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ABSTRACT

Limits of intrinsic versus practical predictability are studied through examining multiscale error growth

dynamics in idealized baroclinic waves with varying degrees of convective instabilities. In the dry ex-

periment free of moist convection, error growth is controlled primarily by baroclinic instability under

which forecast accuracy is inversely proportional to the amplitude of the baroclinically unstable initial-

condition error (thus the prediction can be continuously improved without limit through reducing the

initial error). Under the moist environment with strong convective instability, rapid upscale growth from

moist convection leads to the forecast error being increasingly less sensitive to the scale and amplitude of

the initial perturbations when the initial-error amplitude is getting smaller; these diminishing returns may

ultimately impose a finite-time barrier to the forecast accuracy (limit of intrinsic predictability and the so-

called ‘‘butterfly effect’’). However, if the initial perturbation is sufficiently large in scale and amplitude (as

for most current-day operational models), the baroclinic growth of large-scale finite-amplitude initial error

will control the forecast accuracy for both dry and moist baroclinic waves; forecast accuracy can be

improved (thus the limit of practical predictability can be extended) through the reduction of initial-

condition errors, especially those at larger scales. Regardless of the initial-perturbation scales and am-

plitude, the error spectrum will adjust toward the slope of the background flow. Inclusion of strong moist

convection changes the mesoscale kinetic energy spectrum slope from 23 to ;25/3. This change further

highlights the importance of convection and the relevance of the butterfly effect to both the intrinsic and

practical limits of atmospheric predictability, especially at meso- and convective scales.

1. Introduction

Current-generation numerical weather prediction

(NWP) models now are capable of routinely capturing

the evolution of large-scale synoptic weather systems but

remain challenged in forecasting meso- and convective-

scale weather phenomena such as squall lines and tor-

nadic thunderstorms. It is of great interest to assess the

predictability of these mesoscale severe weather systems,

what their predictability limits are, and how to improve

our forecasts, particularly with respect to the amount and

spatial distribution of the associated precipitation (Zhang

et al. 2007). There are two types of predictability

problems (Lorenz 1996; Melhauser and Zhang 2012):

1) practical predictability refers to the limit on

atmospheric prediction using current optimal analysis

procedures to derive the initial state with the best

available atmospheric forecast model (Lorenz 1982)

and 2) intrinsic predictability refers to the limit of

prediction if the initial state is known nearly perfectly

with an nearly perfect forecast model (Lorenz 1969;

Zhang et al. 2007; Rotunno and Snyder 2008).

Practical predictability is limited by realistic un-

certainties in the forecast model and initial conditions.

These uncertainties can include the adequacy of obser-

vations (e.g., accuracy, spatial and temporal coverage,

and usability), data assimilation procedures, and de-

ficiencies in the forecast models (e.g., Lorenz 1996;

Melhauser and Zhang 2012). The intrinsic predictability

emphasizes that there will be a finite intrinsic limit of

predictability for the atmosphere (as in any chaotic dy-

namic systems) even if the initial condition and forecast

model are nearly perfect (e.g., Lorenz 1969; Zhang et al.

2003, 2007). This intrinsic predictability is demonstrated

by the rapid ‘‘upscale growth’’ of the forecast error.
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For a flowwith a slope shallower than23, idealizedmodel

studies show that this flow has a faster eddy turnover time

at smaller scales. Thus, the growth rate of errors initially

peaks at small scales and then, as the small-scale errors

saturate, this peak shifts to larger scales with a smaller

growth rate (Lorenz 1969; Rotunno and Snyder 2008).

This type of ‘‘upscale growth’’ behavior is further dem-

onstrated in Morss et al. (2009) with a quasigeostrophic

model. The error growth behavior could also vary largely

at different times or in different regions of interest, which

leads to a flow-dependent predictability skill (Morss et al.

2009; Bei and Zhang 2014). In addition, using the NCAR

Community Climate Model (version 3), Tribbia and

Baumhefner (2004) confirms that upscale propagation of

small-scale initial error is able to perturb the baroclinically

unstable modes and results in the loss of predictability at

global scales [refer also to Mapes et al. (2008)].

Zhang et al. (2007) proposed a multistage conceptual

model for atmospheric predictability through diagnos-

ing error growth between ‘‘identical twin’’ convection-

permitting simulations of idealized moist baroclinic

waves: 1) the initial convective growth stage, which begins

with convective instability followed by rapid error satu-

ration [;O(1)h]; 2) the intermediate adjustment stage,

during which error projects to balanced field [;O(2p/f)];

and 3) the large-scale growth stagewhere error growswith

larger-scale baroclinic instability. This three-stage con-

ceptual model is demonstrated to be effective in ex-

plaining the atmospheric predictability of a real-case

study by Selz and Craig (2015a). In their high-resolution

simulation of a warm-season weather event over Europe,

Selz and Craig (2015a) showed that 60h after perturbing

their operational forecast model with negligible initial

small-scale error, the large-scale 500-hPa geopotential

height error induced by upscale error growth was about

half the spread of the European Centre for Medium-

Range Weather Forecasts (ECMWF) 6-h ensemble

forecast. This result suggests that the upscale error growth

plays a nonnegligible role in limiting the operational

forecast skill and needs to be fully considered in numerical

weather models. Rodwell et al. (2013) also related poor

forecasts over Europe to high convective activities over

North America a couple of days ahead, indicating that

large uncertainties introduced by convection will amplify

in scale and amplitude during the propagation over the

Atlantic. In addition to midlatitude weather systems,

the three-stage model is also found useful in explaining

the predictability of tropical cyclones. In the study of four

IndianOcean cyclones, Taraphdar et al. (2014) found that

the growth and saturation of error starts from small con-

vective scales to intermediate mesoscale vortex or inertial

gravity waves scales and ultimately influences the larger

(system) scale of the tropical cyclones.

Recently, Durran andGingrich (2014) argued that the

initial relatively small large-scale error is more impor-

tant than the upscale growth process of small-scale error

proposed in Zhang et al. (2007). While they provided an

interesting perspective, there are two important limita-

tions in their study. First, their results are based on two

winter storm cases during which convective instability is

relatively weak. As atmospheric predictability is flow

dependent, the result may well be different under dif-

ferent baroclinic and convective instability as shown in

Tan et al. (2004). Second, Durran and Gingrich (2014)

did not explicitly examine the intrinsic predictability of

the two weather events in their study since initial-

condition uncertainties in these two events, given by a

particular initialization and data assimilation system of

their model, are likely large in both in scale and ampli-

tude [i.e., practical predictability of Lorenz (1982,

1996)]. The intrinsic predictability, on the other hand,

refers to the limit of atmospheric predictability given

infinitesimally small-scale, small-amplitude initial-

condition errors (Lorenz 1969; Zhang et al. 2007).

