bands near the leading edge is
expected since, as will be described in the next section,
they are inertia–gravity waves propagating in a defor-
mation field and being strained to smaller scales by it.

b. Simulations with different dissipation

In addition to reducing the hyperdiffusion in the
simulation with doubled resolution, we have also per-
formed a number of experiments varying the mag-
nitude and form of the dissipation with fixed, low
resolution. Doubling or halving the fourth-order hyper-
diffusion had effects similar to, but smaller than, those
produced by doubling the resolution: the banding in w
was still present, and with similar structure, but the
bands’ amplitude changed by roughly 25% (increasing
if dissipation decreased; not shown). The most notable
differences occurred in the anticyclone and near the
stagnation point at the rear of the dipole, where addi-
tional weak bands appeared. (Qualitatively similar
changes occur at doubled resolution; cf. Figs. 3 and 9.)
When the hyperdiffusion decreased by a factor of 10, so
that it was comparable to that used in the simulation
with doubled resolution, the vertical velocity was domi-
nated by noise of wavelength equal to twice the hori-
zontal grid spacing. We also explored solutions using
second-order diffusion. Using this less scale-selective
dissipation led to the substantial decay of the dipole
itself, so we took as initial conditions the fields at day 22
in the standard simulation (shown in Fig. 3) and inte-
grated for only 4 days. The stationary bands were
largely unchanged except for reduced amplitude (not
shown). Thus, the presence and general structure of the

FIG. 9. Same as in Fig. 3, but for the simulation whose initial conditions are fields averaged
in time between days 20 and 22 and that uses doubled resolution (horizontal grid spacing of
12 km). At this resolution, the lowest interior levels for � and w shown in the left panel are at
62.5 and 125 m, respectively.
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stationary bands does not depend sensitively on the
dissipation, although their amplitude increases as the
dissipation decreases.

6. Properties of the stationary inertia–gravity
waves

We next analyze the properties of the bands in more
detail. Figure 10 shows divergence, �
w/
z, in that por-
tion of the cross section of Fig. 9b where the bands are
most prominent. The cross section is approximately in
the direction of the local wave vector for the bands.

First, consider how the horizontal and vertical wave-
lengths in the simulation compare with the dispersion
relation for hydrostatic inertia–gravity waves. Looking
in Fig. 10 near the location (880 km, 690 m), where the
horizontal location is measured along the cross section,
we estimate local horizontal and vertical wavelengths of
70 km and 520 m, respectively, with corresponding
wavenumbers k � 0.9 � 10�4 m�1 and m � 1.2 � 10�2

m�1. Averaging the Brunt–Väisälä frequency N and the
dipole-relative flow U over a 70 km � 625 m box cen-
tered at the same (x, z) location, gives N � 10�2 s�1 and
U � 1.2 m s�1.

The intrinsic frequency, �̃ � kU � 1.1 � 10�4 s�2,
then compares well with the value 1.2 � 10�4 s�2 com-
puted by substituting these values of k, U, and N into
the dispersion relation:

�̃2 � f 2 � N2k2�m2. 
1�

[Because the large-scale vertical velocity W scales as
R(H/L)U, its contribution to �̃ is small and can safely
be neglected. Moreover, the plane of the cross section
lies more or less along the dipole’s axis, where W is
particularly small.] Comparisons at other locations with
divergence of significant amplitude show similar agree-
ment. Since the bands’ structure is consistent with the
dispersion relation for inertia–gravity waves, we will refer
to them as gravity waves or simply waves in what follows.

The waves have the form of a packet extending up-
ward from the surface and downstream (i.e., from left
to right in Fig. 10, in the direction of the dipole-relative
flow). The tilt of the phase lines is such that an observer
moving with the flow will see downward phase propa-
gation and hence the packet has upward group velocity.
Figure 10 indicates the wave packet propagates upward
1.2 km over a horizontal distance of some 250 km, or at
a slope of roughly 1/200. Using the estimated values of
k, m, and N in the formulas for group velocity [obtained
by taking derivatives w.r.t. k or m of (1)] gives the
vertical propagation of the packet at roughly 0.4 � 10�2

m s�1 and the horizontal propagation upstream relative
to the flow at 0.5 m s�1. Since flow speeds are 1–2 m s�1

near the center of the packet, this implies a downstream
group propagation relative to the dipole at a slope of
between 1/300 and 1/120, broadly consistent with what
is shown in Fig. 10.

