
Observing Strategy and Observation Targeting for Tropical Cyclones Using
Ensemble-Based Sensitivity Analysis and Data Assimilation

BAOGUO XIE

Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics,

Peking University, Beijing, China, and Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

FUQING ZHANG

Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

QINGHONG ZHANG

Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences,

School of Physics, Peking University, Beijing, China

JONATHAN POTERJOY AND YONGHUI WENG

Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

(Manuscript received 3 July 2012, in final form 5 November 2012)

ABSTRACT

An ensemble Kalman filter data assimilation system for theWeather Research and ForecastingModel is used

with ensemble-based sensitivity analysis to explore observing strategies and observation targeting for tropical

cyclones. The case selected for this study is Typhoon Morakot (2009), a western Pacific storm that brought

record-breaking rainfall to Taiwan. Forty-eight hours prior to making landfall, ensemble sensitivity analysis

using a 50-member convection-permitting ensemble predicts that dropsonde observations located in the

southwest quadrant of the typhoonwill have the highest impact on reducing the forecast uncertainty of the track,

intensity, and rainfall of Morakot. A series of observing system simulation experiments (OSSEs) demonstrate

that assimilating synthetic dropsonde observations located in regions with higher predicted observation impacts

will, on average, lead to a better rainfall forecast than in regions with smaller predicted impacts. However, these

OSSEs also suggest that the effectiveness of the current-generation ensemble-based tropical cyclone targeting

strategies may be limited. The limitations may be due to strong nonlinearity in the governing dynamics of the

typhoon (e.g., moist convection), the accuracy of the ensemble background covariance, and the projection of

individual dropsonde observations to the complicated targeted sensitivity vectors from the ensemble.

1. Introduction

Typhoons cause great loss of life and property each

year for coastal regions, making them some of the most

costly natural disasters. The accuracy of typhoon track

and intensity forecasts is impaired in part by the lack of

observations over the ocean, where tropical cyclones

(TCs) form and intensify. One strategy that is used to

alleviate the deficiencies in tropical cyclone forecasts is

observation targeting. This process seeks to determine

when and where supplemental observations (in addition

to those from preexisting networks) should be taken

in order to maximize the reduction in the forecast un-

certainty of a numerical weather prediction model.

Strategies for identifying the targeted locations depend

on the flow-dependent dynamics, forecast model accu-

racy, background and observation errors, and the data

assimilation technique (Berliner et al. 1999).

One targeting strategy, called sensitivity analysis, tries

to determine how a numerical weathermodel behaves in

the presence of small changes in initial conditions. In the

context of predictability, sensitivity analysis relies on the

underlying error growth dynamics to determine where
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additional observations are needed to reduce forecast

uncertainty following data assimilation. Several methods

that are based on linear assumptions regarding how a

forecast changes with initial conditions have been de-

veloped. These approaches require that the linear regres-

sion between a scalar forecast metric and an initial

condition variable be calculated to quantify the effects

of assimilating observations. Both adjoint sensitivity and

singular vector analyses have been used in past studies

for observation targeting of extratropical and tropical

cyclones (Errico and Vukicevic 1992; Langland et al.

1995; Rabier et al. 1996; Zou et al. 1998; Gelaro et al.

1999; Langland et al. 1999; Wu et al. 2007, 2009).

Anderson (2001) used an ensemble-based targeting

method in which sample statistics are used to estimate

relationships between the initial observable quantities

and a forecast variable or function of forecast variables.

A similar method was later adopted in Bishop et al.

(2001) and Hamill and Snyder (2002) to estimate the

effects of observations on analysis variance. The fore-

cast impact associated with observations was also ex-

plored by Majumdar et al. (2001). The ensemble-based

analysis method was recently demonstrated to be nearly

equivalent to the adjoint approach in Liu and Kalnay

(2008). However, in the study of a winter cyclone near

the west coast of North American, Ancell and Hakim

(2007) show that adjoint and ensemble sensitivities may

differ greatly in location, scale, and magnitude. They

showed that ensemble sensitivity analysis accurately

estimated the changes of a forecast metric given the

initial conditions. This method can identify a target re-

gion where additional observations are needed to reduce

the greatest amount of forecast variance. Torn and

Hakim (2008) evaluated the sensitivity of forecasts to

observations using an ensemble approach with data from

a pseudo-operational ensemble Kalman filter (EnKF;

Evensen 2003). They found good agreement between

forecast changes and ensemble predictions measured by

the forecast metric, but only one observation per update

time was used in their experiments to examine the ef-

fectiveness of ensemble sensitivity. Aberson et al. (2011)

also found forecast improvements using ensemble vari-

ance, ensemble transform Kalman filter, and total en-

ergy singular vector methods with dropwindsonde data.

