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1.  Review of tropical cyclones prediction with 
aircraft reconnaissance observations

Since the Omega dropwindsondes (ODWs) were 
released from the NOAA WP-3D aircraft in 1982 that 
showed the potential for reducing the hurricane track 
forecast error (Burpee et al. 1984), the reconnaissance 

data has played an important role in hurricane anal-
ysis (Franklin et al. 2003) and forecasting (Aberson  
2010). 

Current routine reconnaissance missions in the 
Atlantic Basin include two WP-3D aircraft and one 
G-IV Gulfstream high-altitude jet operated by the 
United States National Oceanic and Atmospheric 
Administration (NOAA) and ten WC-130J aircraft 
operated by the United State Air Force Reserve 
(USAFR) 53rd Weather Reconnaissance Squadron 
(WRS), along with two experimental unmanned 
Global Hawk (GH) aircraft operated by the National 
Aeronautics and Space Administration (NASA). The 
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Abstract

This article first presents an overview of the recent advances in the analysis and prediction of tropical cyclones 
through assimilating reconnaissance aircraft observations. Many of these advances have now been implemented 
in operational and experimental real-time hurricane prediction models. These advances are made possible through 
improved methodologies including more efficient quality control and data thinning, advanced data assimilation 
techniques that use ensembles to estimate flow-dependent error covariances, and improved numerical models 
running at convection-permitting resolutions, along with the availability of massively parallel computing. 

Impacts of aircraft reconnaissance observations on hurricane prediction are then exemplified using a continu-
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and Forecasting (WRF) model and the ensemble Kalman filter (EnKF). In comparison to the non-reconnaissance 
experiment that assimilates only conventional observations, as well as to the WRF forecasts directly initialized 
with the global operational analysis, the cycling WRF-EnKF system with assimilation of aircraft flight-level and 
dropsonde observations can considerably reduce both the mean position and intensity forecast errors for lead times 
from day 1 to day 5 averaged over a large number of forecast samples including the real-time implementation 
during the 2013 Atlantic hurricane season. These findings reaffirm the added value and need for maintaining and 
maybe expanding routine airborne reconnaissance missions for better tropical cyclone monitoring and prediction.

Keywords  EnKF; data assimilation; reconnaissance; tropical cyclone

Corresponding author: Fuqing Zhang, Department of 
Meteorology, and Center for Advanced Data Assimilation 
and Predictability Techniques, The Pennsylvania State 
University, University Park, PA 16802, USA
E-mail: fzhang@psu.edu
J-stage Advance Published Date: 2 June 2016
©2016, Meteorological Society of Japan



Journal of the Meteorological Society of Japan Vol. 94, No. 4346

NOAA and USAFR aircraft may fly into most trop-
ical cyclones reachable from the southeast coast of 
the United States, while the GH aircraft can reach 
close to the coast of Africa. These flights provide 
valuable flight-level, dropsonde, Doppler radar and/
or stepped-frequency microwave radiometer (SFMR) 
observations. The dropsonde observations are trans-
mitted in real time to the Global Telecommunication 
System (GTS) that can be used for operational hurri-
cane analysis and forecasting.

Even though the dropsonde observations are 
available in GTS and the high-density observations 
(HDOB) of flight-level and SFMR winds are avail-
able in the National Hurricane Center (NHC) in real 
time, the inner-core reconnaissance observations are 
so far not routinely assimilated by the NOAA opera-
tional dynamical model1. The Global Forecast System 
(GFS) assimilates a limited amount of reconnaissance 
data outside of the storm and does not assimilate the 
inner-core observations except for the minimal sea 
level pressure in the Tropical Cyclone Vital Database 
(TCVitals), which contains the tropical cyclone (TC) 
location, intensity, horizontal wind, pressure, struc-
ture, and depth of convection, all of which are gener-
ated in real time every 6 h by forecasters (Trahan and 
Sparling 2012). 

The NOAA high-resolution prediction includes 
two regional-scale dynamical models, one developed 
and maintained by the Geophysical Fluid Dynamics 
Laboratory (GFDL) (Bender et al. 2007) and the other 
is the Hurricane Weather Research and Forecasting 
(HWRF) model. The GFDL model initializes the 
tropical cyclones based on the GFS analysis but with 
a vortex bogus technique (Bender et al. 2007), while 
HWRF uses a hybrid ensemble and three-dimensional 
variational data assimilation analysis along with a 
vortex relocalization technique on the inner domain to 
initialize a TC (Bernardet et al. 2015). 