The horizontal and vertical variation of the dipole’s
flow also influences the structure of the waves. Near the
wave packet, both the flow and the wave vector are
nearly parallel to the section shown in Fig. 10; the varia-
tion of the flow normal to the section is also small. If we
choose a coordinate system whose x axis is aligned with
the section, the flow can be approximated locally as
u(x, z) � u0 � �x � �z. Assuming also that the waves
are linear and u(x, z) varies slowly on the wave scale,
the local wavenumbers for the packet evolve according
to (Jones 1969; Bühler and McIntyre 2005)

dk

dt
� ��k,

dm

dt
� ��k, 
2�

where the time derivatives are taken along ray paths
(i.e., moving with the local group velocity). In Fig. 10,
the flow is confluent (� � 0) and decreases upward
(� � 0). Equation (2) predicts that both the horizontal
and, after sufficient time, vertical wavenumbers in-
crease exponentially at rate �� following the packet.
Consistent with this prediction, local horizontal and
vertical wavelengths estimated from Fig. 10 vary from
100 km and 650 m, respectively, at the location (840 km,
560 m), through 70 km and 520 m at (880 km, 690 m),

FIG. 10. Divergence (thick contours, negative values shaded) in
the plane of the vertical cross section indicated in Fig. 9a, together
with the section-parallel horizontal velocity (thin contours). Con-
tour intervals are 10�3 s�1 for divergence and 1 m s�1 for velocity.
Only a portion of the cross section indicated in Fig. 9a is shown.
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to less than 60 km and 500 m at (910 km, 810 m). Bühler
and McIntyre (2005) argue that even in more complex
flows wavenumbers will typically increase following a
wave packet and note that, because the group velocity
of inertia–gravity waves decreases with wavenumber,
the packet will also begin to move with the local flow,
a process they term “wave capture.”

Figure 10 also shows that the slope of the phase lines
steadily increases moving with the packet (upward and
to the right). Given (2), the slope of the phase lines,
k/m, evolves according to

d

dt

k�m� � 
�� � �k�m�k�m. 
3�

The slope of phase lines will increase following the
packet when k/m � �/�, that is, when that slope is less
than the slope of lines of constant u(x, z), which is given
by �/�. This is the situation shown in Fig. 10.

If the packet is subject to constant deformation and
shear for sufficient time, the slope of phase lines ap-
proach the equilibrium slope, k/m � �/�. In this limit,
the phase lines are parallel to the lines of constant u.
Plougonven and Snyder (2005) found good agreement
between �/� and the slope of stratospheric inertia–
gravity waves generated within a baroclinic wave.
While there is some evidence of this alignment along
the upper portion of the wave packet, the wave slope in
the present simulation’s slope does not approach �/�
closely over much of the packet, since the time scale for
changes in k/m (��1 � 105 s) is comparable to the time
required for the packet to traverse the region of signifi-
cant vertical shear at a vertical group velocity of 0.5 �
10�2 m s�1 computed at the estimated k and m.

Finally, the model’s fourth-order hyperdiffusion also
has nonnegligible effects on the waves. The nondimen-
sional coefficient for the hyperdiffusion is fixed at
1/100, giving a dimensional coefficient of � � �x4/
(100�t), where �x and �t are the grid spacing and time
step, respectively. At the extreme upper, eastern end of
the packet, wavelengths are roughly 5�x, which implies
a decay time (�k4)�1 of about 3.6 � 104 s or 10 h. Closer
to the surface, however, the waves are better resolved
and decay times are greater than 105 s owing to the
scale selectivity of the hyperdiffusion.

