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Abstract

We study the use of ensemble-based Kalman filtering of chemical observations for constraining forecast uncertainties

and for selecting targeted observations. Using a coupled model of two-dimensional sea breeze dynamics and chemical

tracer transport, we perform three numerical experiments. First, we investigate the chemical tracer forecast uncertainties

associated with meteorological initial condition and forcing error. We find that the ensemble variance and error builds

during the transition between land and sea breeze phases of the circulation. Second, we investigate the effects on the

forecast variance and error of assimilating tracer concentration observations extracted from a truth simulation for a

network of surface locations. We find that assimilation reduces the variance and error in both the observed variable

(chemical tracer concentrations) and unobserved meteorological variables (vorticity and buoyancy). Finally, we investigate

the potential value to the forecast of targeted observations. We calculate an observation impact factor that maximizes the

total decrease in model uncertainty summed over all state variables. We find that locations of optimal targeted

observations remain similar before and after assimilation of regular network observations.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Significant strides in understanding and mitigat-
ing air pollution have been achieved over the past
several decades (Seinfeld, 2004). Despite this pro-
gress, modeling and prediction of air pollution and
its effects remains difficult and is prone to sig-
e front matter r 2006 Elsevier Ltd. All rights reserved
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nificant uncertainties (Seigneur, 2005). The com-
plexity comes in large part from three areas. First,
air pollution involves numerous nonlinear physical
and chemical processes, many of which are not well
understood. Second, the characteristic spatial and
time scales of these processes span many orders of
magnitude. Due to poor understanding of some
processes and the computational cost of resolving
all processes at the appropriate scale, many
processes are parameterized in models. These para-
meterizations are, by nature, only approximations,
.
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and hence have errors and uncertainties associated
with them. Finally, uncertainties in the initial and
boundary conditions lead to uncertain predictions
of air quality. The chaotic nature of the meteor-
ological system governing underlying atmospheric
transport (Lorenz, 1963) can often cause even small
uncertainties to grow substantially in time.

Due to the uncertain nature of the prediction of
air pollution hazards (whether due to routine
emissions or emergency releases), simulation tech-
niques combining deterministic modeling with
statistical methods (i.e. Monte Carlo methods) have
sometimes been used to determine air pollution
hazard probabilities and to explore the sensitivity of
predictions to underlying input and model uncer-
tainties (e.g. Boybeyi et al., 1995; Stuart et al., 1996;
Bergin et al., 1999; Dabberdt and Miller, 2000; Sax
and Isakov, 2003; Zhang et al., 2006). One such
statistical technique that has significant promise
for improving air quality modeling and prediction
is four-dimensional data assimilation (FDDA).
FDDA combines observational data, knowledge
of the physical and chemical system behavior (as
represented in predictive models), and information
on the uncertainty in both the observed data and the
model representation over space and time (Kalnay,
2003). By integrating this information, data assim-
ilation can provide a more accurate description of
the system state (i.e., multidimensional information
on wind speed, wind direction, temperature, and
chemical concentration) and its expected evolution
in time. Data assimilation can also be used to
constrain errors associated with the uncertain model
parameterizations and to determine parameter
values, through on-line optimization of the para-
meters used (‘‘parameter estimation’’) (e.g., Navon,
1998).

In addition to improving model predictions, data
assimilation research has led to the development of
tools such as adjoint models for the selection and
design of observational networks and targeted
observations, as it provides a mechanism for on-
line optimization of this selection (Morss et al.,
2001). Existing long-term air quality observational
networks are generally fixed in space and have very
sparse spatial and temporal resolution. The sparse
resolution is due to the number of variables that
need to be observed (several meteorological vari-
ables and up to hundreds of toxic chemical
pollutants) and large equipment and operational
expenses. In addition to long-term fixed locations,
targeted observational locations are often used for
short-term monitoring, for specific management and
research purposes. Recently, interest has escalated
in observation targeting for response to air pollu-
tion hazards that result from emergency releases.
In the weather forecasting field, there has been
significant research on adaptive location of targeted
observations using techniques originating with data
assimilation (Emanuel et al., 1995; Emanuel and
Langland, 1998; Lorenz and Emanuel, 1998; Berli-
ner et al., 1999) that could be applied to air quality
network design.