Many research studies have shown promises in 
improving TC track forecasting by using reconnais-
sance data (e.g., Burpee et al. 1996; Franklin and 
DeMaria 1992; Tuleya and Lord 1997; Aberson and 
Franklin 1999; Aberson 2002, 2010), but the degree 
of improvement depends on the quality of the first 
guess that is usually interpolated from the global 
models (e.g., Chou et al. 2011; Weissmann et al. 
2011). The improvement in TC intensity forecasts, 
on the other hand, is not always as conclusive as that 

seen in the track forecast (e.g., Tuleya and Lord 1997; 
Aberson 2002), which at least is partly due to the lack 
of sufficient model resolution. 

The slower progress in improving the accuracy of 
hurricane intensity forecasting may also be due to 
the lack of sufficient and representative observations 
within the storm’s inner-core area (Aberson 2008; 
Aberson et al. 2011) and/or due to the more limited 
predictability of the hurricane intensity changes (e.g., 
Sippel and Zhang 2008, 2010; van Sang et al. 2008; 
Zhang and Sippel 2009; Munsell et al. 2013, 2015; 
Zhang and Tao 2013; Tao and Zhang 2014, 2015). 

Nevertheless, great promises in improving hurri-
cane intensity forecasting have been demonstrated 
in recent years through the advanced assimilation of 
high-resolution inner-core observations into region-
al-scale convection-permitting numerical weather 
prediction models. For example, Zhang et al. (2009) 
demonstrated the potential of improving hurricane 
intensity prediction through assimilating high-res-
olution ground-based Doppler radar radial velocity 
with an ensemble Kalman filter (EnKF) based 
on the Weather Research and Forecasting (WRF) 
model. Weng and Zhang (2012) further enhanced the 
WRF-EnKF system with the capability of assimilating 
airborne Doppler radar on board the NOAA recon-
naissance P3 aircraft. 

Under the auspices of the NOAA Hurricane Fore-
cast Improvement Project (HFIP; http://www.hfip.
org), an experimental convection-permitting hurri-
cane analysis and prediction system based on the 
WRF-EnKF system has been operated in real time 
since 2008 by The Pennsylvania State University for 
Atlantic tropical cyclones that assimilates airborne 
Doppler radar observations (Zhang et al. 2011). Aver-
aged over all 102 applicable cases during 2008–2012 
in real-time configurations, this experimental system 
is shown to be capable of reducing the day-1-to-day-5 
hurricane intensity forecast errors by 15 %–43 % in 
comparison to the official forecasts of the National 
Hurricane Center (Zhang and Weng 2015). Similar 
or even more apparent improvement can be seen in 
this experimental system when compared to real-time 
operational forecasts by the two NOAA regional-scale 
dynamical hurricane models, HWRF and GFDL (Fig 
1). All dynamical models including HWRF and GFDL 
are treated as a “late model” since forecasts from 
these models are only available to NHC forecasters 
considerably later than the model initialization time (a 
more detailed definition can be found at http://www.
nhc.noaa.gov/modelsummary.shtml) and are thus 
interpolated to 6 h later. The homogeneous verifica-

1By the end of 2012 Atlantic hurricane season. The 
information is online available at http://www.nhc.noaa.gov/
modelsummary.shtml. 

http://www.hfip.org
http://www.nhc.noaa.gov/modelsummary.shtml
http://www.nhc.noaa.gov/modelsummary.shtml
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tion calculates the errors only when all forecasts are 
available at the same lead time for the same forecast 
cycle.  

The rest of the article further extends the exper-
imental hurricane analysis and prediction system 
of Weng and Zhang (2012) and Zhang and Weng 
(2015) to assimilate other aircraft reconnaissance 
data including flight-level data and dropsondes as 
well as standard GTS observations with a continu-
ously cycling EnKF based on WRF. The following 
section first introduces the further enhanced cycling 
WRF-EnKF system along with the experiment design. 
Section 3 evaluates this enhanced system, and Section 
4 discusses the impact of reconnaissance data assimi-
lation. Concluding remarks are given in Section 5. 