7. Dependence on Rossby number

We next examine how the structure and magnitude
of w in the solutions varies with the strength of the
dipole. Varying the velocity scale U of the initial dipole
while fixing the parameters f, N, and L of section 2b
effectively varies the Rossby number, R � U/fL, of the
experiment. All simulations in this section use the

coarser 23.4-km horizontal resolution (and 250-m ver-
tical resolution).

When the dipole is weak and R is small, the QG
dipole of Muraki and Snyder (2007) will approximate
the full evolution closely. Varying R does not change
the structure or evolution of the QG dipole; it simply
changes the magnitude of the geostrophic velocities,
which scale as R, and the time scale for evolution, which
varies as R�1. (In addition, the ageostrophic velocities,
which are diagnostic in quasigeostrophy, scale as R
relative to the geostrophic velocities or R2 overall.) To
facilitate comparison between simulations with differ-
ent initial U, we extend each simulation having U � 10
m s�1 to a time equivalent under the QG scaling to the
22 days used when U � 10 m s�1. For example, the
simulation with U � 1.25 m s�1 covers 88 days. Simu-
lations with U � 10 m s�1 all end at day 22 to minimize
remnants of the initial adjustment, whose time scale is
set by f �1 rather than U/L. Since w becomes quite small
as U decreases, the simulations employ double-
precision arithmetic when U � 10 m s�1.

Figure 11 (top panels) displays w and � on the lowest
model levels above the surface at the end of five simu-
lations with initial U ranging from 1.25 to 15 m s�1. The
domain in each panel is centered on the dipole, and
contour values are normalized by the maximum w to
emphasize the spatial structure of the fields; we will
discuss how the magnitude of w varies with R later.

For U � 1.25 m s�1, the vertical velocity is dominated
by a large-scale quadrupole. In the center of the dipole
along the jet axis, there is also a weak couplet of de-
scent and ascent. A simulation with U � 2.5 m s�1 (not
shown) is similar but has a stronger couplet relative to
the quadrupole. At the other extreme (U � 15 m s�1),
inertia–gravity waves dominate the low-level vertical
velocity. These waves are qualitatively similar to those
in Figs. 3 and 9. They are, however, significantly stron-
ger relative to the quadrupole and, as expected for
near-inertial waves (Kunze 1985), more biased toward
the anticyclone and its decreased absolute vorticity.
With their increased amplitude, waves are also appar-
ent along the northern edge of the cyclone up to the
stagnation point at the rear of the dipole.

The transition between these two distinct structures
for w occurs for U in the range of 5–10 m s�1. At U �
5 m s�1, the descent–ascent couplet along the jet axis
becomes a prominent feature. At U � 7.5 m s�1, the
couplet continues to strengthen and waves are clearly
apparent downstream. By U � 10 m s�1, the case we
have considered throughout the rest of the paper, the
couplet and waves have larger amplitude than the
quadrupole. As a reference for the value of R at which
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the waves appear, U � 7.5 m s�1 corresponds1 to R �
U/fL � 0.15.

The changes in � across the entire range of U are
much less dramatic. As U increases, the orientation of
the dipole changes owing to its propagation along an
increasingly curved trajectory (not shown). Asymme-
tries between the cyclone and anticyclone also develop
at larger U, with the anticyclone becoming more circu-
lar and the cyclone less so.

A quadrupole in w arises at the level of the QG
approximation.2 To reveal more precisely how w differs

from that predicted by QG theory, we have computed
wQG, the QG vertical velocity, given � and the geo-
strophic velocities vg from each simulation. Solving

�N2� �2

�x2 �
�2

�y2� � f 2
�2

�z2�wQG � 2� · Q, 
4�

where Q � �g/�0(
vg /
x · ��, 
vg /
y · ��), yields wQG

(Gill 1982, his section 12.10).
Results for wQG are shown in the middle panels of

Fig. 11. As expected, a quadrupole with scale compa-
rable to the vortex dipole itself is the strongest signal
across all the experiments. Near the center of the di-
pole, however, there are additional features; these
strengthen relative to the larger-scale quadrupole as R
increases and have the form of an ascent–descent cou-
plet along the dipole’s axis. We have not developed a
comprehensive explanation for these features in the

1 The precise value of R of course depends on the definition
chosen. Using the maximum wind speed in this simulation (6
m s�1) and the distance between extrema in the ascent–descent
couplet (250 km), which gives a Rossby number of 0.24. A Rossby
number based on the maximum vertical vorticity would be even
larger since relative vorticity in the anticyclone reaches �0.6 f at
this time.