Although data assimilation is used operationally
for meteorological modeling and prediction, its use
for air quality modeling is less developed. None-
theless, it has been found to be useful as an inverse
modeling technique for diagnosing pollutant emis-
sion source locations and strengths (i.e. parameter
estimation) (Chang et al., 1997; Elbern et al., 2000;
Mendoza-Dominguez and Russell, 2001) and for
identifying locations (in time and space) for field
observation networks and adaptive observations
(Daescu and Carmichael, 2003). Much of this
previous work has focused on variational data
assimilation techniques (three-dimensional and
four-dimensional variational assimilation, 3DVAR
and 4DVAR).

Ensemble-based Kalman filtering is an alternative
data assimilation approach that is undergoing
significant investigation for many environmental
modeling applications (Evensen, 2003). Advantages
include lower computational costs than extended
Kalman filtering and explicit calculation of the
nonlinear evolution of background covariances
through the ensemble forecast. Explicit calculation
of covariance eliminates the assumption of statio-
narity of covariances used in 3DVAR, and alleviates
the need for the development of tangent linear and
adjoint models of the dynamics used in extended
Kalman filtering and 4DVAR (Tippett et al., 2003;
Kalnay, 2003). Heemink and collaborators have
investigated ensemble-based Kalman filtering and
other Kalman filtering techniques for prediction of
ozone concentrations over Europe with two- and
three-dimensional chemical transport models that
are decoupled (calculated off-line) from the under-
lying meteorological dynamics simulation (Hanea
et al., 2004; Heemink and Segers, 2002). Their work
indicates improvement in model predictions with
filtering, and demonstrates the feasibility of Kalman
filtering techniques for modeling air quality.

Here, we study the utility of ensemble-based
Kalman filtering in the context of a two-dimensional
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sea breeze model in which chemical tracer transport
is directly coupled to the underlying nonlinear
meteorological dynamics. The sea breeze circulation
is an important weather pattern affecting coastal
areas. Since many cities are located near coasts, these
circulations have important impacts on the forma-
tion and transport of urban air pollution. In the
United States, two of the most polluted cities,
Houston and Los Angeles, are located on coastlines
for which sea breeze circulations affect air quality.
For example, observational and modeling studies
(Banta et al., 2005; Bao et al., 2005; Zhang et al.,
2006) have found that the sea breeze circulation was
a significant contributing factor to high ozone events
in Houston during the Texas 2000 Air Quality Study,
as polluted air was recirculated over emissions
sources.

Section 2 of this manuscript describes the sea
breeze model, the chemical tracer algorithm, and the
ensemble-based Kalman filter technique used. Section
3 describes and discusses our numerical experiments.
Section 4 provides conclusions and implications.

2. Model description

2.1. The sea breeze model

A detailed description of the sea breeze model can
be found in Aksoy et al. (2005). For the purposes of
this paper, we note that the meteorological model
equations are two-dimensional, nonlinear, hydro-
static, non-rotating, and incompressible. Perturba-
tion buoyancy (b) and vorticity (Z) are the prognostic
variables, as described by the following equations:
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where kZ and kb are the vertical dispersion coeffi-
cients, Q is a buoyancy source term, N is the
Brunt–Vaisala frequency, x and z are the horizontal
(coastline normal) and vertical domain variables, and
t is time. The horizontal and vertical wind speeds, u

and w, are diagnosed from the vorticity through the
stream function, c, with the following definitional
equations:
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. (3)
The model spatial domain represents the cross-
shore horizontal distance and the vertical above-
ground altitude. The coast is located at horizontal
domain center. The force that drives the sea breeze
circulation is modeled as an explicit volume buoy-
ancy source that represents the differential heating
over land and sea. The source function varies
horizontally as an arc tangent with the inflection
point at the coast-line, decays exponentially with
vertical distance from the ground, and varies
sinusoidally in time but with added stochastic noise.
Free slip and thermal insulation are assumed at
the vertical domain boundaries, and zero flux is
assumed at the horizontal boundaries. The forecast
domain size is 500 km horizontally and 3 km
vertically. Rayleigh-damping sponge layers are
used beyond the sides and top of the forecast
domain, to lessen the effects of the boundaries on
the forecast domain. The horizontal and vertical
sponge layers are 300 and 2km thick, respectively.
Grid spacing is 4 km horizontally and 50m vertically.
Hence, the model resolves the mesoscale features
of the sea breeze circulation and marginally resolves
the nonlinear frontal structure associated with the
sea breeze.