As an extension of Zhang et al. (2007), this study ex-

plores both the intrinsic and practical aspects of atmo-

spheric predictability through convection-permitting

simulations of idealized moist baroclinic jet-front systems

with initial-condition uncertainties at different scales and

amplitudes. We will show that, for atmospheric pre-

dictability at the mesoscales, the role of moist convection

and the upscale error growth starting from convective

scales is critical for both the intrinsic and practical pre-

dictability. Section 2 introduces the model and methods

used in the study. An overview of the simulated moist

baroclinic systems is given in section 3. Section 4 explores

the error evolution with initial perturbations of different

scales. Their sensitivities to different amplitudes of initial

perturbations are given in section 5. The dynamics of the

error growth are explored inmore details in section 6,with

concluding remarks in section 7.

2. Methodology

a. Model configuration

The Advanced Research version of the Weather

Research and Forecast Model (ARW version 3.5.1;

Skamarock et al. 2008) is employed in this study fol-

lowing the configurations of Wei and Zhang (2014).

The flow is confined to a periodic channel on an f plane

( f 5 1024), with a period of 4000km in the zonal (x)

direction and walls-separated 8000 km in the meridional

(y) direction. There are 100 vertical layers with a model

top at 20 km, which means roughly 200-m grid spacing in

the vertical (z) direction. The horizontal grid spacing is

10km, which is on the very edge of convection-permitting
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resolutions and is likely to lead to some underestimation

in the upscale error growth. With higher resolutions, the

amplitude of the forecast error might change (Zhang

et al. 2003, 2007). For example, Selz and Craig (2015b)

found a factor of 3 amplitude differences in the 60-h dif-

ference total energy (DTE) error between a 2.8- and a 7-km

‘‘convection-permitting’’ simulation. Nevertheless, it is ex-

pected that a faster error growth with a higher resolution

would follow similar physical processes (moist instability

and convection) that may limit intrinsic predictability at the

mesoscales and beyond.

The moist processes are parameterized using the

Lin et al. (1983) microphysics scheme. The planetary

boundary layer scheme of Hong and Pan (1996) is

adopted here to handle the vertical diffusion in the

simulation. The Monin–Obukhov similarity theory is

used to parameterize the surface layer flux of heat and

moisture. We also apply the Rayleigh damping scheme

described in Klemp et al. (2008) to the vertical velocity

in the uppermost 5 km of the model domain to minimize

artificial wave reflections from the model top. To sim-

plify the interpretation of the results, no cumulus pa-

rameterization is used and no radiation is considered.

b. Initial conditions for the baroclinic wave
simulations

The initial jet profile is shown in Fig. 1. We use the

same jet profile as that used in Zhang et al. (2007), which

is derived through a simple 2D potential vorticity (PV)

inversion (Davis and Emanuel 1991) method in the y–z

plane. The prescribed PV distribution has constant

value in both the troposphere [0.4 potential vorticity

units (PVU, where 1 PVU 5 1026Km2 s21 kg21)] and

stratosphere (4.0 PVU). The value of 1.5 PVU is used

to define the location of tropopause, indicated by the

thick black line in Fig. 1. More details of the jet profile

can be found in Zhang et al. (2007) and Zhang (2004).

This jet profile is then expanded along the x direction

homogeneously. It is worth noting that, when using this

jet as the initial condition, it went through an adjust-

ment process and caused an artificial oscillation in the

simulation, likely due to the interpolation across strong

gradients. To remove this unwanted oscillation, we first

run this jet profile for 35h (around two times the inertial

period) and then time average all the variables, and run

this time-averaged field again. This procedure is repeated

several times until the amplitude of the oscillating hori-

zontal wind is reduced to the order of 0.001ms21.

The initial relative humidity profile is prescribed with

slightly smaller values than that in Zhang et al. (2007)

(see appendix A). Figure 1 also shows the water vapor

mixing ratio, which is very close to the observed values

in themidlatitudes. Thismoisture profile will be noted as

MOIST from now on. To test the sensitivity of the error

growth to varying convective instabilities, two extra runs

are also conducted, where the relative humidity is re-

duced to 50% of the original value or the diabatic

heating is turned off completely, referred as RH50 and

DRY, respectively.

The fastest-growing mode of the jet with a small am-

plitude (0.1K for u) is used to initiate the baroclinic

wave cycle. This mode is computed using a method

similar to that employed in Plougonven and Snyder

(2007): first, we introduce aGaussian noise to the jet and

integrate the model for 3 days; the perturbation field is

then rescaled to that of a smaller amplitude, which is

added back to perturb the original jet again. This cycle

is repeated five times for a total of 15-day simulation

after which the normal mode of the perturbation fields is

extracted to be the fastest-growing mode.

c. Initial perturbations (errors) of the ‘‘identical twin
experiments’’

Two types of perturbations are added to test the sen-

sitivity of the short-range forecast error to initial-error

distribution. Type one error is Gaussian white noise used

in Zhang et al. (2007). This random noise with zero mean

and a standard deviation of 0.2K was added to the po-

tential temperature fields (denoted as NOISE perturba-

tion). Type two error is simply the filtered fastest-growing

normal baroclinically unstablemode (amplitude 0.1K for

u) in which only the long-wavelength part (large scale,

wavelength . 1000km) is retained. Note all the prog-

nostic variables are perturbed accordingly to minimize

initial imbalance. We will use LARGE to represent this

perturbation in the following sections.

Various experiments are conducted to test all kinds

of sensitivities related to the initial-perturbation

FIG. 1. Vertical cross section of the initial jet for zonal wind (red,

every 10m s21, .30m s21 light green shaded), potential tempera-

ture (gray, every 5 K), the tropopause denoted by dark line where

the potential vorticity equals 1.5 PVU, and initial water vapor

mixing ratio (color starts at 2 g kg21 and is shaded every 2 g kg21).
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distribution and amplitude. A full list of all the experi-

ments is listed in Table 1.

3. Overview of the baroclinic wave simulations

Before presenting our results on how the errors

grow, a brief overview of the simulated baroclinic wave

system is given here. Under the initial jet profile de-

scribed above, the development and life cycle of the

baroclinic wave follow a cyclonic behavior similar to the

LC2 type defined in Thorncroft et al. (1993). Also note

here, owing to the use of periodic boundary conditions

in the zonal direction, the downstream development for

both the baroclinic wave and error propagation could

not be easily identified in the current study.