2 Northward ageostrophic flow near the surface at the upstream
end of the geostrophic jet accelerates parcels entering the jet and
southward ageostrophic flow has the opposite effect in the down-
stream “exit region” of the jet. This leads to a thermally direct

circulation upstream with descent on the colder, southern side of
the jet axis and ascent to the north, and the opposite pattern of w
downstream of the jet.

FIG. 11. Potential temperature � overlaying (top) w, (middle) wQG, and (bottom) w � wQG at the lowest interior levels for simulations
with initial dipoles using U � 1.25, 5, 7.5, 10, and 15 m s�1. Vertical velocity is contoured at 	1/16, 	3/16, and 	7/16 of its maximum
value in each panel. White contours and blue shading indicate descent (w � 0). Only absolute values greater than 	1/16 are shaded.
Thin lines are contours of � as in Fig. 2. In each panel the plotting domain is centered on the dipole.
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center of the dipole, but detailed examination of the
various terms contributing to � · Q indicates large sen-
sitivity to the slight bowing of the cold anomaly across
the dipole’s axis, which increases as R increases.

Of more interest is the difference between w and
wQG, displayed in the bottom panels of Fig. 11. The
most prominent features are a pronounced descent–
ascent couplet that is present for all R and, for U larger
than 5 m s�1, inertia–gravity waves downstream from
the couplet. The descent–ascent couplet is more cleanly
captured in w � wQG—most of the complicated central
structure in w appears to come from wQG. Removing
wQG also makes the wave propagation along the cy-
clone’s outer edge much more obvious.

Figure 12 quantifies the amplitude dependence of w,
wQG, and their difference on the maximum wind speed
in the dipole. To the extent that the wave generation
may be associated with the dipole’s jet, the maximum
wind speed is a natural surrogate for R, since the di-
pole’s scale varies little across the simulations. (The
maximum wind speed at the end of the simulations also
varies nearly linearly with U and is approximately given
by 0.85U.) Lacking an obviously better choice, we mea-
sure w, wQG, and w � wQG by their maximum values at
z � 250 m.

The full w increases as a power of the wind speed
(i.e., linearly in the log–log scale of Fig. 12) up to wind
speeds of roughly 6 m s�1 (corresponding to U � 7.5
m s�1) then begins a more rapid increase. This behavior
hints at the emergence of a second dynamical process
affecting w, consistent with the onset of wave genera-
tion shown in Fig. 11. For small wind speeds, wQG is the
dominant contribution to w but wQG retains power-law
behavior across the entire set of simulations. For large
wind speeds, w is much larger than wQG.

The exponents for w � wQG and wQG provide infor-
mation about the underlying dynamics. The slope of
wQG in Fig. 12 is 2.1, which conforms to the QG pre-
diction that w scales as R2 [as implied by the quadratic
dependence of � · Q in (4) on the geostrophic flow]. In
contrast, the best-fit line for the first three points of
w � wQG has a slope of 3.1. This slope is consistent with
next-order, O(R3) balanced corrections to wQG that
could be obtained by expanding the primitive equations
in R as in, for example, Muraki et al. (1999). The as-
cent–descent couplet along the jet axis in both w and
w � wQG thus arises as a balanced correction to QG
theory.