More recently, Kunii et al. (2012) used ensemble

sensitivity analysis with the local ensemble transform

Kalman filter (LETKF) and the Weather Research and

ForecastingModel (WRF) to examine the impact of real

dropsonde observations for the prediction of tropical

cyclones. Jung et al. (2012) used an EnKF to assimilate

different sets of targeted observations as part of observing

system experiments to examine the impacts of real ob-

servations at different locations of tropical cyclones.

Unlike Kunii et al. (2012) and Jung et al. (2012), this

study pulls observations from a ‘‘truth’’ simulation in

order to remove the impacts of random error or sys-

tematic bias in the observations and forecast model.

There are currently two agencies using the ensemble-

based targeting strategy to identify sensitivity regions

for airborne dropsondes in order to improve TC fore-

casting: one is operated by the National Oceanic and

Atmospheric Administration (NOAA; Aberson and

Franklin 1999) and the other is the Dropsonde Observa-

tions for Typhoon Surveillance near the Taiwan Region

mission (DOTSTAR;Wu et al. 2007). From 1982 to 1996,

therewas an increase in airborne dropsonde observations

collected by NOAA in TC environments, which helped

the National Centers for Environmental Predictions

(NCEP) reduce track forecast errors by 16%–30% for

12–60-h forecasts (Burpee et al. 1996; Tuleya and Lord

1997). Since 1997, there is some indication that the global

positioning system (GPS) dropsondes have helped the

Geophysical Fluid Dynamics Laboratory (GFDL) im-

prove track and intensity forecasts by asmuch as 32%and

20%, respectively, when storms were within 48 h of the

projected landfall (Aberson and Franklin 1999). How-

ever, statistically significant improvements in track fore-

casts were not obtained for dropsondes conducted during

1997 and 1998 (Aberson 2002). A strategy for identifying

potential dropsonde release locations to improve TC

track forecasts has been developed based on the NCEP

operational global ensemble forecasting system (Aberson

2003). The dropsonde data improved the 24- and 48-h

NCEP global model TC track forecasts during 2003 by an

average of 18%–32%.

Starting from 2003, DOTSTAR has marked the be-

ginning of a new era of TC surveillance and targeted

observations in the western North Pacific using GPS

dropsondes (Wu et al. 2007). Wu et al. (2007) evaluated

the impact of dropsonde data on TC forecasts for 10

missions during 2004 using fivemodels (four operational

models and one research model). While the impact of

the dropsonde data is not statistically significant because

of the limited number of DOTSTAR cases in 2004, the

overall impact over the western North Pacific is encour-

aging. The average 72-h track error reduction of the three

global models was 22%, which is consistent with the

track forecast improvement inAtlantic tropical cyclones

from surveillance missions.

Complementary to the aforementioned studies, an

ensemble-based sensitivitymethod is applied for Typhoon

Morakot (2009) to evaluate the sensitivity of rainfall

forecasts to synthetic dropsonde observations. Numer-

ous observing system simulation experiments (OSSEs)

using an EnKF data assimilation technique are per-

formed for observations at optimized locations selected
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by the sensitivity analysis. These OSSEs are used to test

the effectiveness of ensemble sensitivity analysis as an

observation-targeting strategy for typhoons. The use of

synthetic observations as part of the perfect-model

OSSE experiments allows us to remove error sources

posed by an imperfect model and examine the true ob-

servation impact given by the algorithm.

TyphoonMorakot hit the southeast coast of Taiwan at

1800 UTC 7 August 2009, bringing catastrophic damage

to Taiwan that totaled $3.3 billion (U.S. dollars) in

economic losses. Despite being only a weak typhoon,

Morakot produced record-breaking rainfall that totaled

2777 mm in 72 h, as measured by the Central Weather

Bureau of Taiwan. Zhang et al. (2010, hereafter Z10)

explored the predictability of the high rainfall event

from an ensemble of high-resolution model simulations.