Figure 2 shows the simulated 500-hPa vertical vortic-

ity of the baroclinic wave at days 5–8 under different

moisture settings (that lead to different convective in-

stability). A simple exponential amplification of the

fastest-growing baroclinic mode dominates the evolu-

tion before day 5 (96 h). After day 8 (168 h), barotropic

processes become important and the decay of the baro-

clinic wave starts to prevail (Simmons and Hoskins

1978). Consistent with previous studies on the LC2-type

life cycle of baroclinic waves, the forward-tilted and

broadening troughs are very clear in all three experi-

ments. During the period between days 5 and 8, the

large-scale vorticity structure is very similar in all the

experiments, except that, in the moist runs, moist con-

vection generates lots of local small-scale vorticity in the

precipitation region. It is worth pointing that moist

convection not only adds small-scale structures to the

vorticity field but also promotes faster and stronger de-

velopment of the large-scale flow. For example, the

baroclinic trough becomes deeper and more curved in

the MOIST run than in the DRY run. This can be more

quantitatively illustrated by the time series of eddy ki-

netic energy (EKE) plotted in Fig. 3a. The EKE is de-

fined as (Waite and Snyder 2013)

EKE5

ððð
1

2
r(u02 1 y02 1w02) dV

�ððð
r dV , (1)

where u0, y0, and w0 are the perturbation fields after

removing the zonal mean wind. Before day 5, the EKE

of the DRY run and the MOIST run are very close.

After the precipitation starts to form, the EKE of the

MOIST run begins to grow at a higher growth rate. At

day 8, the EKE of the MOIST and the RH50 runs are

52% and 24% higher than that of the DRY run, re-

spectively. To ensure this higher EKE is not solely due

to increment of the small-scale wave activity, the

large-scale filtered EKE (wavelength . 1000 km) is

also shown. Again, the moist large-scale EKE is 51%

higher than its counterpart in the dry run. Thus, it is

very clear that EKE is dominated by its longer-

wavelength baroclinic component. The meso- and

small-scale components contribute less than 3% of the

total EKE.

The precipitation rate of MOIST and RH50 is also

shown in Fig. 3b. As we expected, precipitation in the

MOIST run starts earlier and has a larger value

throughout the simulation than RH50 because of a

stronger convective instability in MOIST.

4. Intrinsic predictability: Forecast sensitivity to
small-amplitude initial-condition errors

Considering the evolution of the baroclinic waves

and the time when the precipitation starts, we choose

to add the perturbations at 108 h (12 h after day 5) of

the control baroclinic wave simulations described in

the previous section. Two types of small-amplitude

initial perturbations described in section 2 are added,

the growth and evolution of which will be the focus of

this section. As in Tan et al. (2004) and Zhang et al.

(2007), the metric for examining the error is defined

using the DTE:

DTE5
1

2
�[(du)2 1 (dy)2 1 k(dT)2] , (2)

where du, dy, and dT are the difference winds and

temperature fields, k5Cp/Tr, Cp is the specific heat

capacity, and Tr is the reference temperature

of 270K.

TABLE 1. All the experiments conducted in this study.

Moisture perturbation type DRY MOIST RH50 FAKEDRY

LARGE DRY_LARGE MOIST_LARGE

(L_H06, L_ H12, L_H18)

RH50_LARGE FAKEDRY _LARGE

DRY_LARGE10 MOIST_LARGE10

DRY_LARGE100 MOIST_LARGE100

NOISE DRY_NOISE MOIST_NOISE

(N_H06, N_H12, N_H18)

RH50_NOISE FAKEDRY _NOISE

MOIST_NOISE/10
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a. Error growth from small-amplitude Gaussian
white noises (NOISE)

Under the dry environment without convective in-

stability, the initial perturbations grow solely through

baroclinic instability. Since only a negligible part of the

initial Gaussian white noise is projected onto the large-

scale baroclinic mode, the overall growth in DTE from

pure white noises is also weak in the DRY experiment.

Instead, there is a noticeable decay of the initial error

as a result of numerical model diffusion during the 36-h

forecast period, as is shown in Fig. 4.

With the inclusion of moisture (and convective

instability), however, the error growth behavior is dras-

tically different (Fig. 4). Figure 5 shows the evolution of

DTE and filtered large-scale difference sea level

pressure in the MOIST_NOISE experiment overlaid

with the simulated precipitation in the unperturbed

simulation. As is expected, the evolution of initial

error generally follows the three-stage model pro-

posed by Zhang et al. (2007). In the first few hours, the

error mainly grows through convective instability and is

confined to the precipitation region. At later times, the

error starts to project to large-scale balanced field while

the unbalanced components of the error energy propa-

gate away from the area of moist convection in the form

of gravity waves and/or density currents, a hint of which

can be seen in Fig. 5 (e.g., 18h, on the edge of DTE field).

The balanced components of the perturbations (error

energy) eventually grow through large-scale baroclinic

instability [see Zhang et al. (2007) for more details].

As for the vertical distribution of the error, Fig. 6

shows the contoured frequency by altitude diagram

(CFAD) of the DTE in the MOIST_NOISE experi-

ment. The largest DTE, contributed predominantly by

the difference kinetic energy (DKE), lies at 8–10km, the

same location where the strongest wind (jet stream) lies

in the background flow. Note that within less than 1h,

FIG. 2. Horizontal snapshots of the 500-hPa relative vorticity (1024 s21) from (left to right) days 5 to 8 for the (top to bottom) control

experiments of DRY, RH50, and MOIST. The distance between the tick marks on the axes is 1000 km. Regions within 1500 km of the

southern and northern boundaries of the model domain are omitted.
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some strong DTE already shows up at around 9km,

implying a rapid conversion (and growth) from the error

potential energy (only potential temperature is per-

turbed) to the error kinetic energy.

b. Error growth for small-amplitude perturbations at
the scale of fastest-growing mode (LARGE)

The same analysis (as for the NOISE perturbation

described above) is conducted for the LARGE case

(Figs. 4 and 7) that is perturbed with small-amplitude

initial-condition error at scales of the fastest-baroclinic-

growing mode (wavelength . 1000km). The evolution

of DTE under dry environment follows an exponential

growth with a growth rate similar to the growth of EKE

in the control simulation. However, with the inclusion of

moisture and convective instability, though initially the

error growth at large scales shows some signature of the

dry experiment (difference sea level pressure in Fig. 7),

the total error growth is more similar to the MOIST_

NOISE case consistent with the three-stage error growth

conceptual model of Zhang et al. (2007) as also described

above (Figs. 4 and 7), which is in strong contrast to the

DRY_LARGE experiment without moisture. Note the

final large-scale forecast error at 36h in MOIST_

LARGE experiment is even smaller than that of the

MOIST_NOISE case. This evidence further verifies that

the upscale error growth from convective scale dominates

over the baroclinic error growth in this experiment when

the initial-error amplitude is small, albeit large in scale.

It is worth noting that the baroclinic growth of the

error nearly stalls after 30 h in the DRY_LARGE ex-

periment because of the decrease of the baroclinic in-

stability of the background large-scale flow (not shown).

However, in the MOIST_LARGE experiment, the

forecast error rapidly increases (especially in the large

scale) as a result of precipitation at that time (Fig. 7).