For larger wind speeds, w � wQG exhibits an approxi-
mate R4 dependence (a slope of 3.9). The transition to
this steeper slope again coincides with the appearance
of obvious waves in w � wQG. While we believe the
steeper slope is a reflection of wave generation, we

attach little significance to the R4 dependence because
of the presence in w � wQG of contributions other than
waves. We have also tried to separate the waves from
the rest of w � wQG by bandpass filtering all wave-
lengths greater than 1/10 of the domain size. This small-
scale component of w � wQG increases significantly
more rapidly with R, exhibiting a slope of 6 for 5 m s�1 �

U � 10 m s�1. A higher-order balanced approximation
to w will be necessary if we wish to quantify more pre-
cisely the variation with R of the wave generation
alone.

8. Summary and discussion

This paper has analyzed numerical simulations of a
synoptic-scale vortex dipole in a rotating, stratified
fluid. These simulations provide an example of the gen-
eration of inertia–gravity waves by balanced flows. Our
choice of a dipole is motivated as an idealization of
atmospheric “jet streaks,” which are often associated
with generation of inertia–gravity waves, and by its
simple dynamics (approximately steady propagation).

Beginning with geostrophic initial conditions taken
from the surface-trapped QG dipole of Muraki and
Snyder (2007), the dipole undergoes a transient period
in which waves radiate rapidly upward and away from
the dipole and the symmetry of the QG solution is bro-
ken, with the anticyclone expanding and the cyclone
shrinking. These transient waves arise through classical
geostrophic adjustment (Blumen 1972) or its generali-

FIG. 12. Maximum absolute values of w at z � 250 m as a
function of the maximum jet speed in the dipole (open circles).
Data are shown for each of the simulations in Figs. 11 and 12,
along with simulations using U � 2.5 and 12.5 m s�1. Also shown
are the maximum absolute values for wQG (dots) and w � wQG

(crosses) and best-fit lines for wQG (gray) and the first three and
last four points of w � wQG (thin lines). Those lines have slopes
of 2.06, 3.14, and 3.88, respectively.
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zations. Following the initial period of adjustment, the
dipole propagates along a slightly curved trajectory at a
nearly steady rate and with a nearly fixed structure for
many tens of days.

For dipoles that are sufficiently intense, with a
Rossby number R based on the jet speed and the dipole
radius of O(10�1) and maximum relative vorticity of
roughly 0.5 f, the flow also contains smaller-scale, up-
ward-propagating inertia–gravity waves that are em-
bedded within and stationary relative to the dipole. The
waves appear downstream from the jet maximum,
forming elongated bows aligned with the leading edge
of the dipole, and have strong similarities to the near-
inertial waves in the stratosphere found in baroclinic
wave simulations (O’Sullivan and Dunkerton 1995;
Plougonven and Snyder 2005, 2007).

In addition to the stationary waves, there are weaker
oscillations that appear to be long-lasting consequences
of the initial adjustment. These oscillations can be
largely removed by time averaging the solutions in a
frame of reference moving with the dipole and then
restarting the simulation from the time-averaged fields.
The stationary waves are almost unaffected by this pro-
cedure.

The stationary waves persist throughout the 40-day
(or longer) integrations despite the model’s explicit
horizontal hyperdiffusion, which on its own damps mo-
tions at the scale of the waves on much shorter time
scales. This argues strongly that the waves are an in-
herent feature of sufficiently strong dipoles rather than
remnants of the initial adjustment. The wave character-
istics are also clearly modified by their propagation
through horizontal deformation and vertical shear,
much as predicted theoretically by Bühler and McIn-
tyre (2005) and demonstrated in baroclinic wave life
cycles by Plougonven and Snyder (2005): their horizon-
tal scale shrinks and the vertical slope varies as wave
packets approach the leading stagnation point in the
dipole’s flow.

