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Abstract Understanding forecast uncertainties and error growth dynamics is a prerequisite for
improving dynamical prediction of meteorology and air quality. While predictability of meteorology has
been investigated over the past few decades, the uncertainties in air quality simulations are less well known.
This study explores the uncertainties in predicting ground‐level ozone (O3) in the Mid‐Atlantic region of
the United States during June 2016 through a series of simulations using WRF‐Chem, focusing on the
sensitivity to the meteorological initial and boundary conditions (IC/BCs), emissions inventory (EI), and
planetary boundary layer (PBL) scheme. The average uncertainty of ground‐level maximum 8‐hr average O3

mixing ratio (MD8‐O3) was most sensitive to uncertainties in the IC/BCs, while uncertainty in the EI was
of secondary importance, and was least sensitive was to the use of different PBL schemes. Updating the
NO emissions in the EI had the greatest influence on the accuracy, with an estimated decrease of 0.59
ppbv/year in the root‐mean‐square error and an average decrease of 0.63 ppbv/year in the values of modeled
MD8‐O3. Our study suggests using perturbations in IC/BCs may lead to a more dispersive ensemble of O3

prediction than using different PBL schemes and/or different EI. However, considering the combined
uncertainties from all three sources examined are still smaller than the averaged root‐mean‐square errors of
predicted O3 against observations, there are apparent other sources of uncertainties not studied that
need to be considered in future ensemble predictions of O3.

Plain Language Summary Ozone, the primary pollutant in photochemical smog, is harmful to
human health, particularly for children, senior citizens, and people with existing heart or lung diseases,
like asthma. To protect public health, air quality forecasts of ozone are issued across the United States,
primarily for metropolitan areas, where ground‐level ozone tends to be the highest. When ground‐level
ozone is predicted to be exceed the daily health standard, people are advised to take steps to limit their
outdoor activities. Operational air quality forecasters use predictions of ground‐level ozone from numerical
air quality models as guidance for their public forecasts. To assess the uncertainty in these model predictions
of ground‐level ozone, a series of simulations using the air quality model WRF‐Chem were conducted
in this study through changing the inputs to the model, including starting weather conditions, pollutant
emissions inventories, and other model settings. Results show that the largest uncertainty in ground‐level
ozone was predicted by the model simulations using different starting weather conditions. Using the results
of this study, the year‐to‐year decrease in the ground‐level ozone was simulated, based on reduction
in the source emissions. This study provides guidance regarding how numerical air quality models should be
configured for future operational applications, which may lead to more accurate predictions of
ground‐level ozone and, thus, more accurate air quality forecasts.

1. Introduction

Ground‐level ozone (O3), one of the U.S. Environmental Protection Agency (EPA)'s six criteria pollutants,
has been linked to a litany of health problems, including cardiovascular disease (Azevedo et al., 2011), infant
mortality (Bell, 2004), and asthma (Gent, 2003). Sensitive groups, including individuals with cardiovascular
and pulmonary diseases, children, and senior citizens, are particularly susceptible to negative health effects
associated with exposure to criteria pollutants. To protect the public from the harmful effects of ground‐level
O3 and the other criteria pollutants, the U.S. EPA has established National Ambient Air Quality Standards
(NAAQS). Primary NAAQS project public health, and secondary NAAQS project public welfare. For O3, the
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current (as of 1 October 2015) primary and secondary NAAQS are both 70 ppbv, averaged over an 8‐hr time
period. Compliance with the O3 NAAQS is determined by the annual fourth‐highest MD8‐O3, averaged over
3 years; if this value for a given location is ≥71 ppbv, the location is designated a nonattainment area for O3.

To help protect the public from the adverse health effects of O3, air quality forecasts of ambient O3 are issued
for major metropolitan regions and surrounding suburbs across the United States. These forecasts are com-
municated using EPA's the Air Quality Index (AQI), a color‐coded, dimensionless scale (https://www3.epa.
gov/airnow/aqi_brochure_02_14.pdf). An AQI of 101 or higher corresponds to an exceedance of the O3

NAAQS (termed “O3 exceedances” hereafter), therefore, it is most critical for air quality forecasters to issue
accurate forecasts on days when the AQI is expected to reach 101 or higher.

Eulerian air quality modeling is a multifaceted problem that depends on economic forcing (Tong et al.,
2016), meteorological conditions (Seaman, 2000), biogenic emissions (Bell & Ellis, 2004), and chemistry
(Mar et al., 2016). Each of these processes is variable, which affects the practical predictability of O3.
Practical predictability is defined as the uncertainty of modeling with errors in either initial state or process
that are considered acceptable for operational uses. Practical predictability is contrasted against intrinsic
predictability—the limit of the uncertainty of a nearly perfectly modeled system (Lorenz, 1969; Melhauser
& Zhang, 2012; Zhang et al., 2006). Practical predictability studies evaluate the current state of the ability
to accurately model a phenomenon or variable, with the intention of identifying factors that may improve
accuracy. The practical predictability of O3 is essential for the proper implementation of models in air quality
forecasting, since it allows model users to attribute error to each process. We are using the American
Meteorological Society's definition of predictability (Predictability, 2012), which is “[t]he extent to which
future states of a system may be predicted based on knowledge of current and past states of the system.”
Since it is common to quantify predictability using model uncertainty (Zhang et al., 2006; Melhauser &
Zhang, 2012; Houtekamer & Zhang, 2016; Bei et al., 2010), we will often refer to uncertainty (2012),
expressed through a standard deviation, as a metric to describe the practical predictability. We will also
use variability to refer to the uncertainty of a process. For this study, we will only examinemodel uncertainty
as it pertains to practical predictability, since we want to target research areas, such as the emissions inven-
tory or initial and boundary conditions, to maximize the accurate prediction of ground‐level O3.

In this study, we used the Weather Research and Forecasting Model with Chemistry (WRF‐Chem; Grell
et al., 2005), rather than the Community Multiscale Air Quality Model (CMAQ; Byun et al., 1997), which
is used by the National Air Quality Forecasting System (NAQFC; Otte et al., 2005), because WRF‐Chem
computes chemistry alongside the meteorology. In this way, WRF‐Chem is not restrained to computing
the chemical tendencies with meteorological information that is as old as the meteorological model output
interval, as is the case with CMAQ (Grell et al., 2005). The downside is that the computational costs increase
with the additional computations between output intervals (Grell et al., 2005). While another advantage of
simulating chemistry alongside the meteorology is the possibility for chemistry to interact with model
physics, we did not test such features in order to mitigate the role of errors in chemistry on physical and
dynamical processes and to reduce the computational expenses attributed to modeling aerosols.