2.2. The chemical tracer model

To simulate tracer concentrations, the following
tracer transport equation has been coupled with the
sea breeze meteorological dynamics model:
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@2A

@z2
þ S, (4)

where A is the tracer concentration, kA is the
vertical dispersion coefficient, and S is a source
term. The numerical solution is accomplished with
the scheme consistent with that used for meteor-
ological dynamics (as described in Aksoy et al.,
2005, 2006). All spatial derivatives are discretized
using second order central differences. Dispersion
terms are discretized in time with the trapezoidal
method (resulting in an overall Crank–Nicolson
scheme) and advection terms are discretized in time
with the leap frog method. Lagged-in-time numer-
ical horizontal dispersion and an Asselin time filter
(Asselin, 1972) are used to increase the stability
of the simulations. Boundary conditions for the
tracer concentrations are implemented to ensure no
diffusive or advective flux at all boundaries. Source
terms can include externally set grid-cell-average
tracer sources and lower boundary flux sources.
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2.3. The ensemble-based Kalman filtering method

The filtering method applied here is described in
detail in Aksoy et al. (2005) and Snyder and Zhang
(2003). The ensemble Kalman filter assimilation
equations are the following:

x̄a ¼ x̄b þ Kðy0 �Hx̄bÞ, (5a)

K ¼ PbHT ðHPbHT þ RÞ�1. (5b)

Here, x̄b is the mean forecast (background) state
vector, Pb is the forecast covariance matrix. x̄a is the
analysis mean state vector (after the assimilation
update), y0 is the observation vector, R is the
observational error matrix, H is an operator matrix
mapping model state to observational space, HT is
its transpose, and K is the Kalman gain matrix.
Essentially, the assimilation updates the state vector
variables using linear combinations of the observa-
tions and the model forecast. The weighting factors
in the linear combination (given by K) are deter-
mined by the degree to which observational vari-
ables covary with state variables (represented by Pb)
and the error in the observations (represented by R)
versus the uncertainty in the forecast (also in Pb).
Features of the ensemble-based method applied
here include sequential processing of observational
data (Whitaker and Hamill, 2002), square root
filtering (Whitaker and Hamill, 2002), and the use of
covariance localization (Gaspari and Cohn, 1999;
Houtekamer and Mitchell, 2001) with a radius of
influence of 100 grid points. No covariance inflation
is used in the technique applied here.

In ensemble-based Kalman filtering, Pb is forecast
directly through the evolution of ensemble member
perturbations. Here, initialization of the ensemble is
achieved through a ‘‘climatological’’ scheme, in
which initial values of vorticity and buoyancy for
each ensemble member are statistically sampled
from a time series of data generated from a prior
model run. A normal probability distribution that is
centered at the maximum diurnal heating phase
(local noon) and has a standard deviation of 8 h is
used for the random sampling of initial states (more
details are provided in Aksoy et al., 2005). This
assimilation method has been used to study the
nonlinearity of the sea breeze circulation and
the effects of assimilating buoyancy observations
on meteorological state uncertainties (Aksoy et al.,
2005, 2006). However, neither chemical tracer
dynamics nor chemical observations were repre-
sented or considered.
In this paper, we extend the work on ensemble-
based Kalman filtering to consider a coupled
meteorological and chemical tracer model applica-
tion. For this work, tracer concentrations were
built into the observational and state vectors for
assimilation calculations in order to investigate
the use and optimization of concentration observa-
tions for improved meteorological and air quality
predictions.

3. Numerical experiments in chemical tracer

forecasting

Using the coupled model, we performed three
numerical experiments. Through these, we investi-
gate (1) uncertainty in tracer concentration forecast
predictions, (2) effects of the assimilation of tracer
concentration data on the prediction, and (3) use of
the ensemble-based Kalman filtering assimilation
system for observation targeting.

3.1. Ensemble forecasts of tracer concentrations

In order to understand the predictability of tracer
concentrations and for benchmarking improve-
ments in the prediction due to data assimilation, it
is important to understand the underlying uncer-
tainty in predicted tracer concentrations. To in-
vestigate this uncertainty in the coupled system, we
performed pure forecast simulations with a 50
member ensemble and no data assimilation. Simula-
tions were initialized at the maximum diurnal
heating phase (local noon). Initial values of vorticity
and buoyancy were varied among ensemble mem-
bers using the climatological scheme discussed
above. Initial concentration profiles were not
varied. Model parameters were also not varied
among ensemble members. The variability in model
results is therefore representative of uncertainty
due to meteorological initial conditions and buoy-
ancy forcing (the stochastic uncertainty of heating).
The initial tracer concentration profile was assumed
to be a constant value throughout the domain
(3� 10�5 kgm�3). To simulate tracer emissions, an
idealized lower boundary tracer source flux was also
applied. As shown in Fig. 1, the source flux varies
horizontally from 10�10 to 10�6 kgm�2 s�1 with a
maximum at 28 km to the land side of the coastline.
The source flux remained constant in time. (Tracer
concentration and source values and shapes used
here were chosen to be simple representations of
those observed for pollutants in the atmosphere.)
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Physical model parameter values used were a mean
wind of 0.5ms�1, Brunt–Vaisala frequency of
10�2 s�1, and vertical eddy diffusivities of 0.75m�2 s�1