We have also explored the dependence of the wave
generation on R by varying the amplitude of the initial
QG dipole over an order of magnitude. For dipoles of
radius 500 km, stationary inertia–gravity waves obvi-
ously first appear once the maximum jet speed reaches
roughly 6 m s�1. To examine the waves’ amplitude and
structure more precisely, we have calculated the QG
vertical velocity wQG based on the simulated pressure
field and subtracted this contribution from the full w.
When R is very small, the most prominent feature in
w � wQG is a couplet of descent and ascent along the jet
axis and centered on the jet maximum. Its amplitude
increases approximately as R3, indicating that it arises
from next-order, balanced corrections to WQG. For

larger R, waves appear and w � wQG increases signifi-
cantly more rapidly.

In the exit region of the jet where their amplitude is
largest, the stationary waves’ general structure has little
dependence on the model resolution, or on the form or
magnitude of model dissipation. The amplitude of the
waves is more sensitive to dissipation, as is the detailed
structure of the wave field, especially near the stagna-
tion points at the leading and trailing edges of the di-
pole and within the anticyclone. Aside from the inertia–
gravity waves, the numerical solutions are very well
resolved. The dependence on resolution arises not
through truncation errors but mainly because we de-
crease the model’s hyperdiffusion as the resolution in-
creases—the waves are strained to small scales in many
regions of the flow and thus are sensitive to the model
dissipation.

These dipole simulations add to the list of idealized
examples in which balanced flows generate inertia–
gravity waves spontaneously, including frontogenesis,
vortices in shallow water and continuously stratified
flow, baroclinic waves, sinusoidal disturbances in
sheared rotating stratified flow, and instabilities that
couple balanced motions and inertia–gravity waves.
The dipole and its embedded waves, both of which are
approximately steady in an appropriate frame of refer-
ence, differ from other examples in which time depen-
dence of the balanced flow leads to wave emission
(Ford 1994a; Vanneste and Yavneh 2004). Moreover,
unlike the examples of Lighthill radiation (Ford 1994a;
Plougonven and Zeitlin 2002), the dipole has a small
Rossby number and the waves are on the small scale
compared to the balanced motions. On the other hand,
the waves in the dipole resemble those associated
with upper-level jets in baroclinic wave simulations
(Plougonven and Snyder 2005, 2007): they appear
downstream of a localized jet and near a system-
relative stagnation point, and they have arcing phase
lines that are stationary with respect to the jet exit and
roughly normal to the flow.

“Geostrophic adjustment” is one mechanism previ-
ously suggested for the generation of inertia–gravity
waves within synoptic-scale flows (Uccellini and Koch
1987). This terminology seems inappropriate for the
dipole since classical geostrophic adjustment is a tran-
sient process, dependent on initial conditions and oc-
curring on a time scale of several inertial periods. In the
dipole, the waves are not transient but steady over tens
of days; they are not sensitive to initial conditions ex-
cept to the extent that the dipole is; and if anything, the
dipole itself appears to be intensifying by some mea-
sures rather than becoming more balanced (Fig. 1, bot-
tom panel).
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We advocate an alternative mechanism,3 beginning
from the apparently reasonable assumption that the di-
pole can be closely approximated by a balanced solu-
tion. Deviations from that balanced solution, if they are
sufficiently small, will then satisfy linear equations
given by linearizing the primitive equations about the
balanced solution and forcing by the residual tenden-
cies (i.e., the difference between the tendencies pre-
dicted by the balanced solution and those obtained
upon substitution of the balanced fields into the full
primitive equations). Unless the balanced solution is so
simple that there is no projection onto temporal and
spatial scales for which there are propagating inertia–
gravity waves, the forcing inherently produces some
wave response. This argument immediately predicts
that a (nearly) steady balanced flow, such as the dipole,
must generate steady inertia–gravity waves.

Because its balanced dynamics are steady and un-
complicated, the dipole is a particularly simple setting
for further study of wave generation. A clear demon-
stration of the mechanism for the wave generation is an
important next step. We expect that this will also re-
quire a more quantitative understanding of the wave
propagation through the spatially varying flow of the
dipole. Another direction for further study is the effect
of the wave generation on the dipole’s evolution.

We have not attempted to explain the secular in-
crease in the maximum anticyclonic vorticity, but it is
suggestive of back reaction on the dipole from the wave
generation.
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