The model uncertainty of simulated ground‐level O3 is influenced by several settings. The most notable
settings that contribute to the model uncertainty are the physical parameterizations, initial and boundary
conditions, and anthropogenic emissions inventory (Cuchiara et al., 2014; Mallet & Sportisse, 2006;
Mena‐Carrasco et al., 2009; Misenis & Zhang, 2010). Physical parameterizations, equations that approxi-
mately emulate subgrid phenomena, are methods representative of the current understanding of the physi-
cal process. The variety of solutions of the parameterizations is representative of the diverse understanding
of those processes and is one aspect of practical predictability of simulated ground‐level O3. Varying initial
and boundary conditions are within the definition of practical predictability, for it is not reasonable to know
the true state of the atmosphere, differentiating practical predictability from the intrinsic predictability
(Melhauser & Zhang, 2012). The definition of practical predictability also contains the anthropogenic emis-
sions inventory, as real‐time point and area emissions are not available presently.

Several studies have been done on the model uncertainty of O3 due to variability of the physical parameter-
izations (e.g., Hu et al., 2012; Hu et al., 2013; Hu et al., 2013; Žabkar et al., 2013). Mallet and Sportisse (2006)
indicated that O3 is most sensitive to the model uncertainty in the turbulence closure, which is embodied in
the planetary boundary layer (PBL) scheme within WRF‐Chem. Some studies indicate that the Yonsei
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University (YSU) PBL scheme shows the closest agreement between predicted hourly O3 and observed
hourly O3 (Yerramilli et al., 2012; Cuchiara et al., 2014; Cheng et al., 2012). Although Yerramilli et al.
(2012) claim that O3 is more sensitive to model uncertainty in the Land Surface Model (LSM), Pleim
(2011) notes that there are deficiencies in that study, including the fact that the second version of the
Asymmetric Convective Model (ACM2) at that time was not implemented for use with tracers within
WRF‐Chem. Since then, other studies, such as Cuchiara et al. (2014), have used ACM2 within
WRF‐Chem since diffusion was implemented in 2013. Hu, Klein, and Xue (2013) and Hu, Klein, Xue,
Zhang et al. (2013) indicate that the mixing strength in the PBL scheme is critical to correctly simulate
near‐surface O3 and its dry deposition during night time, which will affect the amount of O3 in the convec-
tive boundary layer during the next day. Other studies, such as Misenis and Zhang (2010), corroborate the
claim that O3 may be more sensitive to model uncertainty in the LSM than the PBL scheme, though
Hodnebrog et al. (2011) suggested that themodel uncertainty of O3 to variability in the LSMmay be confined
to certain regions. Additionally, the physical relationship between the LSM and O3 is not as clear as the phy-
sical relationship between O3 and the PBL. There are numerous settings specific to atmospheric chemistry
that may impact the mixing ratios of O3 and its precursors but are limited to “on” and “off” within
WRF‐Chem, such as dry deposition.

While the variety of choices of the PBL scheme represents a large model variability of a solitary meteorolo-
gical process, emissions inventory variability, which represents the variability of anthropogenic emissions,
provides a large component of model uncertainty of O3. The emissions inventory includes, but is not limited
to, emissions of carbon monoxide, volatile organic compounds (VOCs), and nitric oxide (NO) within the
United States. O3 is formed from the reaction of atomic oxygen with molecular oxygen following a series
of complex reactions involving sunlight; NO and nitrogen dioxide (NO2), collectively termed NOx; and
VOCs (Calvert et al., 2015). Within the United States, anthropogenic NOx, which is emitted by high‐
temperature combustion processes, has been decreasing since at least 2005 due to regional emissions con-
trols on large energy‐generating units and mobile sources (Tong et al., 2015). Although NOx emissions over-
all have been decreasing, they retain day to day temporal and spatial variability. Variability in emissions
inventories is associated with changes in emissions control devices, activity, fuel sources, and changes in
emission factors, among other reasons (Anderson et al., 2014; Castellanos et al., 2009; Frost et al., 2006;
Kim et al., 2006; Tong et al., 2015; Vijayaraghavan et al., 2012). Of the emission inventories available, the
gridded version of the National Emissions Inventory (NEI) series from the U.S. EPA has 4‐km resolution,
the highest spatial resolution among readily available emissions inventories. This aspect is critical, since
higher‐resolution emissions inventories are important for local air quality studies (Hodnebrog et al.,
2011). Additionally, the program that adapts the NEI data to the WRF‐Chem grid implements an algorithm
for subgrid buoyant plume rise and elevated point source emissions, which may not otherwise be resolved by
WRF‐Chem. The NEI gridded emissions inventories are updated approximately every 6 years, with the latest
emissions inventory being representative of a typical July weekday in 2011 (NEI‐11). The point sources are
compiled by the EPA, according to the Air Emissions Reporting Rule. The mobile emissions sources were
processed using the Motor Vehicle Emissions Simulator, which has the most variability according to
Anderson et al. (2014). For more information on the construction of the NEI‐11, please see EPA (2015).

Accurate prediction of ground‐level O3 is contingent upon accurate prediction of NOx. Errors in NOx emis-
sions are particularly important for the Mid‐Atlantic region, which is NOx limited (e.g., Butler et al., 2011;
Duncan et al., 2010), meaning that during the summer O3 season, increases in ambient NOx emissions will
increase production of O3. Travis et al. (2016) showed that the NEI‐11 may be overestimating NOx emissions
up to a factor of 2, demonstrating that the overestimation of NOx emissions leads to overestimation of O3 in
NOx‐limited environments. While Travis et al. (2016) agree with Anderson et al. (2014), the recommended
decrease in NOx varies, indicating that there is ambiguity with the precise decrease needed. The NAQFC
adjusted the NOx emissions for 2012 and found that the NOx bias decreased between 0.57 and 2.34 ppbv,
while the decrease in O3 bias was between 0.92 and 1.87 ppbv (Pan et al., 2014). Other studies in different
areas yielded varying results. Zhong et al. (2016) provides one example of the model uncertainty of O3 in
China due to discrepancies between one regional and one global emissions inventory, with differences
between 12 and 16 ppbv of O3 in certain locations, suggesting that the model uncertainty of O3 due to
variability of the emissions inventory is location specific. Going further than simply comparing emissions
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inventories, some studies have examined the response of O3 due to certain sources (Vijayaraghavan et al.,
2012) and temporal variability (Castellanos et al., 2009) of emissions.

