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The suitability of precipitation as a metric for model performance and as a tool for 37 

model improvement is explored 38 

 39 

 40 

 41 

ABSTRACT. Precipitation has often been used to gauge the performances of numerical 42 

weather and climate models, sometimes together with other variables such as temperature, 43 

humidity, geopotential, and clouds. Precipitation, however, is singular in that it can 44 

present a high spatial variability and probably the sharpest gradients amongst all 45 

meteorological fields. Moreover, its quantitative measurement is plagued with difficulties 46 

and there are even notable differences among different reference datasets. Several 47 

additional issues have yield to sometimes question its usefulness in model validation. This 48 
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essay discusses the use of precipitation for model verification and validation, and the 49 

crucial role of highly precise and reliable satellite estimates, such as those from the core 50 

observatory of NASA’s Global Precipitation Mission (GPM).  51 

 52 

      Precipitation is essential for the existence of life and for human activity, too much 53 

of which can lead to flooding, a major hazard whose accurate forecast is always in 54 

demand. Too little precipitation on the other hand will incur drought, leading to crop 55 

failures, death of livestock and other potential hazards such as increased fire risk. For this 56 

reason, precipitation is one of the primary outputs of weather and climate models. Despite 57 

its significance, precipitation is an atmospheric variable that is notoriously difficult to 58 

predict in numerical weather models. It is not uncommon that models fail to pinpoint the 59 

exact location and timing of precipitation at the surface, along with its intensity and total 60 

accumulation, as well as the phase of hydrometeors.  61 

    In the climate realm, the ability of models to simulate precipitation has been described 62 

as ‘dreadful’ (Stephens et al. 2010). As Figure 1 shows, the dispersion in the mean 63 

precipitation pattern among 31 CMIP5 models can be large, with discrepancies of the 64 

order to the magnitude of the signal. This is not surprising as precipitation results from 65 

complex processes that are mostly parametrized in atmospheric models owing to their 66 

nonlinear nature and multiscale aspects that are still not well known and far from being 67 

sufficiently resolved. There remain significant sensitivities of the models to the use of 68 

different mixing and cloud parameterizations independent of whether the numerical core 69 

can correctly simulate the dynamics of the atmosphere (Tan et al. 2016, Cesana et al. 70 

2017). 71 

As a ‘final’ product of the modeling, precipitation suffers the multiplicative effect 72 

of errors in both thermodynamics and dynamics. In order to correctly simulate 73 
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precipitation, one first has to be able to successfully model (up to some precision) 74 

longwave and shortwave radiation, the onset and strength of convection, humidity, the 75 

microphysics of liquid, solid and mixed phases. One also has indeed to model well the 76 

dynamics of the atmosphere so the air density, pressure, wind and the temperature are in 77 

the right place at the precise moment. 78 

A key property of precipitation is that it can be spatially patchy, in contrast with the 79 

variables such as temperature, water vapor content, and wind speed that are either more 80 

smoothly-varying or the fields with more clear-cut gradients such as those featuring in 81 

temperature near the boundary between two different air masses. Considered as a scalar 82 

field, the spatial variability of rain can differ sharply from other meteorological fields 83 

(Figure 2). For solid precipitation, discrepancies are even larger. A major difference in 84 

terms of the spatiotemporal structure of instantaneous precipitation is the likely presence 85 

of large areas with a constant, zero, values with scattered, greater than zero and 86 

exponentially growing values. Such a feature is uncommon in other meteorological fields, 87 

which tend to be smoother and more consistent over time. This makes prediction 88 

extremely difficult as minor mismatches in either time or space can yield drastically 89 

different scores with errors larger than 100% not uncommon. For example, in a summer 90 

shower, one can easily transition from 50 mm/h to 0 mm/h rain rates in a few tens of 91 

meters. A behavior having such a high level of non-linearity is certainly difficult to model.  92 

 93 

 94 

Cons. There are several reasons not to privilege precipitation as a metric. Errors in 95 

modeled precipitation come from uncertainties and model shortcomings in both clouds 96 

and convection and error propagation is multiplicative. To be specific, an error of just one 97 

degree in the Sea Surface Temperature (SST) estimation around Palmén’s 26 ºC threshold 98 
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(Palmén 1948) can result in convection been or not been triggered, and that can 99 

dramatically impact the mean large circulation and potentially shift precipitation regimes. 100 