The increase of domain-integrated large-scaleDTEat later

forecast time (after 30h) thus comes primarily through

upscale propagation of error at smaller scales. While add-

ing moisture itself will increase the baroclinic growth rate

through reducing the static stability that can subsequently

lead to an amplification of the large-scale error, this effect

alone is too small to explain the difference between the

MOIST_LARGE and DRY_LARGE experiments here.

c. Experiments with initial perturbations added at
different times of the baroclinic life cycle

To further examine the robustness of the error growth

characteristics discussed above, additional experiments

are performed with initial perturbations added at dif-

ferent times of the baroclinic life cycle. In previous

experiments, the initial perturbation is added at day 5

FIG. 3. (a) Time series of the simulated eddy kinetic energy per

unit mass from different experiments. Dashed line shows the long-

wave end of the eddy kinetic energy (wavelength . 1000 km).

(b) Time series of the domain-averaged precipitation rate (mm

every 12 h, averaged over 3-h intervals). The stars in both plots

imply the time when the initial perturbations are added.

FIG. 4. Time series of the domain-integrated DTE (m2 s22) for

the NOISE (dashed) and LARGE (solid) experiments underDRY

(gold) and MOIST (green) environment.
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at 12 h (108 h) of the control simulations, we refer to

these two experiments with different perturbations as

N_H12 and L_H12, respectively. We have also run

similar experiments 6 h earlier and later at 6 and 18 h of

day 5, which are noted here as N_H06, L_H06, N_H18,

and L_H18, respectively. Thus, for each type of per-

turbation under the moist environment, we have three

different perturbed runs. The list of all the experiments

can also be found in Table 1.

Figure 8 shows the evolution of the domain-integrated

DTE for all the three experiments for each type of

perturbations. We can find that the DTE between short-

range forecasts (e.g., at 12 h) is positively correlated to

the precipitation rate. For example, the DTEs at 12 h in

the H12 experiments are noticeably larger than that

of the H06 experiments owing to stronger precipitation

at later times (Fig. 3). After 20 h, the relationship be-

tween precipitation and the error growth is not as clear.

Although the H12 and H18 experiments still have larger

DTE compared to the H06 experiment, the difference be-

tween the H12 and H18 experiments becomes very small.

Nevertheless, the error growth process in all the three ex-

periments at different times is similar.Wewill thus focus on

the H12 experiment for the analysis for MOIST_NOISE

and MOIST_LARGE experiments if not stated otherwise.

Moreover, the error growth for both types of initial

perturbations (MOIST_LARGE and MOIST_NOISE)

is overall consistent with each other, all of which can be

broadly described by the three-stage conceptual model

of Zhang et al. (2007). In particular, the large-scale ini-

tial error in MOIST_LARGE acts primarily to perturb

small scales in the region of moist convection, which

makes little or no physical differences if the model is

perturbed with the Gaussian white noises (NOISE).

Additional experiments where we kept the LARGE per-

turbations only in the vicinity of moist convection (a circle

FIG. 5. Snapshots of columnmaxima of DTE (m2 s22) for the MOIST_NOISE experiment valid at (a) 3, (b) 6, (c) 12, (d) 18, (e) 24, and

(f) 36 h after the initial perturbations are added. The contours show the long-wave filtered sea level pressure difference (wavelength .
1000 km, every 5 Pa; red contour implies positive values and blue contour implies negative values. Gray shaded regions indicate where the

precipitation rate is .0.1mmh21.
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with a radius of 200km centered at the initial precipitation

center) are also conducted (i.e., the initial-error scale is re-

duced by at least an order of magnitude) and the simulated

DTEs are again quantitatively similar to the MOIST_

NOISE andMOIST_LARGE experiments (except for the

large-scale component of the DTE; not shown here). This

high insensitivity of the convective-scale error growth to

amplitude and structure of the perturbations is also dem-

onstrated by Hohenegger and Schär (2007). In essence,

the error energy for larger scales for the MOIST_LARGE

experiments are not necessarily cascaded downscale [as

found inDurran andGingrich (2014)] butmore likely grows

from smaller-scale errors conditioned by the large-scale

differences at the region of convective instability.

To summarize, consistent with previous studies of

Zhang et al. (2007) and Selz and Craig (2015a), the ex-

periments discussed in this section further support the

three-stage conceptual model of Zhang et al. (2007) and

strongly suggest that atmospheric predictability in the

mesoscale might be intrinsically limited owing to chaotic

dynamics of moist convection despite of being per-

turbed only by small-amplitude (unobservable) initial

perturbations regardless of the initial-error scales.

5. Intrinsic versus practical predictability:
Sensitivity to initial-error amplitude

Given that in the current-generation numerical weather

prediction systems, the initial-condition errors can be both

considerably large in scale and amplitude [as in Durran

and Gingrich (2014)], this section examines the connec-

tions and differences between intrinsic and practical limits

of atmospheric predictability through further exploring

the error growth dynamics of themoist baroclinic jet–front

systems with different initial-perturbation amplitudes (for

both types of initial perturbations: LARGE and NOISE).

These experiments are listed in Table 1. More specifically,

the initial amplitude of the perturbations in experiments

LARGE10 (LARGE100) is increased such that the initial

domain-integratedDTE is 10 (100) times larger than that of

LARGE (for bothDRY andMOIST scenarios). The initial

amplitude of the perturbations in experiment MOIST_

NOISE/10 on the other hand is reduced such that the initial

domain-integrated DTE is 1/10 that of MOIST_NOISE.

To help us better understand the error growth be-

havior at different scales, following Zhang et al. (2007)

and with two-dimensional spectral decomposition, the

domain-integrated DTEs for three characteristic

horizontal-wavelength ranges (S: smaller scale, L ,
200 km; M: intermediate scale, 200 km , L , 1000km;

L: larger scale L . 1000km) will be examined.

Under the DRY environment, the forecast errors for

LARGE-type perturbations have a clear dependence

on the amplitude of initial large-scale error that we added

(Fig. 9). For example, the final domain-integrated DTE of

DRY_LARGE10 (DRY_LARGE100) at 36h is approxi-

mately 10 (100) times larger than the final DTE of DRY_

LARGE. Moreover, this quasi-linear relationship holds

truenot only for the totalDTEbut also forDTEat different

scales (Fig. 9). This set of DRY sensitivity experiments with

LARGE-type initial perturbations demonstrates that error

growth in dry baroclinic waves is primarily controlled by the

exponential growth of the baroclinic mode due to the

background baroclinic instability.