While the emissions inventory is known to be a major source of model uncertainty for MD8‐O3, the initial
and boundary conditions are critical for determining the evolution of the model. Lorenz (1963)
demonstrated the influence of perturbations of the initial state on the evolution of nonperiodic flow.
This dependency on the initial conditions also includes the initial composition. While chemical initial
and boundary conditions are important (Berge et al., 2001), the influence of chemical initial conditions
can be constrained with a spin‐up time of 48 hr, to reduce the correlation on initial conditions by 10%
(Jiménez et al., 2007). Bei et al. (2010) suggests that meteorological initial conditions contribute more
uncertainty to O3 mixing ratios in Mexico City, with the ensemble spread reaching 15 ppbv over
Houston. Zhang et al. (2007) noted that, for a high O3 event in Houston, Texas, the spread of ensemble
members with different initial (and boundary) conditions peaked with 40 ppbv of hourly O3 values over
the Gulf of Mexico and 20 ppbv over one of the Texas stations. Gilliam et al. (2015) also observed a spread
as high as 10–20 ppbv over the northeastern United States, while using the Short‐Range Ensemble
Forecasting system members as initial and boundary conditions. Hu et al. (2019) used a similar methodol-
ogy as Gilliam et al. (2015) for the Dallas‐Fort Worth area and found that the spread of the plume direction
was most affected. Beekmann (2003) suggest that the O3 sensitivities may range from 4–10 ppbv over Paris.
Discrepancies in the ranges of sensitivities may be a result of a variety of reasons, including the methods of
perturbations of initial and boundary conditions, the quantity of O3 precursors emitted, the effect of local
topography, and the modeled meteorological uncertainty.

We investigated and compared the relative impacts of the variability in the emissions inventory, the PBL
scheme, and the meteorological initial and boundary conditions on the model uncertainty of MD8‐O3 by
running different WRF‐Chem simulation experiments over the eastern United States for June 2016; the
model domain is shown in Figure 1a. While the simulations were conducted over the eastern United
States, the focus was on the urbanized Interstate‐95 (I‐95) Corridor, running from New York City to
Washington, DC, as shown in Figure 1b. This region routinely observes the highest MD8‐O3 in the Mid‐
Atlantic region. The goal was to quantify the model uncertainty of MD8‐O3 along the I‐95 Corridor, with
the aim of making recommendations to improve air quality model guidance in an area that is highly suscep-
tible to O3 exceedances. The motivation behind this research was to test potential settings needed to make
near‐continuous operational predictions of MD8‐O3 using WRF‐Chem for the Mid‐Atlantic Region. Those
potential settings for the simulations included the YSU, Mellor‐Yamada‐Janjic scheme (MYJ), and ACM2
PBL schemes, the NEI‐11, NEI‐05, NEI‐14 emissions inventories, and Global Forecasting System (GFS),
European Center for Medium Range Weather Forecasting Interim Reanalysis (ERA‐Interim), and the
second version of the Modern Era Retrospective analysis for Research and Applications (MERRA‐2)
meteorological initial and boundary conditions. The three analysis data sets differ in the forecast model,

Figure 1. The simulated WRF‐Chem domain (a), where the WRF‐Chem simulations were conducted, and the analysis
region (b), where our analysis occurs.
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data assimilation methodology, and the amount of observations being
assimilated, which can represent realistic uncertainties in the meteorolo-
gical initial and boundary conditions.

This study complements much of the existing literature and provides an
evaluation of the relative importance of the choice of different model
settings. This work also supplements previous studies regarding themodel
uncertainty of MD8‐O3 as a response to variability in (a) the meteorologi-
cal initial and boundary conditions, by testing different sources as a sam-
pling method, and (b) the emissions inventory by testing qualitatively
similar emissions inventories with the exactly the same meteorological
scenarios. In this way, this research represents a nearly longitudinal mod-
eling study of the trends of O3 due to changes in the emissions inventory.

2. Methods
2.1. The Climatology of O3 in the Mid‐Atlantic Region

Historically, O3 exceedance days within the Mid‐Atlantic region have been characterized by a well‐defined
synoptic scale pattern associated with the western edge of the quasi‐stationary Bermuda High extending into
the Mid‐Atlantic region. This pattern includes a ridge of high pressure aloft, with the ridge axis over or west
of the Mid‐Atlantic, and slowly eastward migrating surface high pressure. This synoptic pattern is conducive
to sunny skies, above average temperatures, stagnating surface winds, and regional transport of O3 precursor
emissions from the historically NOx‐rich Ohio River Valley source region (Ryan et al., 1998). Under these
conditions, local and regional O3 formation was maximized, leading to multiday O3 exceedance events.

During June 2016, the weather patterns observed during the most widespread MD8‐O3 exceedance days of 1
and 20 June were similar to those described by Ryan et al. (1998). On the days of 11, 15, 24, and 26 June, O3

formation was enhanced by mesoscale features, including Atlantic Ocean sea breezes, Chesapeake Bay
breezes, and an Appalachian lee trough, all of which increased O3 production. An example of the enhance-
ment of O3 by a sea breeze circulation in the Mid‐Atlantic region was given in Stauffer et al. (2015). Another
example is shown in Seaman and Michelson (2000), which examined the influence of an Appalachian lee
trough on O3.