2.  Further developed methodology and 
experimental design

2.1 	 Continuously cycling WRF-EnKF tropical 
cyclone analysis and forecast system

The convection-permitting hurricane analysis and 
prediction system used in this study builds upon the 
regional-scale WRF-EnKF system developed in 
Weng and Zhang (2012) but with the addition of a 
continuously cycling capability and movable nests 
throughout the life cycle of a tropical cyclone, along 
with using higher-resolution, improved physics and a 
larger number of ensemble members. The Advanced 
Research WRF (ARW) model (version 3.4.1; Skama-
rock et al. 2008) employed has three two-way-nested 
domains with 379 × 244 (D01), 304 × 304 (D02), 
and 304 × 304 (D03) horizontal grid points and hori-
zontal grid spacing of 27, 9, and 3 km, respectively. 
D01 is fixed to cover the central to eastern three-quar-
ters of the contiguous United States (CONUS) and 
tropical and subtropical north Atlantic, as shown in 
Fig. 2a. During the cycling analysis period, the two 
inner domains are movable following the TCVitals to 
ensure all ensemble members have the same analysis 
domains. For the WRF deterministic forecast after the 
EnKF analysis, the two inner domains are moving by 
following the tropical cyclone center with the WRF 
vortex-following technique. The WRF configurations 
and physics are the same as used in Zhang and Weng 
(2015).

To more systematically investigate the impact of 
aircraft reconnaissance data in the regional dynam-
ical models, the key is to establish a baseline level of 
the skill and accuracy of the models run without any 
inner core reconnaissance data. Comparing to the 
operational forecast products (under homogeneous 
verification), the deterministic forecasts derived from 

Fig. 1. (a) Mean absolute track (unit: n mi) and (b) 
intensity (unit: knot) forecast errors by homoge-
neous comparing among the PSU WRF-EnKF 
deterministic forecast (APSI, red), the NHC offi-
cial (OFCL, cyan), and the current NHC regional 
dynamical models HWRF (HWRI, blue) and 
GFDL (GFDI, green). All dynamical models are 
treated as “late model” and interpolated to 6 h 
later. The track forecasts are directly shifted to 
the 6-h time-lagged forecasts, while the intensity 
forecasts use a 30-h interpolation method, which 
is used for late models in NHC. The interpo-
lator process first applies a 1-2-1 smoother to an 
individual intensity forecast and then applies 30 
h interpolation with 6-h time lag to the forecast 
based on when the model guidance is available. 
The interpolator applies the full adjustment to the 
time-lagged forecast out to 18 h, applies a linearly 
decreasing adjustment from 18 to 30 h, and then 
no adjustment for the remainder of the forecast. 
The numbers listed at the top of each panel are the 
sample size of the homogenized verification. The 
figure is adapted from Zhang and Weng (2015).
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the real-time Pennsylvania State University hurricane 
analysis and forecast system (designated as APSU 
by NHC) with the NOAA P-3 tail Doppler radars 
(TDR) is better than the official, operational HWRF, 
GFDL, and previous cycle GFDL (GHMI) and Decay 
Statistical Hurricane Intensity Prediction Scheme 
model (DSHP) for 24–120 h lead times, and it is 
also better than the GFS and Logistic Growth Equa-
tion Model (LGEM) within 96 h. (Since there is no 

vortex bogusing or intentional nudging toward best 
track estimates, the APSU does have a larger initial 
bias as found in earlier studies (Zhang et al. 2011; 
Zhang and Weng 2015). However, this comparison, 
though impressive, cannot differentiate the impacts 
of the inner-core radar data with the EnKF assimi-
lation since the APSU system uses the operational 
analysis of NOAA’s GFS as the initial analysis for 
the short-term ensemble before the WRF-EnKF anal-

Fig. 2. (a) Example of movable domains of the cycling WRF-EnKF analysis system following TCVitals for Hurri-
cane Irene (2011). The green/blue squares show the second/third domains every 6 h, and the red line is the track 
of Irene. (b) Atlantic storm tracks with recon missions during 2008–2012; the colors indicate the storm intensities. 
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ysis. The GFS analysis assimilates all route obser-
vations including satellite radiance. Since 2013, we 
have further extended the APSU system to a cycling 
WRF-EnKF analysis and prediction system capable 
of ingesting conventional data including surface and 
upper air observations and satellite-derived winds (but 
without satellite radiance assimilation) as benchmark 
control experiments for evaluating impacts of the 
reconnaissance data. Here is the specific design of the 
baseline EnKF experiment designed as CNTL.