Under moist condition, to elucidate of the limit of

intrinsic predictability, we further reduce the initial

domain-integrated DTE of experiment MOIST_

NOISE with the Gaussian white noise to one-tenth of

its original value and mark this experiment as MOIST_

NOISE/10. The forecast error in terms of DTE at 36 h

FIG. 6. Vertical distribution of DTE (m2 s22) for the MOIST_NOISE experiment for (left to right) 1–36 h; shaded parts show the fre-

quency (number of points) of DTE at a particular height.
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for MOIST_NOISE/10 is almost the same as that of

MOIST_NOISE—a strong indication of nonlinear er-

ror growth at the small scales. Further examination

shows that, although starting at a smaller initial value,

the small-scale error in the MOIST_NOISE/10 case

grows much faster at the first few hours and catches up

quickly with that in MOIST_NOISE. After the error at

small scales saturated for both sets of experiments, the

upscale error growth is similar in both MOIST_NOISE

and MOIST_NOISE/10. This is also consistent with

Hohenegger and Schär (2007). The strong nonlinear error
growth at the small scales, and the insensitivity to the

initial-error amplitude in these MOIST experiments, fur-

ther demonstrates that atmospheric predictability can be

intrinsically limited under the influence of moist convec-

tion, which means that our forecast accuracy will be lim-

ited no matter how small the initial-error amplitude is.

Nevertheless, given that the initial-condition errors in

the weather prediction models at present are certainly

not infinitesimally small either in scale and amplitude [as

discussed in Durran and Gingrich (2014)], our attention

is now turned to the limit of practical predictability

through changing the (large scale) initial-perturbation

amplitude in the MOIST_LARGE experiments. If we

increase the initial DTE by a factor of 10 (MOIST_

LARGE10), the final DTE at 36h is only slightly larger

(;1.53) than in the MOIST_LARGE experiment. The

final DTE of MOIST_LARGE10 is also very close to

that of the NOISE experiment, including a close match

for all of the three characteristic scale ranges (L,M, and

S scales; Fig. 9). A further examination of the DTE

evolution at the three characteristic scale ranges for

MOIST_LARGE10 shows that, at the earlier simulation

times before 20h, the large-scale error generally follows

the baroclinic growth in the DRY_LARGE case, while

the small-scale error growth is similar to that of the

MOIST_NOISE case. At later times, when the large-scale

baroclinic growth slows down considerably (Fig. 9b;

whereas the error begins to saturated at smaller scales),

the error growth at the larger scales begins to come pri-

marily from the upscale propagation of intermediate- and

small-scale errors.

FIG. 7. As in Fig. 5, but for the MOIST_LARGE experiment.
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For the MOIST_LARGE100 experiment where the

initial DTE is increased to 100 times that of MOIST_

LARGE (with the maximum difference wind speed

being around 2ms21, comparable with the ensemble

spread of current operational model), the error growth at

the large scales now is similar to the DRY_LARGE100

experiment, although at later times (after 20h) the large-

scale error in MOIST_LARGE100 is slightly larger than

that of DRY_LARGE100 likely as a result of upscale

error growth from smaller scales in the MOIST_

LARGE100 experiment. The total DTE at 36h in

MOIST_LARGE100 is more than twice higher than that

of DRY_LARGE100, primarily because of a muchmore

energetic small- and intermediate-scale error under the

influence of moist convection. The error growth in the

MOIST_LARGE100 experiment evolves more like that

inDurran andGingrich (2014), in the sense that the short-

range large-scale error growth is hardly affected by the

upscale growth of smaller-scale errors. In other words, if

the initial-condition error is large in scale and considerably

large in amplitude, as in the case of practical predictability,

the considerably large-amplitude initial-condition error at

the large scales is likely to be the most influential to the

forecast quality. In this case, we can improve our forecast

results through reducing the initial-condition error at the

large scales, consistent with the findings of the recent study

of Durran and Gingrich (2014), as well as Zhang et al.

(2002), Bei and Zhang (2007), and many other authors.

However, even though Durran and Gingrich (2014) did

not explore explicitly the growth of smaller-scale small-

amplitude error as in the case of intrinsic predictability,

they argued that the ‘‘butterfly effect’’ (nonlinear upscale

error growth from small scales) could be easily over-

whelmed by the growth from a relatively small-amplitude

large-scale initial error. Their conclusion is not supported

by our sensitivity experiments presented above. As in

both of the MOIST_LARGE and MOIST_NOISE ex-

periments (as well as MOIST_NOISE/10), regardless of

the scales of the initial-condition error, if the amplitude of

the initial perturbations is small, the short-range forecast

is dominated by the upscale error growth from the small

scales (the so-called butterfly effect), not necessarily cas-

cading from the large-scale initial-condition error. In

other words, there will be diminishing returns (increas-

ingly smaller improvements) in the forecast accuracy

through further reduction of the initial-condition error (as

shown in the MOIST_NOISE/10 experiment), which is

the essence of the butterfly effect.

Moreover, the drastic difference of the error growth and

the final DTE amplitude between our DRY and MOIST

experiments further illustrates the fundamental role of

moist convection in limiting the intrinsic predictability.

Sensitivity of the error growth to initial perturbations at

different stages of the moist baroclinic life cycle also sug-

gests that the stronger the convective instability, the faster

error saturation at the smaller scales, and the more rapid

upscale transfer of error to larger scales, as is shown in

Selz and Craig (2015a). The sensitivity of error growth

to the degree of convective instability can be further

verified through the RH50 experiments perturbed with

initial error of both LARGE and NOISE (Fig. 10), in

which the background relative humidity of the initial

baroclinic wave is reduced to 50% of the control moist

experiment. Not surprisingly, with reduced moisture and

convective instability, convection, and precipitation in

RH50 are much delayed and weaker. Consequently, the

forecast error in these RH50 experiments is much smaller

than that in the corresponding MOIST experiments.

6. Error growth dynamics across different scales

In the previous two sections, we have shown the dis-

tinction between intrinsic and practical predictability. We

FIG. 8. Evolution of domain-integrated DTE (m2 s22) for various

(a) MOIST_NOISE and (b) MOIST_LARGE experiments perturbed

at slightly different times (6, 12, and 18h; see text for more details).
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have also demonstrated that the upscale error growth from

small scales under the influence of moist convection may

critically limit the intrinsic predictability of the atmosphere

at all scales. However, it remains uncertain whether the

upscale error growth is still relevant under the practical

predictability scenario where the initial error at the

large scales is considerably large. We will investigate in

more detail these questions in this section through di-

agnosing error growth and transfer across scales.

Figure 11 shows the evolution of power spectra for the

domain-integrated difference total energy (DTE),

which gives us a better sense of how the error grows at

different scales. The spectral energy density of the

full model state (24–36 h after perturbation) in control

experiments is also plotted and multiplied by a factor of

2 (which does not change the slope), so that it represents

the saturation level for the DTE. It is interesting to note

that with the inclusion of moisture, the slope for the full

model state transited from a steep 23 to a shallower

close to 25/31 power law at a wavelength around

400 km. This transition is indeed consistent with the

observational study of Nastrom and Gage (1985). As for

the growth of the DTE, a clear cascading process could

FIG. 9. Evolution of domain-integratedDTE (m2 s22) for different wavelength scales (L: wavelength. 1000 km;M: 1000.wavelength.
200 km; and S: 200 km . wavelength) in various experiments of different initial conditions. The experiment name implies the change of

initial-error amplitude compared with its corresponding experiment (Table 1).