Simply put, the precipitation field is a much more complicated field to interpret (and 101 

correct) although simple models taking into account this convective threshold effect show 102 

some skill for instance in the tropical zone (cf. Jauregui and Takahashi, 2017).   103 

The complexity of the processes behind rainfall and snow is also a curse for model 104 

improvement (the major drive of model validation) since it neither eases the interpretation 105 

of the biases in models nor identifies the specific sources of the bias. This is because latent 106 

heating balances radiative cooling in the atmosphere (or alternatively, because 107 

evaporation, which balances precipitation, must balance radiative and sensible heating at 108 

the surface) in the climatological mean. Thus, by itself, precipitation biases cannot guide 109 

model improvement.  110 

In spite of all efforts and huge advances over the last decades, precipitation is not 111 

well modeled yet, and that is a valid point against promoting its use in validation. The 112 

number of free parameters and empirical choices in microphysics modules is large, and 113 

includes intricate details such as the efficiency of drop coalescence, aerosol activation 114 

threshold, fall velocities, cloud fraction parameters, assumed droplet number 115 

concentration and entrainment rate. As an example, precipitation rate in single-moment 116 

microphysics schemes [those most commonly used in Global Circulation/Climate Models 117 

(GCMs) which advect hydrometeor mass only] varies significantly among schemes. 118 

Double-moment schemes (which also advect hydrometeor number concentration) fair 119 

better, but still show discrepancies between the methods (Shipway and Hill 2012). 120 

Aerosols and the chemistry of clouds and precipitation are key to further advancing 121 

modeling, as recognized by the recent Decadal Survey for Earth Science and Applications 122 

from Space (National Academies 2018), and the same applies to convection. However, in 123 
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spite of the advances, there are still critical processes that are not modeled in detail, 124 

notably the aqueous chemistry, which is practically absent in today’s GCMs.  125 

There are many aspects of cloud physics where the exact mechanisms that produce 126 

precipitation are unknown. The same applies for the exact value of empirical parameters 127 

embedded into various parameterizations (Tapiador et al. 2018). For example, in warm 128 

clouds, collision-coalescence theories suggest that precipitation should take hours to 129 

form, yet rain often is produced within timescales of minutes. While there are many 130 

theories (e.g. specific aerosol initiating precipitation, turbulence), this and other 131 

microphysical problems remain an active area of research where more understanding is 132 

required to produce more accurate precipitation forecasts and climate projections. 133 

Furthermore, precipitation from convective clouds depends on dynamics that is 134 

either unresolved at the global model grid scale (as for isolated cells) or is comparable to 135 

or larger than the grid size and thus in the “grey zone” where processes are partly resolved 136 

and partly parameterized (as in organized mesoscale systems). Therefore, it can be argued 137 

that modeled precipitation is still fairly incomplete and too dependent on empirical values 138 

obtained in a few field campaigns carried out over small regions of the planet.  139 

Another fact that would favor alternatives to precipitation such as humidity, 140 

geopotential, or cloud properties as a metric is that the large sensitivity of atmospheric 141 

models to cloud and mixing parameterizations precludes validating aspects of the 142 

dynamical response to Sea Surface Temperature (SST) from precipitation observations. 143 

It should be noted that the best estimates of global precipitation continue to be 144 

inconsistent with the best estimates of the Earth’s surface and atmospheric energy balance 145 

(Stephens et al., 2012). Until these are reconciled, models cannot be overly influenced by 146 

mean state biases relative to these estimates. It is important to note here that mean state 147 

biases in global models are vastly overrated as a basis for deciding which models have 148 
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the best predictive power, because of the variety of tuning approaches and metrics chosen 149 

for analysis (Schmidt et al., 2017).  150 

Regarding the potential role of precipitation in trend detection, compensating 151 

effects among different possible processes associated with climate change and 152 

precipitation (‘wet get wetter’ versus ‘dry get drier’ mechanism; i.e. areas with large 153 

precipitation amounts are expected to get even more in models and the inverse for arid 154 

zones) make the detection of trends difficult. The trends in tropical precipitation 155 

associated to anthropogenic forcing are less significant than those in SST (Cai et al. 2014), 156 

as Figure 1 illustrates. The figure shows that the dispersion of the trend in precipitation is 157 

larger than for SST relatively to the ensemble mean value, illustrating the different pattern 158 

of mean trend and dispersion of the mean trend for precipitation compared to SST. Note 159 

that the models seem to agree in the amplification of the southern branch of the double 160 