for vorticity, buoyancy, and tracer concentration.
Fig. 1. Horizontal domain and tracer source configuration. The

network of seven land surface observation locations are marked

by X’s. The network starts at 8 km to the land side of the

coastline an has 40 km spacing. The solid line (and y-axis) provide

the tracer source flux profile.

Fig. 2. Evolution of predicted mean winds (arrows) and tracer conce

shown is the forecast model domain (without numerical sponge layers)
Diurnal heating profile parameters include an
amplitude of 7� 10�6m s�3 and horizontal and
vertical scales of 10 km and 500m, respectively.

Fig. 2 shows the evolution of ensemble mean
winds and concentration distributions for a 36 h
pure forecast. 0 and 24 h correspond to local noon
and the maximum in the differential day-time
heating source, 6 and 36 h (6 pm) correspond to
peak temperatures over land, 9 and 33 h (9 pm)
correspond to peak sea breeze winds, and 21 h
(9 am) corresponds to the peak land breeze.
Released tracer concentrations are largely confined
to the area near the source maximum, tailing to the
sea side after about 24 h. The sea-land breeze
recirculation also allows concentrations to build
somewhat near the surface source maximum, with
advection away from the local area confined both
horizontally and vertically.

Fig. 3 shows the corresponding evolution of
predicted uncertainty (the ensemble standard devia-
tion) in tracer concentrations. We see that uncer-
tainty spreads relatively quickly in the horizontal,
with maxima migrating diurnally between the land
and sea sides of the coast. Uncertainty is largely
confined to the near surface, with greater vertical
ntrations (contours) for a pure forecast simulation. The domain

of 500 km (horizontal) by 3 km (vertical).
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Fig. 3. Evolution of the predicted tracer concentration uncertainties (ensemble standard deviation) for the pure forecast simulation.
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error growth occurring at times and locations near
the peak sea breeze front. This correlation in timing
and location with the sea breeze front is similar to
that observed by Aksoy et al. (2005) for uncertainty
in vorticity. The similar behavior of concentration
uncertainty is consistent with our experimental set-up
in which meteorological initial conditions and for-
cing are the sources of forecast uncertainty.

Fig. 4 provides the evolution of the domain
averaged ensemble uncertainty for all prognostic
state variables (vorticity, buoyancy, and concentra-
tion) for this 36 h simulation. (Here, we will discuss
the pure forecast predictions.) We see that although
there are short periods of error growth, the
meteorological variable errors are damped with
overall time during this period. Strong error growth
is apparent for the chemical prediction. However,
concentration errors also eventually decay overall
with time, with a maximum at about 30 h. The
chemical prediction errors appear to grow during
the transition from the peak land to peak sea breeze,
from about 0 to 9 h and from 21 to 30 h. Results are
also shown for two longer (12 days) ensemble
forecast simulations: one case with the same set-up
as the 36 h run, and one case for which the initial
values of vorticity and buoyancy were not varied
among ensemble errors. (Hence, in this simulation
the only source of error is the stochastic buoyancy
forcing.) Comparing the long simulations with and
without uncertainty in the initial meteorological
conditions, we see that at earlier times, the total
error is dominated by initial condition error, which
largely propagates out of the domain after a few
days. Nonetheless, the error due to stochastic
buoyancy forcing grows in time. Aksoy et al.
(2005) discuss the meteorological error growth
characteristics of this representation of a chaotic
forced dissipative system.