They found that most of the difficulty in predicting

this record-breaking rainfall was due to uncertainty in

Morakot’s track forecast, as nearly all members with

good track forecasts yielded reasonable precipitation

estimates. These results raise several questions regarding

the predictability of this event: What initial condition

differences are causing the large ensemble spread in

track and rainfall amount? If additional dropsondes

were to be added to reduce the initial condition and

forecast uncertainties, which observations would yield

the largest impacts to the forecast metrics? Is the en-

semble sensitivity analysis effective at identifying the

correct observations during the targeting? How should

the effectiveness of a targetingmethod be evaluated? To

answer these questions, the magnitude and distribution

of an ensemble-sensitivity metric (see section 2) are

used in this study to examine the sensitivity of forecast

track and precipitation to initial conditions at various

forecast lead times. The effectiveness of the ensemble-

sensitivity method is verified by assimilating the observa-

tions of interest and running deterministic and ensemble

forecasts from the corresponding EnKF analyses.

The outline of this paper is as follows. Section 2 in-

troduces the methodology for ensemble sensitivity anal-

ysis. Details regarding the methodology and data used in

this study are provided in section 3. Predicted observation

impacts based on ensemble sensitivity analysis are shown

in section 4, and compared with the simulated impacts

from assimilating synthetic dropsonde observations in

section 5. Conclusions are given in section 6.

2. Ensemble-based sensitivity and observation
targeting

The ensemble sensitivity analysis used in this study for

determining adaptive observation locations is the same

as in Bei et al. (2012). The algorithm originated from

Berliner et al. (1999) and Hamill and Snyder (2002), and

is mathematically identical to the formulation in Bishop

et al. (2001). We denote the model analysis state after

data assimilation as xa, the background state as xb, and

the truth as xt, all of which are vectors of lengthm. Here

Pa and Pb are the analysis and background error co-

variance matrices, respectively. For this method, the

metric used to determine the total decrease in model

uncertainty is the reduction in forecast error covariance

corresponding to a model state variable defined by the

user. As in Hamill and Snyder (2002), this expression is

written as

Pb 2Pa5PbHT(HPbHT 1R)21HPb , (1)

where H is a matrix operator that projects the model

space to observational space, HT is its transpose, and R

is the observation error covariance matrix, which in-

cludes both the instrument error and the representa-

tion error.

The true analysis and background error covariance

are given by

Pa5E[(xt 2 xa)(xt 2 xa)] , (2)

Pb 5E[(xt 2 xb)(xt 2 xb)] . (3)

For numerical weather prediction, the true state vec-

tor is always unknown, but Pb can be estimated using (3)

with xt replaced by the ensemble mean (denoted by an

overbar):

Pb 5
1

N2 1
�
N

n51

(xb2 xbn)(x
b2 xbn)

T 5Xb(Xb)T . (4)

Here N is the ensemble size and Xb is a matrix of

background ensemble perturbations, where each col-

umn corresponds to a member normalized by the square

root of N 2 1. Combining (4) and (1) gives

Pb2Pa5Xb(HXb)T[HXb(HXb)T 1R]21HXb(Xb)T .

(5)

If the goal of the targeting is to improve the likelihood

of the analysis, then locations that maximize the reduc-

tion in analysis error variance, tr(Pb 2 Pa), will be iden-

tified as the observation regions to be targeted. The

targeted observations should result in the smallest

analysis uncertainty from the set of other possible ob-

servations. Likewise, if the objective is to improve the

likelihood of the forecast, then locations that maximize

the reduction in ensemble forecast error variance will

be identified as the observation regions to be targeted.
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Provided that the initial perturbations are small, Bishop

et al. (2001) andMajumdar et al. (2001) showed that the

reduction in forecast error variance can be estimated by

applying the linear model operator M and its transpose

MT to both sides of (5) to get

Pf jb 2Pf ja’MXb(HXb)T[HXb(HXb)T 1R]21

3 HXb(MXb)T , (6)

where Pfja and Pfjb are used on the left-hand side of (6)

to denote the reduction of forecast variance, given by

M(Pb 2 Pa)MT. The ensemble forecast members, with

mean Mxb and perturbations MXb, can be replaced by

a user-specified forecast metric with perturbations J and

mean Mxj. The forecast metric can be a function of one

or more variables, andmay have a lower dimension than

the original state vector (e.g., accumulated rainfall or

surface pressure). By lettingY denoteHXb and replacing

MXb with J, the projection of background perturbations

to observation space in (6) can be rewritten as

P
f jb
J 2P

f ja
J ’ JYT[YYT 1R]21YJT , (7)

where P
f ja
J andP

f jb
J denote the covariance matrix for the

forecast metric with and without the assimilation of the

targeted observation, respectively. It follows from (7)

that the reduction in forecast error variance is deter-

mined by the square of covariance between the back-

ground transformed to observation space and future

state variables in model space, divided by the sum of

observation and background error variances. Because

(7) is positive definite, all assimilated observations will

in principle reduce the error variance and improve the

forecast accuracy, which is also constrained by the

Kalman filter assumptions.