2.2. WRF‐Chem Simulations

A control simulation, designated CNTL, using the WRF‐Chem version 3.6.1 (Grell et al., 2005) with the
regional atmospheric chemistry mechanism (RACM; Stockwell et al., 1997), was performed with meteorolo-
gical initializations starting every day at 12 UTC from 1 June to 29 June, with a spin‐up period on 30 and 31
May. A 2‐day spin‐up period was chosen because there were precedents for it, or for even fewer hours, with-
out extensive explanation of the accuracy of the chemical initial and boundary conditions (Jiménez et al.,
2007; Tie et al., 2010; Zhang et al., 2006). Each initialization contained 48 hr of forecasts, such that each
day in June 2016 was simulated. The chemical fields were reinitialized with the previous day's prediction
of the chemical fields, such that the chemical fields for the first 24‐hr period of each initialization was con-
sidered continuous. The reinitialization of the meteorological fields is assumed to have a small effect on the
chemical tendencies, with only a hypothetical jump in the photolysis rates. The tendencies from the chemi-
cal mechanism are considered autonomous because the initialization of the meteorological fields was a dry
start, so clouds were still forming, but since the initialization time was shortly after sunrise, the inconsis-
tency in the photolysis rate is considered minimal. Inconsistencies in the horizontal advection and vertical
mixing tendencies may have occurred due to changes in the momentum fields, but they are considered (a
priori) to be small due to the timing of when reinitialization occurred. A preliminary test was conducted
and showed that the inconsistencies between the soil data and meteorological data had a negligibly small
effect on the result (not shown). The CNTL sensitivity experiment used the YSU (Hong et al., 2006) PBL
scheme and the NEI‐11 emissions inventory (EPA, 2015). In addition to the model settings listed in
Table 1, all sensitivity experiments had a domain spanning from the Mississippi River to southern Maine,
as is depicted in Figure 1a. The vertical model structure was the same as described by Hu et al. (2012) with
12‐km grid spacing. In Figure 1b, major cities are marked and labeled in the analysis region which contains

Table 1
CNTL Model Settings

Setting Choice Reference

Longwave radiation RRTM Mlawer et al. (1997)
Shortwave radiation Dudhia Dudhia (1989)
Cumulus Grell‐Devenyi Grell and Dévényi (2002)
Microphysics WSM6 Hong and Lim (2006)
Land surface model NOAH Tewari et al. (2004)
Chemistry RACM Stockwell et al. (1997)
Biogenic emissions MEGAN Guenther et al. (2006)
Photolysis Madronich Madronich (1987)
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the urbanized I‐95 Corridor, marked in red. We made the WRF‐Chem
domain more expansive than the analysis region to account for anthropo-
genic sources of NOx upwind.

Besides the CNTL sensitivity experiment, a total of six sensitivity experi-
ments were performed, each of which varied either the PBL scheme, emis-
sions inventory, or the meteorological initial and boundary conditions
from that used in the CNTL sensitivity experiment. All sensitivity experi-
ments, including the CNTL, are detailed in Table 2, along with the nam-
ing convention for each subgroup of sensitivity experiments.

The first subgroup of sensitivity experiments explored two different
emissions inventories, the 2005 version of the National Emission
Inventory (NEI‐05) and a version of the NEI‐11 updated to reflect
emissions of NO in 2014 (NEI‐14) in order to capture the annual variabil-
ity of the emissions of NO and the corresponding model uncertainty of O3.
Utilizing the method of Tong et al. (2015), 2014 was the most recent year
for which NO emissions could be updated. The weekday emissions of the
NEI‐05 were used to provide continuity with the NEI‐11, since only the

weekday emissions of the NEI‐11 were available. The NO point emissions of the NEI‐14 were updated
for each hour by using the average of the Clean Air Market data (https://ampd.epa.gov/ampd/), which
is provided by power plants to EPA (EPA: Air Markets Program Data, 2018). The area emissions were
updated for each state by using state‐wide ratios of NOx emissions in 2014 to NOx emissions within the
NEI‐11, which were contributed by the National Oceanic and Atmospheric Administration (Tong et al.,
2015). The creation of the NEI‐14 loosely follows the methodology used to update the NAQFC O3 model
(Pan et al., 2014). Figure 2 demonstrates the changes to each emissions inventory in the analysis region.
Daily NO emissions decreased by 27.4% from the NEI‐05 to the NEI‐14 and daily emissions of VOCs
decreased by 39.6% from the NEI‐05 to the NEI‐11; emissions of VOCs were unchanged by design from
the NEI‐11 to NEI‐14.

The next subgroup of sensitivity experiments focused on two different PBL schemes, the ACM2 and MYJ
schemes. As reviewed in Hu et al. (2010), the CNTL sensitivity experiment uses the YSU scheme, which is
a nonlocal parabolic K‐scheme that defines entrainment. The ACM2 is a hybrid local/nonlocal PBL scheme,
which treats upward mixing nonlocally and downward mixing locally. In contrast to the YSU scheme used
by the CNTL sensitivity experiment, the MYJ scheme is a local K‐scheme. As noted by Skamarock et al.
(2008), the WRF model constrains some PBL schemes to certain surface layer physics. Therefore, the sensi-
tivity experiments that utilized the MYJ PBL scheme used the Eta similarity surface layer physics (Monin &
Obukhov, 1954), while the ACM2 and YSU PBL schemes use the revised MM5 surface layer physics
(Jiménez et al., 2012).

The final subgroup of sensitivity experiments used two different initial and boundary conditions: the second
version of the MERRA‐2 by the National Aeronautics and Space Administration and the ERA‐Interim rea-
nalysis from the European Centre for Medium‐Range Weather Forecasts. MERRA‐2 is a reanalysis data set
that utilizes the Goddard Earth Observing System model with a 3D‐Variational data assimilation system.

The approximate resolution of MERRA‐2 is 0.5° × 0.625° with 72 vertical
levels (Gelaro et al., 2017). The ERA‐Interim reanalysis uses the European
Centre for Medium‐Range Weather Forecasts model with T255 resolution
(approximately 80 km) with a 4D‐Variational data assimilation system
(Dee et al., 2011). The soil temperature, moisture, and depth for all sensi-
tivity experiments were taken from the GFS, such that only meteorologi-
cal data was varied among this subgroup. The potential inconsistencies
were found to be of little importance after comparing the ERA sensitivity
experiment with GFS soil information and a simulation with the ERA
initial and boundary meteorological and soil conditions (not shown). All
inputted data sets were temporally interpolated, to the extent that the
boundary conditions were updated hourly.

Table 2
Sensitivity Experiment Names and Changed Model Settings

Sensitivity
experiment PBL

Meteorological initial and
boundary conditions Emissions

CNTL YSU GFS 2011
ACM2 ACM2 GFS 2011
MYJ MYJ GFS 2011
NEI‐05 YSU GFS 2005
NEI‐14 YSU GFS 2014
MERRA‐2 YSU MERRA‐2 2011
ERA YSU ERA 2011

Note. ACM2 = Asymmetric Convective Model; CNTL = control simula-
tion; ERA = European Center for Medium Range Weather Forecasting
Interim Reanalysis; GFS = Global Forecasting System;
MERRA = Modern Era Retrospective analysis for Research and
Applications; MYJ = Mellor‐Yamada‐Janjic scheme; NEI = National
Emissions Inventory; PBL = planetary boundary layer; YSU = Yonsei
University.