ITCZ, since the dispersion among the models is weaker there. It has also been shown that 161 

changes in the precipitation cycles in the historical period are minute (Tapiador et al. 162 

2016). In fact, it is even doubtful that models can simulate precipitation cycles with the 163 

required accuracy and precision. 164 

Another well-known issue in the validation of precipitation estimates are the large 165 

uncertainties in the reference data (IPCC 2013). Gauge-only, gauge plus satellite, and 166 

satellite-only datasets usually disagree in the location and quantity of precipitation (Adler 167 

et al. 2017). Gauges have known issues such as in-splash, out-splash or difficulties 168 

measuring in windy conditions; they suffer increased uncertainties and errors when the 169 

precipitation is solid rather than liquid; performing very localized measurements might 170 

not be representative of the area around; gauges have an extremely low spatial coverage 171 

(cf. Kidd et al. 2017) and usually under-sample the range of amounts which occurred in 172 

any precipitation event. Ground-based radars, which are also used to evaluate models, 173 
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present large uncertainties such as the use of standardized power-law Z-R relationships 174 

which are often inaccurate for some regimes. In addition, radar often misses light 175 

precipitation (due to reflectivity being proportional to the sixth power of hydrometeor 176 

diameter and drizzle drops being small). Furthermore, while the spatial coverage of radar 177 

is quite good in developed countries such as the U.S.A., it is often very poor in the tropics, 178 

and in developing countries. 179 

The urge for consistency in reference data has prompted initiatives such as the 180 

European Global Precipitation Climate Record that aims to build a dataset suitable for 181 

climate model validation, including the best-available data and an objective estimate of 182 

the uncertainties (Roca et al. 2014). In the near future, measurements from the Global 183 

Precipitation Measuring (GPM) mission will certainly help thanks to the dual-frequency 184 

precipitation radar and multi-frequency/polarization microwave radiometer (GMI) 185 

capabilities resident on the GPM core observatory (Skofronick-Jackson 2014). However, 186 

the GPM satellite datasets have not been collected for a long enough period (the satellite 187 

was launch in 2014) to derive the more than 20-yr long series required for validating 188 

climate models, albeit it is vital to validate hypotheses on tropical storms and hurricanes 189 

(Figure 3) and to verify the solid precipitation estimates of weather models (Bytheway 190 

and Kummerow, 2018). Moreover, there are also inherent limitations and uncertainties in 191 

the GPM derived precipitation estimates as well.  192 

In addition to those observational issues, not all models automatically conserve 193 

moisture, which is essential for precipitation. This is especially true for semi-Lagrangian 194 

advection approaches (which are computationally less expensive than the Eulerian 195 

advection used by some models such as the Weather Research and Forecast model or 196 

WRF). In such cases, mass-conservation methods have to be applied in order to correct 197 

the issue (Zerroukat and Shipway, 2017) which represents a serious issue for validating 198 
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the physics. 199 

Precipitation is also one of the more computationally expensive parameterizations 200 

of any weather and climate model (around 10% of the total cost). Other precipitation-201 

related processes (e.g. aerosol-cloud interactions) can also be quite expensive. Therefore, 202 

even if we get everything else correct in the model, our ability to accurately forecast 203 

precipitation will be a complex trade-off between how much computational power can be 204 

afforded to run the models quickly enough to produce operational weather forecasts and 205 

how much improvement can be gained from increasing the microphysical complexity of 206 

the model.   207 

Such a state of affairs might suggest that precipitation is not a good metric to gauge 208 

model performance, i.e. to decide if a model is suited to the purpose it was built. In the 209 

case of weather forecasting, one primary use of a forecast model is for determining when, 210 

where, and how much in raining, but given the chaotic nature of the moist atmosphere, 211 

predictability of precipitative processes will intrinsically have decreasingly smaller 212 

predictive lead times at finer scales (Zhang et al. 2003, 2007) which means that it is next 213 

to impossible for a forecast model to precisely pinpoint precipitation in both space and 214 

time (right time, right place) given strong spectral power and variabilities of precipitation 215 

at smaller scales (Guilloteau et al. 2017; Bei and Zhang 2013).  216 

In the case of climate, models are intended to check whether or not embedded 217 

hypotheses yield a climate consistent with observations, the consistency of which is often 218 