1) 	Prior to the regional cycling EnKF analysis, the 
system is initialized with the operational GFS 
analysis when the tropical cyclone or an invest 
(low-pressure center of interest) appears to the 
west of 30°W in the north Atlantic and when 
NHC begins the official forecast (OFCL) or if the 
Climatology and Persistence Model (CLIPER5; 
Aberson 1998) starts forecasting products for 
this storm. The outer domain is fixed and is large 
enough to cover the central to eastern three-quar-
ters of the CONUS and tropical and subtropical 
north Atlantic, while the two inner domains are 
centered with TCVitals (Fig. 2).

2) 	The initial and boundary conditions are 
perturbed with the same method described in 
Weng and Zhang (2012). The deterministic and 
60-member WRF forecasts initialized with the 
GFS analysis and added ensemble perturba-
tions are integrated for 12 h that serve as the 
prior fields for the cycling WRF-EnKF analysis 
system.

3) 	The WRF-EnKF analyses and forecasts assim-
ilating the conventional observations are 
performed at a 3-h cycle, while the WRF deter-
ministic forecasts are performed every 6 h with 
the EnKF analysis until the end of the storm or 
after the storm moves north of 45°N or east of 
30°W. More specifically, the following steps are 
performed:

a. 	 During the cycling WRF-EnKF analysis, 
the same perturbing method described 
in step 2 is applied every 6 h to generate 
new perturbations, which will be used to 
blend with the WRF-EnKF 3-h ensemble 
forecasts to generate the new ensemble. 
The blending method implemented here 
is as follows: (i) The environmental fields 
600 km outside of the TCVital center for 
the short-term WRF ensemble are replaced 
every 6 h with the available GFS opera-
tional analysis and newly generated pertur-
bations valid at the same time. (ii) Fields 

between 300 and 600 km are blended 
with the short-term WRF ensemble and 
the new ensemble. (iii) The WRF-EnKF 
ensemble members are unchanged within 
the 300-km radius. Using the operational 
GFS analysis for the environmental fields 
and boundary conditions, we state the 
following: (i) The main objective of this 
study focuses on the impact of the data 
assimilation to the TC inner core. (ii) The 
GFS analysis assimilates all conventional 
observations, satellite radiance, and satel-
lite-derived winds. (iii) The five-year 
retrospective run initialized with the GFS 
analysis shows that the hurricane track 
forecast with the WRF model is compa-
rable in accuracy to the HWRF and GFDL 
hurricane models as well as OFCL (Zhang 
et al. 2014). (iv) Not assimilating environ-
mental data is more computationally effi-
cient in real time. 

b. 	 The 3-h short-term deterministic WRF 
forecast initialized from the mean EnKF 
analysis (with the replaced environ-
mental fields using the GFS analysis) is 
then used as the prior estimate to recenter 
the 60-member 3-h, short-term, prior 
ensemble before the next cycle EnKF 
analysis. In other words, the ensemble is 
regenerated every 3 h by combining the 
3-h short-term deterministic WRF forecast 
and the 3-h ensemble forecast perturba-
tions.

c. 	 All conventional observations including 
satellite derived winds from GTS within 
a 3-h window and within a 600-km radius 
around the storm center will be assimilated 
in all three domains with the EnKF; also 
assimilated will be the minimal sea level 
pressure in the corresponding TCVital file.

d. 	 After the first cycle of data assimilation, a 
3-h deterministic forecast initialized with 
the EnKF analysis and an ensemble of 
60-member 3-h forecasts using the pertur-
bations are performed. The two inner nest 
domains of all ensemble members will 
follow the TCVital center with the preset 
moving technique in WRF. 

e. 	 Also, after the first cycle of data assimila-
tion, a 126-h deterministic forecast initial-
ized with the EnKF analysis is performed 
as the control experiment. 
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f. 	 After the second cycle of the 3-h EnKF 
assimilation, the 3-h deterministic forecast 
initialized with the EnKF analysis and the 
60-member 3-h ensemble forecasts initial-
ized with the EnKF perturbations without 
the blend of the GFS analysis and without 
recentering will be forwarded to another 
assimilation cycle.

g. 	 The following third cycle is then pushed 
to the GFS analysis episode, and the 
cycling system goes to step a to update the 
ensemble perturbations by blending the 
perturbed GFS. Steps a–f are then repeated 

until the end of the storm or until the storm 
moves north of 45°N or east of 30°W. 

The experiment for assimilating reconnaissance 
data (named as ReCON) uses the same WRF-EnKF 
cycling analysis and prediction system as CNTL but 
with the additional assimilation of flight-level and 
dropsonde observations whenever available.