1 The calculated best-fit slope is 21.9 for wavelength between 80

and 400 km. Data with a wavelength smaller than 80 km are not used

given than our current model horizontal grid spacing is 10 km.
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be found under the DRY environment and the power

spectra of the DTE grow at nearly the same rate at all

scales. The DTE does not saturate until very late in the

DRY_LARGE100 experiment. However, under the

MOIST environment, the DTE at small scales quickly

saturate after the perturbation is added regardless of the

initial amplitude of the perturbation (refer to MOIST_

LARGE and MOIST_LARGE100).

For the practical predictability scenario with consider-

ably large initial-condition error at the large scale

(MOIST_LARGE100), the upscale growth of error from

smaller scales becomes less evident. Similar to the real-

data case ofDurran andGingrich (2014), the error shows a

more uniform growth over all the scales (especially for

larger scales; see Fig. 11d). This is also similar to theDRY_

LARGE100 experiment (Fig. 11b), except that in the

MOIST_LARGE100 case, the spectral slope of for small-

scale error with a wavelength smaller than 400km flattens

to approximately 25/3 rather than 23.

Since there are inherent two-way interactions among

different scales, it is indeed very difficult to completely

separate the upscale growth of the convective-scale

error and the error growth within the large scale itself.

To help us further understand if the upscale growth

plays a role in the change of the error spectral slope, a

budget analysis for DKE (difference kinetic energy) at

the three characteristic scale ranges (L, M, and S) is

performed. The equation forDKE budget at large scale

can be written as

›
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where (DKE)L 5 (1/2)r[(du)2L 1 (dy)2L]. (The derivation

for this equation can be found at appendix B.) For in-

termediate and small scales, the equations are essen-

tially the same except that the subscripts of the terms are

changed toM or S. The two terms in the first brackets on

the right-hand side of this equation represent the non-

linear advection term (referred to as ADV), which is

responsible for the redistribution of the error across

different scales. The terms in the second brackets rep-

resent the pressure term, which mainly represents the

conversion between difference potential energy and

difference kinetic energy (see appendix C).

The results of the DKE budget analysis for three

different scales are given in Fig. 12. Under the dry

environment, there is a clear downscale error transfer

for DRY_LARGE100 (top panel of Fig. 12), where the

peak of large-scale error growth shows first, followed

then by the peak of the medium scale; the peak of

small-scale error growth comes last. It is also worth

pointing out that, for this downscale error transfer, the

ADV term leads the pressure term and dominates the

error growth for the medium and the small scales,

which is consistent with the hypothesis that error first

propagates to smaller scales through the nonlinear

advection term.

The MOIST_NOISE and MOIST_LARGE experi-

ments, on the other hand, demonstrate an apparent

upscale error growth picture as seen from the budget

analysis. The error growth first is evident only at the

small scales; it then gradually expands to the medium

and the large scales. The pressure term and the ADV

term contribute equally at all the scales. The ADV term

is actually enhanced by the pressure term (through the

buoyancy flux). If we turn off the latent heating, not only

the pressure term but also the ADV terms will imme-

diately drop to near zero.

For the MOIST_LARGE100 experiment, both the

downscale and upscale error growth processes are

present. At the large scale, the error grows similarly to

the corresponding dry experiment in the first 20h, while

FIG. 10. Evolution of domain-integrated DTE (m2 s22) under

different moisture environments. RH50 here means the initial

relative humidity (RH) is reduced by half to that of the moist case.
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at the small scale, the upscale growth is apparent, with

the pressure term and ADV term contributing equally

to the growth. For the intermediate scale in this case,

because of the influence of downscale propagation of

the large-scale initial error, the ADV term plays a

slightly bigger role than the pressure term. Nonethe-

less, the pressure term is also very important for the

intermediate-scale error growth, especially at later

simulation times when the background baroclinic

growth is weakened. The upscale propagation effect

can be convincingly demonstrated through the error

growth budget for the large scale after 20 h: the growth

of DKE for the large scale in the MOIST_LARGE100

case continues while the growth at the large scale di-

minishes in the corresponding DRY_LARGE100 ex-

periment as a result of weakening of the background

baroclinic growth.

Moreover, with the energy spectra flattened to a

slope close to 25/3 in the moist environment, the

mesoscale energy spectra (wavelength , 400 km)

increase dramatically in the MOIST case, the fore-

cast short-range error (36 h) for intermediate and

small scales in the MOIST_LARGE experiment is

more than 3 times larger than that in the corresponding

DRY_LARGE100 experiment (Fig. 9). Thus, the

dominant error source for the mesoscale is due to

convection. Failure to predict the location and/or the

strength of the convection characters would likely lead

to a more inaccurate mesoscale forecast. Hence the

weak sensitivity of the convective cells to initial per-

turbation and the upscale growth not only leads to less

intrinsically predictability but likely also plays a sub-

stantial role in limiting the practical predictability at

mesoscale. To further verify this, the power spectrum

of the latent heating forcing difference, which shows

the scale of moist forcing (buoyance production), is

plotted in Fig. 13 for both the MOIST_NOISE and the

MOIST_LARGE100 experiments. This forcing at dif-

ferent scales can be defined as in Eq. (7) of Waite and

Snyder (2013):

FIG. 11. Evolution of the DTE (m2 s22) spectra every 6 h after different initial perturbations are added for 6–36 h:

(a) DRY_LARGE, (b) DRY_LARGE100, (c) MOIST_LARGE, and (d) MOIST_LARGE100 experiments.

Dotted lines show the spectra of the full-state background flow in the control experiment, averaged between 24 and

36 h after the perturbation. The red and blue lines show the reference line for23 and25/3 power laws, respectively.
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F(k)5
1

2
d[û*(k)]d[Ĥ(k)]1 c. c.,

where H is the potential temperature tendency due to

moist physics. A 12-h time average is used in Fig. 13, where

the semilog axis is considered to preserve the area. The

latent heating forcing shows no significant difference be-

tween the MOIST_NOISE and the MOIST_LARGE100

experiments. At first, this forcing acts mainly on the small

scales (wavelength ; 100km). Later, it expands to larger

scales, with the peak spectral power of the forcing re-

maining at the meso- and smaller scales. The similarity of

these two experiments further suggests that experiment

MOIST_LARGE100 (under the practical predictability

scenario) does not bring more (additional) forcing

through buoyancy production than MOIST_NOISE

FIG. 12. Time series of budget calculations for the sources and sinks of theDTE [dDKE/dt, kgm2 s23, Eq. (3), values are integrated over

the domain] at (left to right) different wavelengths within (top to bottom) DRY_LARGE100, MOIST_NOISE, MOIST_LARGE, and

MOIST_LARGE100 experiments. The cyan, red, and black lines represent the contribution of the advection and pressure terms, and the

actual increment of DKE after diffusion and damping, respectively. Note that the DRY_LARGE100 experiment has different vertical

scales from the others.
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(under the intrinsic predictability scenario). In other

words, the primary role of the initial large-scale per-

turbation in this MOIST_LARGE100 experiment is

through direct projection of the initial difference to

trigger the error growth, saturation, and upscale transfer

of small-scale moist convection that is similar to the

MOIST_NOISE experiment, not necessarily through

the downscale error cascade from the initial large-scale

perturbation.