measured in terms of biases and correlations against instrumental records of temperature 219 

and precipitation; a recent study of Zhang et al. (2016) showed that very limited skill for 220 

either the CMIP3 or CMIP5 ensemble of models in their predictive capability for 221 

simulating regional precipitation at scales below 2000 km.  222 

 223 
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Pros. There are, however, good arguments to favor precipitation as a good metric of 224 

model ability and thus favor its use for model improvement. The other side of the ‘too 225 

stringent test’ argument is that it has been so difficult to get it right, that precipitation 226 

should actually be considered as the ultimate test for model performance. It is hard to 227 

conceive that it would be possible to get instantaneous precipitation right for the wrong 228 

reasons at a spatial resolution of kilometers. Even if the temporal aggregation smooths 229 

the field when climatologies are built, deficiencies in models quickly reveal themselves 230 

in the precipitation field, with the double-ICTZ rain bands being a classical example (Li 231 

and Xie, 2014; Popp and Lutsko, 2017). 232 

Disparities amongst reference precipitation data can also be a strength rather than a 233 

weakness in terms of achieving a faithful representation of nature in climate models. 234 

When different satellite estimates of rain rate disagree, important information is revealed 235 

that can help to fine tune models (Hourdin et al. 2017). For example, the considerable 236 

discrepancy between passive microwave and radar estimates of rain rate in the eastern 237 

Pacific ITCZ (Liu and Zipser 2013) revealed that assumptions about the depth or 238 

microphysical properties of rain-producing clouds that work well in some regions are not 239 

universally valid. While the issue has been known for a long time, the specific details, 240 

and crucially the mechanistic description, are better expressed in terms of precipitation.  241 

Precipitation estimates have already proven their usefulness for model 242 

improvement. Almost half (48%) of modelers consider important or very important the 243 

use of global precipitation as a metric, and almost two thirds (65%) the same for regional 244 

patterns of precipitation (Hourdin et al. 2017). Examples of success include the use to 245 

better constrain model simulations of aerosol direct and indirect forcing (Chung and 246 

Soden 2017); the phase, amplitude and propagation of diurnal precipitation cycles (Dai 247 

et al. 1999); determination of the sensitivity of extreme precipitation to changes in 248 
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temperature (Allan and Soden 2008); and critical insight into the ‘dry get drier and wet 249 

get wetter’ mechanism of global warming (Allan et al. 2010).  250 

The usefulness of precipitation is also apparent when it is compared with its 251 

alternatives. For example, precipitation was instrumental in documenting the existence 252 

and propagation of the Madden–Julian Oscillation (MJO) anomalies (Madden and Julian 253 

1994; Del Genio et al. 2015; Wang et al. 2015). Here the advantage of precipitation over 254 

the more commonly used Outgoing Longwave Radiation (OLR) is that OLR anomalies 255 

over the maritime continent can be affected by the fairly ubiquitous high cloud cover. 256 

Instead, the rain anomalies are proved to be very helpful to isolate the onset phase of the 257 

MJO, when shallow and congestus rain dominate as the biggest source of error in GCM 258 

cumulus parameterizations and prevent the development of a robust MJO. This particular 259 

case illustrates that it is precisely because of its complexity that precipitation can be 260 

superior to other variables: OLR-based indices of convection greatly overestimate surface 261 

rain over Africa, because they sense only the high cold cloud and cannot tell that rain is 262 

evaporating more strongly into the relatively dry lower troposphere there and not reaching 263 

the ground to the extent that it does in humid regions such as the Amazon (Liu and Zipser 264 

2005, Ling and Zhang 2011). 265 

The diurnal cycle is another good example of the relevance of precipitation as a 266 

metric. The phase of the diurnal cycle of precipitation over land is thought to be incorrect 267 

in most GCMs (e.g., Dai 1999, Yin and Porporato, 2017). However, there are some 268 

differences in the phase of the diurnal cycle depending on the dataset used. For example, 269 

rain climatologies that rely on IR measurements (e.g., TRMM 3B42) tend to peak ~3 hr 270 

earlier in the afternoon than climatologies that are based on radar data (e.g., TRMM 3B68) 271 