To avoid filter divergence due to either sampling or 
model error, we apply the covariance relaxation tech-
nique (Zhang et al. 2004; Eq. 5) with the relaxation 
coefficient α = 0.6. The covariance localization uses 
the Gaspari and Cohn (1999) fifth-order correlation 
function to cut off the influence of 30 grids in each 

Table 1.  Reconnaissance cases for 2008–2012 Atlantic storms.

Year Storm CNTL
MMDDHH-MMDDHH

ReCON
MMDDHH-MMDDHH

2008 04-Dolly 072012-072418 072012-072418

06-Fay 081400-082400 081400-082400

07-GUSTAV 082512-090200 082512-090200

09-Ike 090200-091312 090512-091312

11-Kyle 092300-092812 092318-092812

17-Paloma 110600-111000 110600-111000

2009 02-Ana 081200-081700 081612-081700

03-Bill 081600-082312 081812-082312

05-Danny 082612-082900 082612-082900

2010 01-Alex 062512-070112 062512-070112

07-Earl 082600-090400 082712-090400

13-Karl 091412-091800 091412-091800

19-Richard 102012-102600 102012-102600

21-Tomas 102912-110806 102912-110806

2011 09-Irene 082000-082900 082012-082900

13-Lee 090200-090612 090200-090612

16-Ophelia 092100-100218 092312-092900

18-Rina 102212-102818 102312-102800

2012 09-Isaac 082000-083018 082112-082906

12-Leslie 083000-091100 090712-090812

14-Nadine 091000-100318 091118-100318*

17-Rafael 101300-101718 101300-101718

18-Sandy 102100-103018 102212-102918

Total 23 storms 758 cases 636 cases

*NASA Globe-Hawk dropsondes.
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domain. Also, the successive covariance localization 
method (Zhang et al. 2009) is applied to this study. 
Similar to Weng and Zhang (2012), the surface and 
flight-level observations and satellite-derived winds 
are randomly divided into three groups of 1/9, 2/9, 
and 6/9 (of the total available observations)  with 
a horizontal localization radius of influence (ROI) 
of 405 km for all domains (group 1), 135 km for 
the two inner domains (group 2), and 45 km for the 
inner domain (group 3), respectively. For dropsondes, 
SCL is applied with different ROIs of 810, 270, and 
90 km for each of the three domains, respectively. 
The minimal sea level pressure derived from TCVi-
tals uses 1620, 540, and 180 km for each of the three 
domains, respectively.

2.2  Case selection
The retrospective cases selected in this study 

include all NOAA aircraft missions during 2008–
2012, along with the Global Hawk experimental 
reconnaissance missions for Hurricane Nadine (2012) 
during the NASA field experiment HS3 (Braun et al. 
2016). There are 23 storms (Fig. 2b) for a total of 758 
cases for CNTL based on the 6-h forecast initializa-
tion cycles and a total of 636 cases for ReCON. The 
storms, and their start and end times for CNTL and 
ReCON, are listed in Table 1. All flight-level and 
dropsonde observations are available online at ftp://
ftp.aoml.noaa.gov/hrd/pub/data/. The TCVitals data 
are available at ftp://ftp.nhc.noaa.gov/, while the 
GDAS and operational GFS forecasts can be obtained 
from https://rda.ucar.edu/. 

The real-time cases selected in this study include 
all the 2013 Atlantic tropical cyclones (including 
the invest stages) for which the PSU experimental 
WRF-EnKF forecasts were delivered to the Trop-
ical Cyclone Modeling Team (TCMT) in real time. 
These 125 cases are listed in Table 2. These real-time 
PSU WRF-EnKF forecasts can be found at ftp://ftp.
nhc.noaa.gov/atcf/archive/2013 by searching the ID 
“APSU” in the NHC’s operational A-deck files.

2.3  Verification
The forecasts will be verified against BEST 

from the Automatic Tropical Cyclone Forecast 
system (ATCF; Sampson and Schrader 2000). The 
maximum sustained 10-m wind speed (Vmax) of 
each TC is chosen to represent the TC intensity, 
although generally consistent performance is found 
using the minimum central sea level pressure (Pmin) 
as the intensity metric. The GFDL Vortex Tracker 
program (Gopalakrishnan et al. 2012) is applied to 