Figure 2. Average hourly emissions of NO and nonmethane volatile organic
compounds from each emissions inventory used in this study.
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Figure 3. Temporal average of observedmaximum daily 8‐hr average ozone (MD8‐O3) during themodeling period, representing the averagemodeled and observed
MD8‐O3.

Figure 4. Mean bias of maximum daily 8‐hr averaged ozone (MD8‐O3) for modeling period.
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As mentioned previously, the focus of the study was on the urbanized I‐95
Corridor. This entire region, encompassing parts of eastern Pennsylvania,
New Jersey, Delaware, Maryland, and northern Virginia, is in nonattain-
ment for O3, based on the 2008 O3 NAAQS of 75 ppbv (since nonattain-
ment is determined by a 3‐year average of O3 observations,
nonattainment areas based on the 2008 NAAQS are the most recent data
currently available). In the I‐95 Corridor analysis region, we calculated
the sensitivity of MD8‐O3, expressed by the standard deviation among
the three sensitivity experiments of each subgroup. We also examined
the vertical distribution of MD8‐O3, and the modeled uncertainty thereof,
along I‐95. Additionally, we evaluated the effect of the changing emissions
inventory on predicted MD8‐O3.

3. Results and Discussion
3.1. Average Group Differences

Figure 3 shows the temporal average of ground‐level MD8‐O3 for each
sensitivity experiment in the analysis region, as compared to the similarly
processed observations. The model‐interpolated location of I‐95 is marked
in white. Each sensitivity experiment overproduced MD8‐O3 in the analy-

sis region, but the ERA sensitivity experiment overproduced O3 to the largest extent.

Among the sensitivity experiments, the ERA sensitivity experiment produced the most O3, even more than
the NEI‐05 sensitivity experiment. The cause of this overprediction was not well understood, though one
possible explanation is that the ERA sensitivity experiment inadequately modeled vertical transport of O3

and O3 precursors from the residual layer. The choice of PBL scheme led to less noticeable differences in
the average MD8‐O3 compared to the subgroups with different initial and boundary conditions or different
emissions inventories. This result is different from previous studies, which found that the PBL scheme selec-
tion was more critical under different circumstances, such as Yerramilli et al. (2012), Cuchiara et al. (2014),
or Cheng et al. (2012).

More quantitatively, Figure 4 and Table 3 show the mean bias and error metrics of each sensitivity experi-
ment during the modeling period. The NEI‐05 and ERA sensitivity experiments had the most overprediction

Table 3
Error Metrics of Maximum Daily 8‐hr Averaged O3 (MD8‐O3) for Each
Sensitivity Experiment

Sensitivity
experiment

Mean bias RMSE Unbiased RMSE*

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

CNTL 14.23 14.3 20.1 19.55 14.2 13.33

NEI‐05 17.59 17.56 23.41 22.7 15.45 14.39

NEI‐14 12.14 12.38 18.08 17.78 13.4 12.75

ERA 17.49 16.29 23.63 21.52 15.89 14.06

MERRA2 13.84 13.65 19.43 19.34 13.65 13.7

ACM2 13.98 13.96 19.66 18.95 13.82 12.82

MYJ 13.32 13.08 19.68 18.72 14.48 13.39

Note. One asterisk (*) signifies that the day 1 error metric is statistically
significantly greater than the day 2 error metric, using a 95% confidence
interval for the Student's T test. ACM2 = Asymmetric Convective
Model; CNTL = control simulation; ERA = European Center for
Medium Range Weather Forecasting Interim Reanalysis;
MERRA = Modern Era Retrospective analysis for Research and
Applications; MYJ = Mellor‐Yamada‐Janjic scheme; NEI = National
Emissions Inventory; RMSE = root‐mean‐square error.

Figure 5. Average cross section of the maximum daily 8‐hr average ozone (MD8‐O3) along I‐95 during the modeling
period.
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of MD8‐O3, while the NEI‐14 experiment overpredicted less MD8‐O3 relative to the other sensitivity experi-
ments in the emissions inventory subgroup (Table 3). The reduced overproduction of the NEI‐14 sensitivity
experiment suggests that an updated emissions inventory results in more accurate predictions of MD8‐O3.
Also, the difference between the unbiased root‐mean‐square error (RMSE) of the day 1 and day 2 predictions
of MD8‐O3 is statistically significant at the 95% confidence interval. While this is worth noting, the limited
number of models used, as well as the fact that none of the other error tables within section 3.5 displays simi-
lar statistical significance, suggests that this is a Type 1 error.

The temporal average of the cross‐sectional MD8‐O3 over I‐95 is displayed in Figure 5. The latitudes of major
cities are marked and labeled by dashed lines. The vertical coordinate was computed using the hypsometric
equation of the averaged hydrostatic pressure and temperature during the same period that the ground‐level
MD8‐O3 was modeled. In the southern part of I‐95, the NEI‐05 sensitivity experiment showed the most

Figure 6. The average model uncertainty of the maximum daily 8‐hr average ozone (MD8‐O3), expressed by the temporal
average of the standard deviation of each subgroup, during the modeling period.

Figure 7. The averagemodel uncertainty, expressed by the temporal average of the cross section of the standard deviation,
of maximum daily 8‐hr average ozone (MD8‐O3) during the 20% of days with National Ambient Air Quality Standards
exceeding ozone observations. PBL = planetary boundary layer. ICBC= meteorological initial and boundary conditions.
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overproduction of MD8‐O3, with peak values of MD8‐O3 in rural and sub-
urban areas. The overproduction of MD8‐O3 in the NEI‐05 sensitivity
experiment in the southern analysis region was most prominent
0.5–1 km aloft, near the height of the boundary layer, where the average
mixing ratio reached over 80 ppbv. Additionally, the ERA sensitivity
experiment showed that the overproduced O3 was enhanced aloft by 5
ppbv over the cities of Washington D.C., Baltimore, and Philadelphia, as
compared to both the MERRA‐2 and CNTL sensitivity experiments. The
overprediction of the ERA sensitivity experiment is likely due to its
inadequate simulation of moist convection (not shown), leading to the
enhancement of MD8‐O3. Thus, this cross section analysis demonstrates
the impact that emission reductions can have on the vertical profile of
MD8‐O3, as well as the uncertainty due to variability in themeteorological
initial and boundary conditions.