7. Concluding remarks

Through a series of ‘‘identical twin experiments’’ with

the Weather Research and Forecast (WRF) Model by

adding initial-condition errors of different scales and

amplitudes, this study explores the limits of both in-

trinsic and practical predictability and the multiscale

error growth dynamics of the baroclinic jet-front sys-

tems with varying degree of convective instabilities.

In the dry experiments free of moist convection (and

the ‘‘FAKEDRY’’ experiments that suppress convec-

tion through turnoff of diabatic heating), only the bar-

oclinic growth of the large-scale perturbation can be

found in the 36-h short-range forecast. The forecast er-

ror under the dry environment has a quasi-linear de-

pendence on the amplitude of the initial large-scale

perturbation. This suggests that the forecast accuracy

can be continuously improved through reducing the

initial condition and thus predictability for the dry bar-

oclinic waves can be continuously improved without an

apparent limit at the synoptic time scales if the forecast

model and the initial conditions are nearly perfect

(though other sources of smaller-scale instabilities

such as boundary layer turbulence and shear in-

stability that are not studied here may also trigger

upscale error growth that may eventually limit the

intrinsic predictability).

The limits of both intrinsic and practical predictability

are found to be drastically different under the moist

environment with strong convective instability. The

rapid upscale error growth from moist convection will

lead to the forecast error being increasingly less sensi-

tive to the scale and amplitude of the initial perturba-

tions when the initial-error amplitude is sufficiently

small, as characterized in the multistage error growth

conceptual model of Zhang et al. (2007). Because of the

strong nonlinear upscale error growth from moist con-

vection, there will be diminishing returns (increasing

smaller improvements) in the forecast accuracy through

further reducing the initial-condition error—a key in-

dicator of limit of intrinsic predictability (Lorenz 1969;

Rotunno and Snyder 2008; Palmer et al. 2014). In other

words, the distance between the practical and intrinsic

predictability limits become smaller and smaller as the

initial-condition accuracy continues to improve. On

the other hand, when the initial perturbations are

sufficiently large in scale and amplitude, as for most

current-day operational models, the baroclinic growth

of large-scale finite-amplitude initial error will play a

more dominant role in the forecast accuracy at all

scales for both dry and moist baroclinic waves. The

forecast accuracy can be further improved (and thus the

limit of practical predictability can be extended) through

reduction of initial-condition errors, especially those at

FIG. 13. Difference buoyancy production spectra for experiments (a) MOIST_NOISE and (b) MOIST_

LARGE100 environment. The black dashed, cyan, and red lines show time average over 1–12, 13–24, and 25–

36 h, respectively. The buoyancy production is multiplied by the wavenumber to preserve the area on

a log-linear plot.

MARCH 2016 SUN AND ZHANG 1433



larger scales. Even in this case, the upscale error growth

from convective instability under the moist environment

could still be crucial for predictability of mesoscale pro-

cesses. In addition, as is pointed out in Rodwell et al.

(2013), the upscale error growth might also become rel-

evant for larger scales at longer forecast lead times,

although its importance may be flow dependent. Fur-

thermore, an insufficiently simulated upscale error

growth may well be one of the reasons for the under-

dispersion issue in nowadays ensemble predictions. All

of these studies imply the practical importance of the

butterfly effect—the rapid upscale error growth from

moist convection that has an intrinsic predictability limit.

It is also worth noting here that, if we consider the life

cycle of the baroclinic wave, the results showed above

will have dependence on the development stage of the

baroclinic system. For example, to focus on the con-

vective instability, the forecast experiments in this pa-

per start from day 5 when the baroclinic system has

been already in a mature stage and tended to cease an

exponential growth as shown in Fig. 2. Hence, the pe-

riod during which the baroclinic wave grows expo-

nentially is quite short ofO(1) day (Fig. 3), as evident in

the error growth shown in Fig. 9, which indicates that

the large-scale error ceases the exponential growth

after about 1 day for the DRY_LARGE experiment.

As shown in Zhu and Thorpe (2006), the large-scale

error usually sustains exponential growth during a pe-

riod of at least 77 h when the basic state is specified by

an initial developing stage of the baroclinic system.

Hence, we might underestimate the error growth of

large-scale motions associated with the inherent baro-

clinic instability in the current study. The un-

derestimation might be related to the result on the

relative importance of convective instability and the

subsequent upscale error growth. Similar caveat is also

noted in Palmer et al. (2014) by conducting forecasts

experiments based on the surface quasigeostrophic

equation from different initial conditions. They remarked

on the intermittent characteristic of the butterfly effect

and the flow-dependent nature of the large-scale fore-

cast sensitivity to small-scale initial error. Thus, the

crucial role of convective instability in the large-scale

error growth discussed in the current study might

also depend strongly on the prescribed initial flow

conditions.

The connection and difference between practical

and intrinsic predictability was also succinctly illus-

trated in the schematic diagram of Fig. 18 inMelhauser

and Zhang (2012), which is abstracted from the me-

soscale predictability study of a strong warm-season

bow echo and squall-line event. We believe this con-

ceptual diagram can be generalized to the current

study of idealized moist baroclinic waves, as well as to

our studies of winter snowstorms (Zhang et al. 2002,

2003), springtime tornadic thunderstorms (Zhang et al.

2015, 2016), warm-season flooding (Zhang et al. 2006;

Bei and Zhang 2007), as well as hurricanes and tropical

cyclones (Zhang and Sippel 2009; Zhang and Tao 2013;

Tao and Zhang 2014, 2015).

The predictability behavior is closely linked to the

flow’s kinetic energy spectrum. As mentioned in the in-

troduction, previous studies have already shown the ex-

istence of a predictability limit with a shallower than 23

slope (Rotunno and Snyder 2008). Under the moist en-

vironment with the inclusion of strong moist instability,

the slope of the background kinetic energy spectrum

decreases from23 to25/3. This transition of the spectral

slope emphasizes the importance of convection to both

the intrinsic and practical limit of mesoscale pre-

dictability within the moist baroclinic jet-front systems.