(Kikuchi and Wang, 2008), telling us that the former is likely biased by high clouds that 272 

are not producing rain or not producing heavy rain. 273 
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There are many other examples to favor precipitation. In tropical cyclone (TC) 274 

research, the magnitude of precipitation by itself is a key measure of the severity of the 275 

hazard (while on the other hand the evolution, structure and intensity of severe convective 276 

storms and TCs can be critically dependent on the type and amount of precipitation). 277 

Here, better estimates and better observations of precipitation physics offered by GPM 278 

(Figure 3) and other microwave satellite sensors permit the testing of assumptions with 279 

unprecedented capabilities (e.g., Sieron et al. 2017, 2018), providing new analytical 280 

capabilities to investigate emerging phenomena such as TCs landing in Europe (cf. 281 

Tapiador et al. 2007). Amongst other findings it appears that for TCs the amount of 282 

surface precipitation is dominantly controlled by dynamics (water lifting) while the role 283 

of microphysical processes is secondary (but still important).  284 

 285 

 286 

Fundamental reasons to favor precipitation. There are also fundamental physical 287 

reasons to favor precipitation as a metric to elucidate processes still poorly represented in 288 

models. One is the connection between precipitation and the atmospheric energy budget 289 

(L’Ecuyer et al., 2015). Changes in global mean precipitation are determined by changes 290 

in radiative cooling of the atmosphere (Stephens and Ellis, 2008), so it is extremely 291 

important to be as precise as possible in determining such changes if the model is intended 292 

to understand changes in the radiative forcing, either by natural or anthropogenic causes. 293 

In the tropics, mean precipitation and the extreme of the distribution is largely dominated 294 

by organized mesoscale convective systems (Roca et al., 2014, Rossow et al., 2015) and 295 

the trends in precipitation are also related to the fate of organized convection (Tan et al. 296 

2015). Representation of organized mesoscale systems in GCMs is still in its infancy (Del 297 

Genio et al., 2012) while grand-domain CRM simulations become more and more 298 
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available. Both contribute to making precipitation in the tropics important for gauging 299 

new generation model performances, and therein comparison with observations is critical.  300 

The partitioning of rain into convective and stratiform components is crucial to the latent 301 

heating profile of convective systems, because the former peaks in the lower/mid-302 

troposphere while the latter peaks in the upper troposphere. This affects the tropical 303 

general circulation (Schumacher et al. 2004). GCMs have so far been able to capture the 304 

major features of the climate without representing organized mesoscale systems, which 305 

show a transition from bottom to top-heavy heating over the life cycle (by 306 

underestimating convective entrainment and over-producing deep penetrative convection 307 

that penetrates too deeply, and thus capturing some of the upper-level heating as an 308 

artifact of this error). Getting the right answer for the wrong reason in a climatological 309 

mean field in this way is one example of the limitations of using mean fields as metrics. 310 

The model parameterization errors only become obvious when higher-order variability 311 

metrics such as the MJO or the continental diurnal cycle, which depend on the timing of 312 

the transition from bottom-heavy to top-heavy latent heating profiles, are used for 313 

evaluation. The latent heating algorithms that have been developed for satellite rain data 314 

diagnose this partitioning from characteristics of the rain and reflectivity fields to produce 315 

realistic heating profiles and thus to improve representation of this heating in GCMs (Tao 316 

and Shi 2016). The same arguments can also be applied to high-resolution, limited area 317 

models, which are commonly used for weather forecasting but in the last few years have 318 

been extended to climate predictions as well (Kendon et al. 2017). 319 

 320 

Processes of SST/wind/precipitation interaction are also likely to be involved in 321 

long-term trends and variability in the surface circulation in the tropics. For instance, 322 

while in the sub-tropical eastern boundary upwelling regions, an increase of the 323 
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equatorward winds is expected (and observed in some regions) owing to the poleward 324 

displacement and intensification of the anticyclone/Hadley cells, in the tropical Pacific 325 

region, the trends in upwelling-favorable winds are more ambiguous and are sensitive to 326 

concurrent changes in sea surface temperature and rainfall, as observed off Peru from 327 

coupled model experiments (Belmadani et al., 2014). Therefore, processes associated 328 

with moist convection and subsidence in the far eastern Pacific are likely important to 329 

understand trends in upwelling systems and their investigation will benefit from 330 

precipitation observations and will require model evaluations based on those.  331 

Another fundamental reason for using precipitation as a model-comparison metric 332 

is that precipitation is often considered as a proxy for inferring change statistics in extreme 333 

events. To name but one example, the precipitation response to SST during strong El Nino 334 

events encapsulates the process associated with the nonlinear amplification of the 335 