3.2. Model Uncertainty of MD8‐O3

Figure 6 displays the average standard deviation of near‐surfaceMD8‐O3 for each sensitivity experiment sub-
group. The model‐interpolated location of I‐95 is denoted by the white line. This figure illustrates that the
meteorological initial and boundary conditions subgroup had a larger modeled uncertainty of MD8‐O3 than
the uncertainties of modeled MD8‐O3 due to variabilities in the emissions inventory and PBL parameteriza-
tions for the study period. Variations in using different initial and boundary conditions led to peak modeled
uncertainty (mean standard deviation among the subgroup) for O3 of 5.2–6.1 ppbv, which is considerably
higher that the peak sensitivities of about 3.4–4.3 ppbv due to changes in either the emissions inventory
or the PBL parameterization scheme. This implies that the meteorological conditions are a primary source
of O3 modeling uncertainties, which is consistent with findings in Zhang et al. (2007). Despite having a simi-
lar peak model uncertainty of MD8‐O3, the variations in the emissions inventory experiments have a greater
impact over a larger area on variations of MD8‐O3 than do variations due to the PBL schemes. Although the
model uncertainty of MD8‐O3 may be largest for the initial and boundary conditions, it does not necessarily
indicate that the model uncertainty was largest at every point. For example, MD8‐O3 in southern New Jersey
was more sensitive to variability in the emissions inventory than variability induced by using different
meteorological initial and boundary conditions (by approximately 1 ppbv). Additionally, the largest
uncertainties due to different meteorological initial and boundary conditions may not be collocated with
the highest values of MD8‐O3. For example, I‐95, which connects major cities in the analysis region, runs
along the outside edge of the peak uncertainties. This highlights the model uncertainty of the transport of
near‐surface O3 resulting from NOx plume sources, such as I‐95.

Figure 8. A time series of model uncertainty of the maximum daily 8‐hr
averaged ozone (MD8‐O3) for each O3 observing monitor, expressed by
the spatially averaged standard deviation, in June 2016. The beginning of
each line segment indicates the uncertainty associated with the day 1
prediction of MD8‐O3, while the end represents the day 2 uncertainty.
PBL = planetary boundary layer.ICBC = meteorological initial and
boundary conditions

Figure 9. Time series of the maximum daily 8‐hr averaged ozone (MD8‐O3) at Rutgers University.
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Figure 7 illustrates the vertical profile in the lowest 3‐km altitude above I‐95 for the temporally averaged
model uncertainty of MD8‐O3. While the MD8‐O3 aloft was most sensitive to uncertainties in the meteoro-
logical initial and boundary conditions, the model uncertainty due to variability in the emissions inventory
was larger aloft over the southern part of the analysis region. This result agrees with Travis et al. (2016) that
the emissions inventory represents a large source of O3 modeling error for the southeastern United States.
Also, the most model uncertainty of MD8‐O3 associated with the emissions and initial/boundary conditions
subgroups was located near the top of the boundary layer. This increase in the sensitivity model uncertainty
of O3 with height is consistent with the hypothesis that the ERA sensitivity experiment inadequately
modeled convective vertical transport of O3 and O3‐precursors.

Figure 8 shows which days have the most model uncertainty of MD8‐O3, by displaying the average stan-
dard deviation of each subgroup at each observing location. Consistent with Figure 6 and Figure 7, the
initial and boundary conditions subgroup frequently had the largest uncertainties among the three sensi-
tivity subgroups. However, the average standard deviation of each subgroup is considerably smaller than
the RMSE, which is defined as the square root of the average squared distance between the observations
and predictions, among all sensitivity experiments. This result also shows a smaller standard deviation
than the findings of Gilliam et al. (2015), but this may be due to the use of only three sensitivity experi-
ments in each subgroup, as well as the use of days with low O3, which is inherent in the utilization of the

Figure 10. Rank histogram for biased (a) and unbiased (b) predictions of the maximum daily 8‐hr averaged ozone (MD8‐
O3) within the entire analysis region.

Figure 11. Root‐mean‐square error (RMSE) of hourly O3 as a function of forecast hour.
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entire month of June. By comparison, Gilliam et al. (2015) used 10
Short‐Range Ensemble Forecasting‐initialized WRF‐CMAQ simulations,
as compared to our three multimodel initialized WRF‐Chem simula-
tions. Our results for the model uncertainty in MD8‐O3 due to variabil-
ity in the initial and boundary conditions over land were of similar
order to those presented in the “half‐run” by Zhang et al. (2007). The
similarity of these results implies that the initial differences between
the CNTL, ERA, and MERRA‐2 sensitivity experiments were representa-
tive of about half the variability (i.e., model uncertainty) of the initial
ensemble employed by Zhang et al. (2007).

Although the initial and boundary conditions have the most model
uncertainty among the subgroups, the initial and boundary condition

subgroup is still underdispersive, suggesting other sources of uncertainties beyond what are examined
in this study also need to be considered simultaneously in probabilistic O3 modeling. This is evidenced by
Figure 9, which shows a time series of MD8‐O3 of each subgroup at the Rutgers University O3 monitor,
which is representative of the New York City metropolitan area. The Rutgers University monitor was
chosen because it observed 4 days with NAAQS exceedances of MD8‐O3 during the study period.
Since many of the observations were outside the ranges of each subgroup, all of the subgroups are
underdispersive, which is an important consideration when data assimilation of air quality models is
conducted (Houtekamer & Zhang, 2016). Additionally, Figure 9 supports the idea that older emissions
inventories produce more MD8‐O3, enhancing the positive bias. Figure 10, which shows a rank
histogram of MD8‐O3 within the entire analysis region, broadens this idea of underdispersion beyond
a single monitor. Even with the bias removed, Figure 10 shows signs of underdispersion.

3.3. Uncertainty and Error for Each Forecast Hour

Figure 11 shows the RMSE for O3 predicted each hour within the analysis region for each subgroup. For the
first few hours, the model error increases greatly. The ERA sensitivity experiment shows the largest error.
The error also decreases to a relative minimum near hour 24. This minimum is similar to the minimum
found at hour 0. This result may be caused by the daily reinitialization, but that does not sufficiently explain
the drastic decrease in RMSE preceding reinitialization. However, one possibility is that diurnal pattern of
the errors may be associated with the diurnal pattern of the sensitivity, related to the treatment of the
PBL scheme. Figure 11 also shows that the errors in day 2 predictions of hourly O3 may be due to the a priori
assumption of the small impact of reinitialization error. This explanation is particularly relevant to the ERA
andNEI‐05, which have themost amount of error in all of the sensitivity experiments. Moreover, this pattern

Figure 12. Station‐averaged uncertainty of hourly O3 as a function of fore-
cast hour. PBL = planetary boundary layer. ICBC= meteorological initial
and boundary conditions.