However, the exact reason(s) for this transition is beyond

the scope of the current study. This changemay be due to

the strong turbulent motions that are induced by moist

convection that becomes more homogeneous and iso-

tropic and/or much stronger gravity waves induced by

convection [as shown in Wei and Zhang (2014)]. Past

theoretical studies suggest that both three-dimensional

turbulent motion and the linear gravity waves could

have a slope of25/3 (e.g., Vallis 2006). However, neither

of these two hypotheses are ready to explain the transi-

tion scale at a horizontal wavelength around 500km,

which is found in our simulations as well as in observa-

tional studies (e.g., Nastrom and Gage 1985). Recently,

Callies et al. (2014) utilized a modified Helmholtz de-

composition method to process the observation data by

the flight through which they claimed that the small-scale

fluctuations are dominated by gravitywave activity. If this

is the case, since linear inertia gravity waves do not

propagate error upscale in the same way as the vortical

turbulent flows discussed by Lorenz (1969), the forecast

times of weather systems could potentially be extended

considerably.We plan to conduct further research on this

topic. Nonetheless, the change of the kinetic energy

spectrum slope is clearly due to moist convection and

emphasizes the importance of convection on the limit of

mesoscale predictability.
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APPENDIX A

Initial Moisture Field

The initial moisture field in our model setup is based

on Tan et al. (2004), with only slight modification. The

x-independent relative humidity profile for the MOIST

case is given by
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where RH0 5 75, R2 5 1, R1 5 0.66; y1 5 0:4yc,

y2 5 0:9yc, yc 5 4000km; zrh 5 8000km; and d5 1:25.

For the RH50 case, the relative humidity is further

reduced to half of its initial value.

APPENDIX B

DKE Budget Equation for Different Scale

The derivation of the DKE budget equation is

adapted from Zhang et al. (2007) and Peng et al. (2014).

As in Zhang et al. (2007), the difference momentum

equations can be written as
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Note dD terms include not only the diffusion but also

the large-scale damping effect due to planetary bound-

ary layer scheme and the Rayleigh damping effect at the

model top.

Multiply Eqs. (B1) and (B2) by rdu and rdy, re-

spectively, then take the sum, and we get
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Here DKE is defined as DKE5 (1/2)r[(du)2 1
(dy)2].

In our analysis, we separate the budget into three

different scale ranges (large scale or L, wavelength .
1000km; intermediate scale orM, 1000km.wavelength.
200km; small scale or S, wavelength, 200km). Since the

DKE budget equations for different scales are similar,

here we only show the derivations for the large-scale (L)

budget equation.

Use a large-scale filter for each term in (B1) and (B2),

we have

›(du)
L

›t
52d

�
u � =

h
u1w

›u

›z

�
L

2 d

�
1

r

›p0

›x

�
L

1 f (dy)
L
1 d(D

u
)
L

and (B4)

›(dy)
L

›t
52d

�
u � =

h
y1w

›y

›z

�
L

2 d

�
1

r

›p0

›y

�
L

2 f (du)
L
1 d(D

y
)
L
. (B5)

Again, multiplying Eqs. (B4) and (B5) by r(du)L and

r(dy)L, respectively, we get the budget equation for

large-scale DKE [Eq. (3) in the text]:

›

›t
(DKE)

L
5

�
2r(du)

L
d

�
u � =

h
u1w

›u

›z

�
L

2 r(dy)
L
d

�
u � =

h
y1w

›y

›z

�
L

�

1

�
2r(du)

L
d

�
1

r

›p0

›x

�
L

2 r(dy)
L
d

�
1

r

›p0

›y

�
L

�
1 (Damping)

L
. (B6)
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Note here is (DKE)L defined as in (DKE)L 5
(1/2)r[(du)2L 1 (dy)2L].

APPENDIX C

Decomposition of the Pressure Term in the DKE
Budget Equation

a. Cross-scale contribution of the pressure term

Unlike the nonlinear advection term, the pressure term

in the budget equation derived above does not have a

contribution across the scale ranges. The proof is listed

below. We can divide the density into two parts (mean

and perturbation), r5 r1 r0, assuming r0 � r, then

d

�
1

r

›p0

›x

�
; d

�
1

r

›p0

›x

�
;

1

r
d

�
›p0

›x

�
. (C1)

The first part of the pressure term then becomes

2rdud

�
1

r

›p0

›x

�
;2rdu

1

r
d

�
›p0

›x

�
5 dud

�
›p0

›x

�
. (C2)

Thus, the cross-scale contribution of the pressure term

should be

2r(du)
l
d

�
1

r

›p0

›x

�
m

; (du)
l
d

�
›p0

›x

�
m

/A sin(lx)B sin(mx),

(C3)

where l and m represent different wavenumbers and

wavelengths and A and B are the amplitudes. Note that

we need to integrate the pressure term over the whole

domain to consider its total contribution. According to

the orthogonality of the Fourier expansion, the in-

tegration equals zero, whichmeans that the pressure term

does not have any cross-scale contribution. The nonlinear

advection term is the only term that is responsible for the

redistribution of the energy across different scales.

b. Decomposition of the pressure term

Thepressure term can be further decomposed as follows:

Pressure term52rdud

�
1

r

›p0

›x

�
2 rdyd

�
1

r

›p0

›y

�

;2dud

�
›p0

›x

�
2 dyd

�
1

r

›p0

›y

�

52du � d(=p0)

;2du � d(C
p
u
y
r=p0) , (C4)

where p5 (p/p0)
Rd/Cp is the Exner pressure, p0 5p2p,

uy 5 u(11 0:61qy) is the virtual potential temperature, and

Cp is the specific heat of the dry air at constant pressure.

Using integration by part, we have

Pressure term;2du � d(C
p
u
y
r=p0)

;2C
p
u
y
rdu � d(=p0)

52C
p
u
y
rdu � =(dp0)

52C
p
u
y
rf= � [(du)(dp0)]2 (dp0)d(= � u)g

5C
p
u
y
r[(dp0)d(= � u)] .

(C5)

Note the first term in the brackets= � [(du)(dp0)] becomes

zero after integrating over the whole domain as a result of

the idealized boundary conditions in our simulation.

Using the pseudo-incompressible equation for moist

air [Eq. (A11) of Peng et al. (2014)],

= � u5H
m

u
2

1

r u

›(r uw)

›z
. (C6)

We have

Pressure term;C
p
u
y
r[(dp0)d(= � u)]

5C
p
u
y
r
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(dp0)d

�
H

m

u
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1

r u
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��
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r(dp0)dH
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p
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›z

. (C7)

The first term represents the direct influence of the

diabatic heating. This term is very small. The second

term is the convergence of the difference vertical pres-

sure flux, which corresponds to the gravity wave flux to

the first order. Note, if integrated over the entire do-

main, then this term should be close to 0. The last term is

the difference buoyancy flux, which represents the

conversion of potential energy to horizontal kinetic
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energy; this is the dominant contribution term in

this study.

Since the pressure term does not have a cross-scale

effect, as is shown in (C1), the decomposition of pressure

term for different scale is the same and will not be

shown here.
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