Bjerknes feedback (Takahashi and Dewitte 2016) and therein can be considered a better 336 

metric of ENSO extremes than SST anomalies alone. Thus, the relationship between 337 

precipitation in the eastern equatorial Pacific (NINO3 region) and the SST gradient near 338 

the equatorial region during El Nino exhibit a marked nonlinear pattern that 339 

enhances/eases the detection of extreme events. In fact, a precipitation-based definition 340 

of an extreme El Niño event (those El Niño for which the NINO3 rainfall index is above 341 

5 mm/day) has been proposed recently which is based on the precipitation anomalies 342 

averaged over the NINO3 (150°W-90°W; 5°S-5°N) region (Cai et al. 2014, 2017). Based 343 

on this precipitation-based index, Cai et al. (2014) analyzed CMIP3 and CMIP5 models 344 

and found a doubling in the occurrence of extreme El Niño events in the future in response 345 

to greenhouse warming, while no significant change in statistics in extreme El Nino 346 

events is found based on the “classical” NINO34 SST index. Power et al. (2013) also 347 

shows that ENSO-driven precipitation exhibits a clearer longer-term change than SST 348 
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anomalies. Thus, precipitation may be seen as a “better” field to reveal/diagnose/quantify 349 

the non-linear relationship between the variability in the climate system and changes in 350 

mean state. 351 

 352 

 353 

Summary. This essay discusses the usefulness of precipitation for model verification and 354 

validation, and the crucial role of highly precise and reliable satellite estimates, such as 355 

those from the GPM core observatory, to test model hypotheses and assumptions. It is 356 

widely acknowledged that good climate models are those capable of correctly simulating 357 

the MJO, ENSO or the mean ITCZ, but it should be noted that those processes are also 358 

precisely identified as a fingerprint in the precipitation field (Figure 4), a fact that 359 

reinforces use of precipitation for model verification.  360 

Yet however there are several other compelling reasons to favor precipitation as a 361 

metric of model performance, not the least of which is assuring a tough test of model 362 

performance. At the end, it can be said that the ultimate test of a fully-fledged coupled 363 

model is to get precipitation right, a demand that is also spurred by the societal demand 364 

for more reliable forecasts of extreme rainfall events, and that includes weather and 365 

climate models. As noted, models still have a limited ability to simulate precipitation at 366 

adequate temporal and spatial resolution. Such shortcomings demonstrate not only the 367 

need to continue devoting resources to improving models, but also suggest that 368 

precipitation can be used as a stringent quantitative criterion to evaluate model advances.  369 

Concomitantly, the evaluations of models based on precipitation reinforce the need to 370 

continually improve the precipitation estimates themselves. Developments in the 371 

observation network should follow the path imposed by progresses in modeling that 372 

continue to reveal the importance of scale interactions in convective activity and its 373 
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upscaling effect on climate. The more we will get to the higher-resolution and more 374 

complex models, the more pressing the need to validate aspects of the circulation that had 375 

been disregarded or poorly modeled so far, and this includes precipitation physics at the 376 

first place.  377 

Finally, it is worth remembering that some of the processes ultimately producing 378 

precipitation occur at planetary scales but that some others develop at very small scales 379 

(microns). We are unlikely to ever be able to resolve the smallest scales in a weather or 380 

climate model. Precipitation will continue to require parameterizations and therefore the 381 

resulting precipitation will be highly dependent on the empirical choices and assumptions 382 

embedded into these. Therein the likely continuing suitability of this crucial element for 383 

life to gauge model performance.   384 

 385 
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Figure captions 617 

 618 

Figure 1: Mean and trend in SST and Precipitation: (a) Ensemble mean of the mean 619 

precipitation and (d) dispersion (root mean square) amongst the ensemble for the 620 

historical runs (1920-2005) of 31 CMIP5 models (unit=mm/day). The thick red line 621 

indicates the 27°C isotherm for the ensemble mean. Ensemble mean of the long-622 

term trend in (c) SST and (d) precipitation for the RCP8.5 scenario simulations 623 

(2006-2095) (unit is °C/decade for SST and mm/day/decade for precipitation). 624 

Dispersion of the trend in (e) SST and (f) precipitation amongst the ensemble for 625 

the for the RCP8.5 scenario simulations (2006-2095).  626 

Figure 2: Fields of several meteorological variables from the UCLM-WRF model over 627 