Fig. 3. Mean absolute forecast error (solid lines) 
and bias (dashed lines) averaged over all 758 
cases during 2008–2012 for the WRF deter-
ministic forecasts initialized with operational 
GFS analysis (ANPS, blue) and the WRF deter-
ministic forecasts initialized with cycling the 
WRF-EnKF analysis with conventional obser-
vation assimilation (CNTL, cyan) for (a) track 
position error (km), (b) minimum sea level pres-
sure (mb), and (c) 10-m maximum wind speed 
(m s−1). The numbers of homogeneous samples 
are listed at the top of each panel.

ftp://ftp.aoml.noaa.gov/hrd/pub/data/
ftp://ftp.nhc.noaa.gov/
https://rda.ucar.edu/
ftp://ftp.nhc.noaa.gov/atcf/archive/2013
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the WRF-EnKF forecasts to determine the TC loca-
tion, Pmin, Vmax, and structure at every 6 h interval. 
The averaged absolute forecast error refers to BEST, 
homogenized with all corresponding experiments over 
the all cases. This is used to evaluate the data impact.

3.  Performance of the baseline cycling WRF-EnKF 
(CNTL) for selected cases

Before conducting and evaluating the ReCON 
experiment, it is desirable to examine whether the 
cycling WRF-EnKF analysis and prediction system 
in CNTL can provide dynamically reliable TC fore-
casts with acceptable accuracy through comparing 
its forecasts with those that are directly initialized 
with the operational global analysis without region-
al-model data assimilation as ANPS in Zhang et al. 

(2014), which is initialized with the GFS analysis and 
with the same WRF configuration as in this cycling 
WRF-EnKF system. Zhang et al. (2014) demonstrated 
that the ANPS performance is comparable to two 
operational regional-scale dynamical models (HWRF 
and GFDL), although slightly inferior to the NHC 
official forecasts (their Fig. 2).

Figure 3 shows a homogenized comparison of 
the track and intensity errors and biases in the terms 
of Pmin and Vmax between forecasts of ANPS and 
CNTL. The CNTL track forecast error is slightly 
(10–30 km) larger within the 108-h lead time than that 
of ANPS (Fig. 3a), but the difference is not signifi-
cant. For the intensity forecasts, the differences in 
both terms of minimal sea level pressure (Fig. 3b) 
and maximal surface wind speed (Fig. 3c) are small. 

Fig. 4. Initial (a, c) Pmin (mb) and (b, d) Vmax (m s−1) comparison between (a, b) ANPS and CNTL and (c, d) 
CNTL and ReCON against BEST Pmin and Vmax.
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CNTL has smaller errors for all lead times than 
those of ANPS (Fig. 3c); the improvement in CNTL 
is likely from a much reduced intensity bias, espe-
cially at the initial time. The biases for ANPS at the 
initialization time are 15 mb and –17 knots for Pmin 
and Vmax, respectively, while those of CNTL are 
–5 mb and 4 knots, respectively. Figures 4a and 4b 
further show all initial Pmins and Vmaxs for ANPS 
and CNTL by comparing to BEST. This comparison 
shows a better correlation between CNTL and BEST 
than that between ANPS and BEST and indicates the 
cycling positive impacts on storm intensity initializa-
tion. The weak biases of ANPS are partly due to the 
WRF cold-start initialization from the coarse resolu-
tion of the GFS analysis, while the WRF warm-start 
initialization through the cycling EnKF analysis may 
reduce such bias.

Overall, the above comparison shows that the track 
and intensity forecast from the baseline control exper-
iment CNTL with the cycling WRF-EnKF is quite 
reasonable and comparable to the state-of-the-art 
regional-scale dynamical prediction systems.

4.  Performance of assimilating the reconnaissance 
data with the cycling WRF-EnKF

With the 3-h cycling WRF-EnKF hurricane analysis 
and prediction system, we conducted all 636 ReCON 
cases listed in Table 1 for 23 storms during the 2008–
2012 Atlantic hurricane seasons. ReCON starts with 
the priors of CNTL just before the aircraft mission 
and ends when there is no further aircraft mission 
available for the same storm. For example, NOAA 
started the first aircraft mission at 1225 UTC 27 
August 2010 and ended the last mission at 0828 UTC 
4 September 2010 for Hurricane Earl (2010), during 
which there were 35 reconnaissance aircraft missions 
conducted by NOAA and the USAFR combined 
(mission information is available at http://www.aoml.
noaa.gov/hrd/Storm_pages/earl2010/mission.html). In 
this case, the ReCON experiment for Hurricane Earl 
(2010) starts at 1200 UTC 27 August and ends at the 
same time as CNTL at 0000 UTC 4 September 2010 
with a 3-h data assimilation cycle. With the EnKF 
assimilation, we conduct deterministic forecasts every 
6 h, all of which are used for verification. Some cycles 
without any reconnaissance data to be assimilated 
are also included in the verification statistics since 
the forecasts can still be affected by assimilation if 
the aircraft observations during earlier assimilation 
cycles.