Figure 13. Slope of the least squares line regression of the root‐mean‐square error (comparing model predictions against
observations) of the maximum daily 8‐hr average ozone (MD8‐O3) per emissions inventory year during the 20% of days
with the most National Ambient Air Quality Standards exceeding observations of ozone as a response to the different
emissions inventory years.
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may be broadened to the idea that variability in the meteorological initial and boundary conditions are as
important as variability in the emissions inventory.

Figure 12 shows the station‐averaged uncertainty (root‐mean‐square difference or spread among members)
of O3 at each hour for each of the three subgroups as a response to variability. All three subgroups display a
diurnal pattern. The uncertainty of the PBL subgroup shows negatively skewed behavior with peaks during
the nighttime. The uncertainty of the emissions inventory subgroup is the smallest but shows a positive
skewness and peak during the morning hours. The uncertainty of the emissions inventory subgroup also
shows a small decrease in the afternoon and evening, implying a trend toward increased confidence. The
meteorological initial and boundary conditions uncertainty is slightly larger in the daytime hours, but the
diurnal pattern is not as pronounced compared to the emissions inventory or PBL subgroups.

3.4. Emissions Inventory Analysis

Since predicted MD8‐O3 has a clear positive bias among all sensitivity experiments, as seen in Figure 4, and
the newer emissions inventories decrease error, as described previously in section 3.1, we estimated the aver-
age decrease of the RMSE due to emissions inventory updates. Figure 13 illustrates the slope of the least
squares line of the RMSE of MD8‐O3 as a response to the emissions inventory year. There was one caveat:
since only the emissions of NO were updated in the NEI‐14, the changes in emissions of VOCs may alter
the finding, but because O3 in the Mid‐Atlantic region is NOx‐sensitive, the result of changing emissions
of VOCs will likely be small. Based on this analysis, an average decrease of approximately 0.59 ppbv/year

of the RMSE and mean bias of MD8‐O3 was estimated.

Using a methodology similar to that used to estimate the average decrease
of the RMSE, the average decrease ofMD8‐O3was also found, as shown in
Figure 14. Predictions of MD8‐O3 decreased across the analysis region
with each progressive emissions inventory. Over land, the average
decrease of MD8‐O3 was 0.63 ppbv/year.

3.5. Analysis of Errors for Other O3 Metrics

The results described to this point have focused on analysis of model‐
predicted MD8‐O3, due to its practical relevance for ambient air quality.
However, analysis of other model‐predicted metrics, such as daily average
O3, daily maximum O3, and daily minimum O3, can also provide impor-
tant information and thus are also examined. For brevity, here only the
errors of a few of such additional O3 metrics are discussed. The model
prediction period is 12 to 12 UTC daily, so there will be a difference in
each metric when compared to the corresponding metric based on local
standard time. This is not usually an issue for daily maximum O3, but it
can lead to differences for daily minimum O3 and daily average O3.

Figure 14. Slope of the least squares line regression for the modeled maximum daily 8‐hr average ozone (MD8‐O3) as a
response to the different emissions inventory years.

Table 4
Error Metrics of Daily Maximum O3 for Each Sensitivity Experiment

Sensitivity
experiment

Mean bias RMSE Unbiased RMSE

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

CNTL 14.12 14.27 21.94 21.83 16.8 16.51

NEI‐05 18.32 18.67 26 25.98 18.45 18.07

NEI‐14 11.62 11.94 19.63 19.71 15.82 15.68

ERA 17.38 16.4 25.42 23.91 18.55 17.4

MERRA2 14.18 14.25 21.81 22.13 16.57 16.93

ACM2 13.71 14.06 21.25 21.12 16.23 15.76

MYJ 14.35 14.31 22.75 21.65 17.65 16.24

Note. ACM2 = Asymmetric Convective Model; CNTL = control simula-
tion; ERA = European Center for Medium Range Weather Forecasting
Interim Reanalysis; MERRA = Modern Era Retrospective analysis for
Research and Applications; MYJ = Mellor‐Yamada‐Janjic scheme;
NEI = National Emissions Inventory; RMSE = root‐mean‐square error.
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Table 4 lists the errors for daily maximum O3, which are similar to
results to Table 3, with a few exceptions. One difference is that the
unbiased RMSE for day 1 predictions is not (statistically significantly)
greater than the RMSE for day 2 predictions. Another difference is
that the magnitude of the errors of MD8‐O3 (Table 3) are greater than
themagnitude of the errors of daily maximumO3 (Table 4), except for
the mean bias of both days of the CNTL, NEI‐14, and day 1 predic-
tions of the ERA and ACM2.

Table 5 lists the errors in daily average O3. In general, the mean bias
of daily average O3 was greater than that of MD8‐O3 (Table 3), with
the exception of the ACM2 experiment. Both the RMSE and unbiased
RMSE are greater for daily average O3 compared to MD8‐O3. This
increase in RMSE and mean bias with a widening averaging gap
supports the idea that WRF‐Chem predicts maximum O3 most
accurately, with errors in daily average O3 inflated due to large errors
in prediction of nocturnal O3 (Hu, Klein, & Xue, 2013). It is also

worth noting that the unbiased RMSE for daily average O3 is smaller than that of the other O3 metrics.

Table 6 lists the errors in daily minimumO3. Both themean bias and RMSE of daily minimumO3 are greater
than the corresponding values for MD8‐O3, maximum O3, and daily average O3, with the exception of the
mean bias of the ACM2 experiment. The difference between the mean bias of the ACM2 experiment and
the other sensitivity experiments suggests that the treatment of the nocturnal boundary layer in the
ACM2 experiment produces less of a biased prediction, but the unbiased RMSE value indicates that this does
not necessarily correspond to a more accurate prediction. Hu, Klein, & Xue (2013) provides a more in depth
discussion on the treatment of the PBL scheme in relation to nocturnal O3.