Korea. The spatial variability is measured using the semivariance (normalized so 628 

fields can be compared). As the lag distance varies, the variables become more and 629 

more decorrelated. Note the peculiar spatial decorrelation of precipitation. The grid 630 

size of the simulations is 300m, and the fields are instantaneous estimates. Data 631 

from the ICE-POP2018 Winter Olympics Campaign.  632 

Figure 3: GPM core observatory dissection of hurricane Maria on 18 September 2017. 633 

The figure illustrates the ability of the GPM-Core Observatory satellite to map 634 

combined GMI radiometer-estimated precipitation rates in a broad 2-D swath with 635 

a coincident narrower-swath of 3-D storm structure and hydrometeor phase profiled 636 

using GPM DPR.  Here warm colors indicate liquid precipitation rates and cool 637 

colors indicate precipitation rates in the ice-phase. Credit: NASA Goddard Space 638 

Flight Center, Science Visualization Studio. 639 

Figure 4: Sensitivity of precipitation within the ITCZ in the eastern tropical Pacific to 640 

cumulus (CU) and planetary boundary layer (PBL) parametrizations in WRF 641 

(horizontal resolution= 30km): (a) mean precipitation for March 2007 from TRMM, 642 
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(b) ensemble mean and (c) dispersion (i.e. standard deviation) for precipitation in 643 

25 simulations of March 2007 using different combinations of 5 CU and 5 PBL 644 

parametrizations, and (d) Characteristics of the ITCZ over the two regions  (0°-645 

15°N,130°W-100°W)  and (0°-15°S, 130°W-100°W) in observations (grey bars) 646 

and the 25 simulations (color bars): Bars indicate the latitudinal extension of the 647 

branches of the ITCZ. The thick black line indicates the latitude of the relative 648 

maximum precipitation during this particular month. The number near each bar 649 

provide the value of total precipitation and the bar thickness is proportional to this 650 

value. 651 

  652 
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precipitation and (d) dispersion (root mean square) amongst the ensemble for the 658 
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indicates the 27°C isotherm for the ensemble mean. Ensemble mean of the long-term 660 

trend in (c) SST and (d) precipitation for the RCP8.5 scenario simulations (2006-2095) 661 
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Figure 2: Fields of several meteorological variables from the UCLM-WRF model over 668 

Korea. The spatial variability is measured using the semivariance (normalized so fields 669 

can be compared). As the lag distance varies, the variables become more and more 670 

decorrelated. Note the peculiar spatial decorrelation of precipitation. The grid size of the 671 

simulations is 300m, and the fields are instantaneous estimates. Data from the ICE-672 

POP2018 Winter Olympics Campaign.   673 
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 675 

 676 

Figure 3: GPM core observatory dissection of hurricane Maria on 18 September 2017. 677 

The figure illustrates the ability of the GPM-Core Observatory satellite to map combined 678 

GMI radiometer-estimated precipitation rates in a broad 2-D swath with a coincident 679 

narrower-swath of 3-D storm structure and hydrometeor phase profiled using GPM DPR.  680 

Here warm colors indicate liquid precipitation rates and cool colors indicate precipitation 681 

rates in the ice-phase. Credit: NASA Goddard Space Flight Center, Science Visualization 682 

Studio.  683 
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 688 

Figure 4: Sensitivity of precipitation within the ITCZ in the eastern tropical Pacific to 689 

cumulus (CU) and planetary boundary layer (PBL) parametrizations in WRF (horizontal 690 

resolution= 30km): (a) mean precipitation for March 2007 from TRMM, (b) ensemble 691 

mean and (c) dispersion (i.e. standard deviation) for precipitation in 25 simulations of 692 

March 2007 using different combinations of 5 CU and 5 PBL parametrizations, and (d) 693 

Characteristics of the ITCZ over the two regions  (0°-15°N,130°W-100°W)  and (0°-15°S, 694 

130°W-100°W) in observations (grey bars) and the 25 simulations (color bars): Bars 695 

indicate the latitudinal extension of the branches of the ITCZ. The thick black line 696 

indicates the latitude of the relative maximum precipitation during this particular month. 697 

The number near each bar provide the value of total precipitation and the bar thickness is 698 

proportional to this value. 699 