Figure 5 shows the homogenized comparison of 
the track and intensity errors of CNTL and ReCON 

Fig. 5. Mean absolute forecast error in homoge-
neous verification averaged over all 636 ReCON 
cases during 2008–2012 for CNTL (cyan) and 
ReCON (red) for (a) track position error (km), (b) 
minimum sea level pressure (mb), and (c) 10-m 
maximum wind speed (m s−1). The blue bar at 
the bottom of each panel means the improvement 
of ReCON in percent over CNTL, while the red 
bar means ReCON is worse than CNTL. The 
numbers of homogeneous samples are listed at 
the top of each panel.

http://www.aoml.noaa.gov/hrd/Storm_pages/earl2010/mission.html
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verified against BEST. The ReCON experiment with 
EnKF assimilation of reconnaissance data clearly 
improves over CNTL for both the track and inten-
sity forecasts at all lead times (except for intensity 
for the first 18 h). The track errors have from 2 % 
to 14 % improvements with the reconnaissance data 
assimilation; specifically, there are more than 10 % 
improvements for the forecasts within 48–96-h lead 
times. The improvement of the track forecast may be 
primarily due to two reasons: one from the improve-
ment of the storm structure that may improve the fore-
cast of the track and the second from the spread of the 
reconnaissance observation to a large radius of influ-
ence that may improve the environmental fields.

The improvement of the intensity forecast in terms 
of Pmin is the most impressive with the ReCON 
experiment; the Pmin error is 37 % smaller than 
CNTL at the initial time and 14 %–25 % smaller 
within 72-h lead times. Even with slightly larger 
intensity errors in the terms of Vmax at the initial time 
likely due to the spin-up of WRF, ReCON has overall 
1 %–11 % persistent improvements over CNTL 
during the lead times of 24–114 h. 

5.  Performance with reconnaissance data in 
real-time experiments of 2013

To further evaluate the performance of reconnais-
sance observation assimilation, the continuously 
cycling hurricane analysis and prediction system has 
been selected to take part in 2013 HFIP “Stream-

1.5” activities and has been identified as “APSU” by 
NHC. “Stream 1.5” is a quasi-operational real-time 
experiment established by HFIP and NHC to eval-
uate forecast models and/or techniques based on  
hindcast assessments (http://www.ral.ucar.edu/projects/ 
hfip/includes/HFIP_Stream_1.5_Concept_of_Operations_ 
FY11_20110121.pdf). The verification made by the 
HFIP TCMT Stream 1.5 Analysis Team based on the 
ReCON cases listed in Table 1 shows improvements 
in both track and intensity forecasts with reconnais-
sance observation assimilation (the verification report 
is available online at http://www.ral.ucar.edu/proj-
ects/hfip/includes/h2013/2013_stream1.5-PSU-up-
date-13Junedata-final.pdf). 

During the 2013 Atlantic hurricane season, there 
were superobservations (SOs) for 15 NOAA airborne 
TDR missions available including NOAA P-3 and 
G-IV aircrafts (SOs are available online at ftp://
ftp.aoml.noaa.gov/hrd/pub/gamache/FuqingSO). 
However, due to the United States government lock-
down and the issue of TDR data processing, the 
APSU system did not receive any Doppler radar SO 
file in real time, and the real-time system did not 
assimilate any TDR observations. This makes the 
real-time APSU runs the same as the above ReCON 
experiment. There were 14 storms and about 640 total 
cases based on real-time TCVitals in the 2013 Atlantic 
hurricane season. Because of the computing resource 
issue, we only delivered 125 cases to NHC on time. 
Table 2 lists the 125 cases, and all hurricane forecasts 

Table 2.  Real-time reconnaissance cases for 2013 Atlantic storms.