3.2. Assimilation of concentration observations

To investigate the effect of assimilating concen-
tration observations on meteorological and tracer
predictions, we performed a second experiment
using ensemble-based Kalman filtering data assim-
ilation. A 50 member ensemble was also used here.
An arbitrarily chosen 51st member was used to
represent the true evolution of the state and for
extraction of observations. Concentration values
were extracted for a network of seven land surface
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Fig. 4. Domain averaged ensemble root mean squared errors (rmse) with respect to the truth simulation and standard deviations (stdev) in

model prognostic variables. Plots (a–c) provide trends for the 36 h forecast and analysis simulations. Plots (d–f) provide trends for two

long-term (12 days) forecast simulations. The gray lines are for a case with the same set-up as the 36 h case (but with slight differences due

to the forcing stochasticity). The black lines are for a case with no ensemble variability in the initial conditions.
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locations (see Fig. 1). These truth values were
stochastically perturbed to create observations,
assuming a Gaussian distribution of errors with
standard deviation of 1� 10�7 kgm�3. The observa-
tions were assimilated into the predicted state every
3 h. Note that only concentration observations and
no meteorological observations were used in the
analysis. Ensemble member initialization, model
set-up, and physical parameters used in this simula-
tion were as described above for the forecast.

Figs. 5 and 6 show the evolution of winds and
concentration distributions for the truth and mean
analysis forecast, respectively. In the truth simula-
tion, a strong vertical circulation during the sea
breeze portion of the diurnal cycle is present. This
results in advection of peak concentrations to higher
heights and slightly less horizontal spread. The
analysis mean is a significantly better representation
of the truth than the pure forecast for both winds
and concentrations. It captures the stronger vertical
circulation and predicts concentrations fields that
are very similar to the truth. In the pure forecast
ensemble mean, the circulation wind speeds are
significantly damped, with more horizontal and less
vertical concentration spread.

Domain averaged ensemble uncertainty and
mean error for analysis predictions of all prognostic
state variables are compared with the pure forecast
prediction in Fig. 4(a–c). Assimilation of concentra-
tion observations is clearly effective at constraining
the meteorological errors, as well as the concentration
errors. Hence, the filter is effective for both the
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Fig. 5. Evolution of winds and tracer concentrations for the truth simulation.

Fig. 6. Evolution of analysis mean winds and tracer concentrations.
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observed variable (concentration) and the unob-
served variables (vorticity and buoyancy).

To investigate the robustness of our assimilation
results, several additional ensemble simulation
cases were also performed. We investigated the
sensitivity of the assimilation results to the interval
between analyses, the radius of influence, the
observational spacing, the observational error, and
the observational variables assimilated. Simulations
were also performed with a distinct initial vertically
varying concentration profile. Fig. 7 shows results
of several sensitivity cases. The error in predicted
variables is somewhat sensitive to all the filter
parameters, particularly at early times. However,
in all cases the assimilation significantly reduced
the uncertainty in the forecast. Sensitivity simula-
tions with single observed variables other than
concentration (i.e. buoyancy alone or vorticity
alone) indicate that concentration is a somewhat
less effective observed variable than the meteoro-
logical variables for improving the forecast of
meteorological variables. Simulations with both
concentration and a meteorological variable ob-
served, performed better overall than any single
observed variable.

3.3. Observation targeting

The ensemble-based Kalman filter provides a
mechanism for optimizing the spatial and temporal
location of fixed observational networks and
targeted observations. Hamill and Snyder (2002)
developed a method to select observation locations
based on maximizing the improvement (decrease in
uncertainty) in model fields that would result due to
an assimilation cycle and applied it to a weather
forecasting application. In this optimization meth-
od, the norm used for total decrease in model
uncertainty is the sum over all state variables of the
individual differences in variances, or the trace of
Pb
�Pa, where Pa is the post-analysis background

error covariance matrix. Pb
�Pa can be written as

(Hamill and Snyder, 2002)

Pb � Pa ¼ PbHTðHPbHT þ RÞ�1HPb. (6)

To investigate the potential use of Hamill and
Snyder’s method in the context of chemical ob-
servational network design and air quality forecast
improvement, we have applied their development
to our system. Using post-processing, we calculate
the effect of a single observation (yo) located at a
model grid point. For this case, the trace of Pb

�Pa
reduces to

G ¼
XM

i¼1

ðs2b � s2aÞi ¼
1

s2xy0
þ s2y0

XM

i¼1

cov2 xi;xy0

� �
,

(7)

where M is the size of the state vector (the number
of state variables times the number of domain grid
points), s2 is the variance, xi is a state vector
variable, xy0 is the state variable corresponding to
the observation (or Hx), and cov is the covariance.
We refer to G as the observational impact factor.
Here, we have applied it to calculate values of the
impact factor for assimilation of individual tracer
concentration observations, in order to investigate
implications for the location of optimal chemical
observations.