3.6. Limitations

One important limitation of this study was the number of sensitivity experiments conducted. As with most
research involving groups of simulations, the number of simulations used was limited by computational
resources. Since WRF‐Chem was computationally more expensive than the stand‐alone WRF, and we ran
WRF‐Chem for 1 month, we limited the number of sensitivity experiments in consideration of finite comput-
ing resources. Additionally, we wanted to compare the same number of sensitivity experiments, and we had
three emissions inventories available, so we were limited by our choice to test the model uncertainty of
ground‐level O3 to the variability of the emissions inventory. This limitation may be one reason the model
uncertainty of all subgroups was less than the error of the observations, which further suggests there are other
sources of uncertainties, such as biogenic emissions, dry deposition, chemical mechanisms, photolysis para-

meterizations, and convective parameterizations, in O3 modeling over the
study region. This limitation on the number of sources of sampled uncer-
tainties are not trivial. For example, Mar et al. (2016) showed that differ-
ence in chemical mechanisms can lead to differences in predicted O3 of
5‐10 ppbv. These additional uncertainties will be subject of future research.

The role of both observational errors and unresolved emissions is also of
note. Evaluating each sensitivity experiment based on observations of
O3 is subject to factors such as representativeness and measurement
uncertainty, and inmost cases the measurement uncertainty is considered
of negligible influence. Moreover, we are comparing errors between mod-
els, and in this way, our study can also be interpreted as comparing the
representativeness of the different model settings.

4. Summary and Conclusion

Predictability within the field of meteorology has been comprehensively
investigated in the past few decades and understanding of modeled uncer-
tainties and error growth dynamics has proved critical for improving

Table 5
Error Metrics of Daily Average O3 for Each Sensitivity Experiment

Sensitivity
experiment

Mean bias RMSE Unbiased RMSE

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

CNTL 17.02 16.81 21.02 20.51 12.34 11.75

NEI‐05 19.24 18.92 23.28 22.59 13.1 12.33

NEI‐14 15.86 15.73 19.82 19.46 11.89 11.45

ERA 19.42 18.48 23.46 22.07 13.16 12.07

MERRA2 16.84 16.84 20.65 20.71 11.96 12.06

ACM2 13.61 13.7 19.02 19.09 13.29 13.3

MYJ 15.03 14.8 19.56 19.21 12.52 12.24

Note. ACM2 = Asymmetric Convective Model; CNTL = control simulation;
ERA = European Center for Medium Range Weather Forecasting Interim
Reanalysis; MERRA = Modern Era Retrospective analysis for Research and
Applications; MYJ = Mellor‐Yamada‐Janjic scheme; NEI = National
Emissions Inventory; RMSE = root‐mean‐square error.

Table 6
Error Metrics of Daily Minimum O3 for Each Sensitivity Experiment

Sensitivity
experiment

Mean bias RMSE Unbiased RMSE

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

CNTL 22.28 21.91 27.37 27.07 15.89 15.9

NEI‐05 22.45 22.15 28.11 27.79 16.91 16.78

NEI‐14 22.44 22.04 27.22 26.89 15.42 15.41

ERA 23.29 23.14 28.42 28.23 16.29 16.18

MERRA2 22.25 22.14 27.66 27.6 16.45 16.48

ACM2 13.26 13.41 26.07 25.45 22.45 21.63

MYJ 19.38 19.01 25.31 25.03 16.29 16.28

Note. ACM2 = Asymmetric Convective Model; CNTL = control simula-
tion; ERA = European Center for Medium Range Weather Forecasting
Interim Reanalysis; MERRA = Modern Era Retrospective analysis for
Research and Applications; MYJ = Mellor‐Yamada‐Janjic scheme;
NEI = National Emissions Inventory; RMSE = root‐mean‐square error.
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weather forecasting. In contrast, this topic in air quality modeling has been less explored. Uncertainties of
simulated near‐surface O3 in the eastern United States and its predictability were investigated in this study.
We assessed the predictability of O3 by running seven WRF‐Chem experiments with different meteorologi-
cal initial and boundary conditions, emissions inventories, and PBL schemes over the Mid‐Atlantic region
for June 2016. Our results demonstrate that these particular sources of model uncertainty or possibly the
methods in sampling the variability, even without air quality data assimilation, are underdispersive.
Simulated ground‐level O3 was most sensitive to variability in the meteorological initial and boundary con-
ditions. This heightened model uncertainty emphasizes the need for accurate data assimilation of meteoro-
logical data, to ensure accurate modeling of ground‐level O3. In addition, our results demonstrate how the
choice of initial and boundary conditions may result in systematic biases for prediction of ground‐level
O3. Therefore, the choice of meteorological initial and boundary conditions, such as the choice of GFS or
ERA, may influence the findings of other research. Of the three initial and boundary conditions tested,
the MERRA‐2 sensitivity experiment had the smallest bias and RMSE, suggesting it is most appropriate
for operational use, though in the future we will examine other operational analysis and forecast datasets
as initial and boundary conditions. The enhanced model uncertainty due to variability in the initial and
boundary conditions also suggests that, pending other findings, air quality ensembles for modeling O3

should consist of perturbations in initial and boundary conditions.

Furthermore, our results show a correspondence of emissions inventory age to RMSE in predicted O3. While
newer emissions inventories lead to more accurate results than older emissions inventories, with an
improvement of approximately 0.59 ppbv/year, emissions inventories are updated infrequently. Therefore,
updates in emissions modeling, or inverse modeling algorithms to remedy outdated emissions—especially
in NO and VOCs—may improve O3 model accuracy.

To further generalize the findings from this study, future research is needed to extend the experiments to dif-
ferent months and years, and with combinations of simultaneously changing emissions inventories, PBL
schemes, and meteorological initial and boundary conditions. Further research will also focus on determin-
ing the underlying reason why ground‐level O3 is more sensitive to variability in the initial and boundary
conditions rather than variability in the emissions inventory or the PBL scheme.

It is also worth noting that, given the total uncertainties from the three selected sources (emissions inven-
tories, PBL schemes, and meteorological initial and boundary conditions) are still on average smaller than
the RMSEs of predicted O3 verifying against ground observations, the current study does not fully capture
all sources of O3 forecast uncertainties. Future work will investigate differences in O3 tendencies, including,
but not limited to, differences in the photolysis rate, chemical tendency, horizontal transport, and photosta-
tionary O3. Additional sources of uncertainty will also be investigated, such as the chemical mechanism and
photolysis parameterization. Similar methods may be applied to trace chemicals beyond O3, such as O3 pre-
cursors or the various VOCs within the chemical mechanism.
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