Storm Cases Date (YYYYMM: DDHHs)

AL03 Chantal 7 201307: 0912, 1000, 1006, 1012, 1100, 1106, 1200

AL04 Dorian 9 201307: 2400, 2412-2612 every 6h

AL05 Erin 4 201308: 1800-1818

Al06 Fernand 6 201308: 2500-2512, 2600-2612

AL07 Gabrielle 14 201309: 0418-0500, 0518, 0618, 0706, 0718-0806, 1006-1112

AL10 Ingrid 21 201309: 1118-1618

AL11 Jerry 8 201309: 3000-3012, 201310: 0112-0118, 0206, 0218, 0300

AL12 Karen 22 201310: 0100-0606

AL13 Lorenzo 12 201310: 2118-2412

AL95 Invest* 11 201309: 1800-2012

AL98 Invest* 11 201310: 0706-0918

Total 125 Data source: ftp://ftp.nhc.noaa.gov/atcf /archive/2013

*The forecasts for Invest were removed from NHC ATCF archive folder.

ftp://ftp.nhc.noaa.gov/atcf/archive/2013
http://www.ral.ucar.edu/projects/hfip/includes/HFIP_Stream_1.5_Concept_of_Operations_FY11_20110121.pdf
http://www.ral.ucar.edu/projects/hfip/includes/h2013/2013_stream1.5-PSU-update-13Junedata-final.pdf
ftp://ftp.aoml.noaa.gov/hrd/pub/gamache/FuqingSO
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of the 125 cases are available on online at the NHC’s 
ftp server: ftp://ftp.nhc.noaa.gov/atcf /archive/2013. 

To identify the real-time performance of the cycling 
hurricane analysis and prediction system with recon-
naissance data assimilation, we compare APSU 
(ReCON) with the hindcasts by the ANPS configu-
rations that are initialized with the operational GFS 
analysis. Figure 6 shows the homogeneous errors of 
ANPS and APSU for track and intensity forecasts. 
The comparison shows that the cycling reconnais-
sance data assimilation system decreases the track 
forecast accuracy (Fig. 6a), but the intensity forecasts 
in terms of both Vmax (Fig. 6b) and Pmin (Fig. 6c) 
are largely improved. By comparing APSU to the 
NHC official forecasts (OFCL) and the dynamical 
forecasts by the two NOAA regional models HWRF 
and GFDL (Fig. 7), it is found that the intensity fore-
cast error of APSU is significant smaller than those of 
OFCL/HWRF/GFDL despite a slight degradation in 
the track forecast accuracy.

6.  Concluding remarks

This article first presents an overview of the 
recent advances in analysis and prediction of trop-
ical cyclones through assimilation of reconnaissance 
aircraft observations. We further present a cycling 
WRF-EnKF analysis system to evaluate the impact of 
reconnaissance data assimilation on hurricane inten-
sity forecasting. The control experiment CNTL is set 
to assimilate all conventional observations and satel-
lite-derived winds except the reconnaissance data. 
The forecast result of the control experiment has the 
same forecast accuracy as the baseline forecast ANPS, 
which is the same configured WRF model initialized 
with operational GFS analysis and has the smallest 
track and intensity forecast errors compared to the 
NHC regional dynamical hurricane models HWRF 
and GFDL over 2920 cases during the 2008–2012 
Atlantic hurricane seasons (Zhang et al. 2014).

The reconnaissance data impact experiment 
ReCON is initialized with the priors of CNTL and 
assimilates all conventional observations, satellite-de-
rived winds, and the reconnaissance data including 
flight-level observations and dropsondes every 3 h. 
The verification shows positive impacts on hurricane 
track and intensity forecasts by assimilating recon-
naissance data; the reconnaissance data assimilation 
reduces position forecast errors by 2 %–14 % and 
minimal sea level pressure forecast errors by 1 %–37 
% for each lead time during 0–126 h and reduces 
maximal 10-m wind speed forecast errors by 1 %–11 
% during the 24–114 h lead times over all 636 cases 

Fig. 6. Mean absolute forecast errors in homoge-
neous verification averaged for 2013 stream 1.5 
APSU (red) and ANPS (blue) for (a) track posi-
tion error (km), (b) minimum sea level pressure  
(mb), and (c) 10-m maximum wind speed 
(m s−1). The numbers of samples are listed at the 
top of each panel, and all cases are available in 
the ATCF a-deck files.

ftp://ftp.nhc.noaa.gov/atcf/archive/2013
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during 2008–2012 compared to the control experi-
ment.

The real-time implementation of the continual 
cycling EnKF system with reconnaissance data assim-
ilation makes remarkable improvements in hurricane  
intensity forecasting by comparing the no-data- 
assimilation forecasts and NHC operational official 
forecasts and two main regional hurricane dynamical 
model forecasts. 
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