Fig. 8 shows the spatial and temporal evolution
of the observation impact factor fields over the
simulation period. Values are shown every 6 h after
the assimilation of concentration observations from
the fixed network (and all prior network analyses).
Maximum values indicate locations where addi-
tional observations of tracer concentration are
predicted to lead to greatest improvement (over all
prognostic model variables) in the model prediction.
The figure indicates optimal locations for observa-
tions that change with time. The most valuable
observations are generally located primarily on the
land side of the domain and closer to the surface
(i.e., close to the source maximum), though com-
plicated structures are apparent. When a sea breeze
front is present, observations near the front appear
most critical, while at other times, preferred
locations are more broadly distributed. The value
of assimilating observations also changes signifi-
cantly with time, decreasing overall (see the
logarithmic scale). We note that this optimization
method, represented by Eqs. (6) and (7), values the
variance of all state variables equally, regardless of
the differences in magnitude between variables. To
investigate impacts of this valuation, we also
calculated impact factors for each state variable
separately (not shown). Although the impact factor
magnitudes change for each variable, the shape of
the impact factor fields (and hence predicted
locations of optimal observations), remains very
similar.

The above impact factor was calculated after the
assimilation cycle using the regular network ob-
servations. Hence, it provides optimal locations for
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Fig. 7. Sensitivity of the rmse of the model prognostic variables. For observations of buoyancy and vorticity, observational errors of

1� 10�3 and 1� 10�4 were used, respectively.

A.L. Stuart et al. / Atmospheric Environment 41 (2007) 3082–3094 3091
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Fig. 8. Observational impact factor fields at analysis times after the assimilation of concentration observations from the fixed network

(and all prior network analyses).
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targeted observations additional to the regular
network. However, the calculation also requires
information on observation values at the analysis
times. For real-time forecasting, network observa-
tions for a given analysis time are unavailable a
priori. Additionally, impact factor values are only a
function of state covariance and observational
variance (error) information, which is often avail-
able before the analysis update. Fig. 9 shows impact
factor fields at analysis times but prior to the
assimilation of concentration observations from the
fixed network compared with those after assimila-
tion. Substantially, similar structures are apparent
in the normalized impact factor fields both before
and after analysis of the regular network observa-
tions. This demonstrates the potential usefulness of
this norm for locating promising adaptive observa-
tions in a predictive mode, without a priori
information on regular network observation values
or even observation locations. However, further
work is needed to test the success of this strategy
through addition of targeted observations at the
selected locations.
4. Conclusions

We study the impact of ensemble-based Kalman
filter assimilation of chemical tracer concentration
observations on improving the prediction of both
chemical and meteorological model variables for an
idealized sea breeze circulation. We also investigate
the potential utility of an optimization technique
based on the Kalman filtering equations for design
of fixed air quality observational networks and
targeted observations. By comparing the truth
simulation with ensemble forecasts, both with and
without assimilation of concentration data, we find
that ensemble-based Kalman filtering assimilation
of concentrations observations effectively improved
the forecast of both the observed variable (concen-
tration) and the unobserved meteorological vari-
ables. This suggests considerable potential value in
using the plethora of air pollution data available
from regulatory air quality monitoring networks for
improving skill in meteorological forecasts (even for
purposes unrelated to air pollution), when meteor-
ological and chemical models are routinely coupled.



ARTICLE IN PRESS

Fig. 9. Normalized observational impact factor fields before (left side of each pair) and after (right side) observation assimilation from the

fixed network. Impact factor values have been normalized by dividing by the maximum value in the given field.
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We also demonstrate the potential of the impact
factor derived from ensemble-based Kalman filter-
ing for selection of observation locations.

With this work, we advance understanding of the
use of ensemble-based Kalman filter data assimila-
tion of chemical observations with a nonlinear, two-
dimensional model in which dynamics and chemical
tracer transport are coupled. The context of our
experiments is a chaotic force dissipative dynamic
system, a sea breeze circulation. Such circulations
are important for many municipalities with difficult
air quality problems, but there has been little work
in the past on using ensemble-based data assimila-
tion for improving predictions for such systems.
We focus here on studying the effects when the
uncertainty in the forecast is driven by meteorolo-
gical initial condition error. The results of our
idealized modeling study suggest the potential value
of chemical observations and suggest directions
regarding targeted observation planning. However,
we must note that realistic systems affecting air
quality are very complex and have many sources of
error (notably emissions data and model represen-
tation) that we have not investigated here. Further
significant work is needed to understand the
applicability of these results for a variety of realistic
dynamic systems and complex coupled models.
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