Two forecast metrics are used in our study: the area-

averaged 72-h accumulated precipitation and the area-

averaged sea level pressure (SLP) in south Taiwan. The

Y is chosen as a vector of observations located at each

grid point of the background state. The observation error

variances used in this study are consistent with those

provided by theWRFvariational data assimilation system.

P
f jb
J 2 P

f ja
J can be approximated by (7) for each

candidate observation location. Here we define the im-

pact factor as the trace of (P
f jb
J 2 P

f ja
J ) normalized by

the maximum and minimum values at the respective

time as in Stuart et al. (2007). Locations with the maxi-

mum impact factor values are expected to produce the

largest reduction in uncertainty for the forecast metric

and will therefore be selected for additional targeted

observations. While ensemble sensitivity indicates how a

forecastmetric is expected to change due tomodifications

in the initial conditions, the impact factor estimates the

benefit of additional observations for a targeting region.

The two terms share a similar meaning, and are used in-

terchangeably throughout this paper to discuss how ob-

servations impact the chosen forecast metrics.

It is common practice to localize the ensemble-estimated

covariance to account for sampling error (Hamill et al.

2001), but we chose to omit the localization step in our

study despite the known limitations in using unmodified

ensemble error statistics. Localizing the matrix JYT

would require a time-dependent localization scheme, and

pose some difficulty in ensuring that the localization

radius of influence is consistent with what is used in our

implementation of the EnKF. By not applying the lo-

calization, we can ensure that the EnKF and ensemble-

sensitivity analysis schemes are using consistent ensemble

statistics.

One advantage of ensemble sensitivity analysis is that

it does not require actual observations to calculate the

impact factor, only the observation operator and obser-

vation error covariance. All data come from the en-

semble mean background state, and the forecast metric

considers variables diagnosed from the ensemble fore-

cast. Observation targeting for real-time applications

requires enough lead time to prepare the observing

platforms and for mission planning based on the targeted

area. Aircraft-based observations such as dropsondes for

example require the identification of targeting areas 24–

48 h ahead of the proposed targeting time for forecast

metrics such as track, intensity, and precipitation.

To evaluate the performance of ensemble sensitivity

analysis, the predicted change in the ensemble mean of

the forecast metric, given the known observation value,

should be calculated. This can be achieved using the

method proposed by Ancell and Hakim (2007) in which

the forecast metric is estimated by modifying the co-

variance in the Kalman gain matrix. In the Kalman filter

equations, the analysis increment for a single observa-

tion y is given by

dx5K(y2Hxo) , (8)

where xo is the background variable at the same location

of y, and K is the Kalman gain for the considered ob-

servation. K can be expressed as

K5Xb(HXb)T[HXb(HXb)T 1R]21 , (9)

where R is the observation error covariance matrix. For

a set of initial perturbations given by Xb, a linear pre-

diction for the future perturbations is given by MXb.

From (8) and (9), the expected change in the forecast is

given by
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d(Mxb)5MXb(HXb)T[HXb(HXb)T 1R]21(y2Hxo) .

(10)

As in (7), we can replaceMxb,MXb, andHXbwithMxj, J,

and Y in (10) to obtain

d(Mxj)5 JYT[YYT 1R]21(y2Hxo) . (11)

Now the change in the forecast metric is expressed as

a function of the covariance between the forecast

metric itself and the predicted observation, the sum of

the model and observation space variances, and the

observation innovation. Note that (11) is similar to the

standard Kalman filter update equation, except that

the covariance term for estimating the relationship be-

tween the observed variable and updated variable is

replaced by the covariance between a forecast metric

and the observed variable. Because both Ancell and

Hakim (2007) and Liu and Kalnay (2008) showed that

ensemble- and adjoint-based approaches make similar

assumptions in how forecast errors grow with time, we

believe that conclusions drawn here for ensemble-based

targeting strategies may also be relevant to adjoint-

based methods.

3. Model and targeting strategy for OSSEs

a. Model configuration

This study uses version 3.1.0 of the WRF (Skamarock

et al. 2007), with a horizontal grid spacing of 13.5 km

(D1) for the outer domain and 4.5 km (D2) for the two-

way nested inner domain [refer to Fig. 1 of Xie and

Zhang (2012)]. Both domains use 34 vertical levels with

coordinates that follow hydrostatic pressure. Each do-

main has 603 3 540 horizontal grid points, with D1

covering an area ranging from 78S–448N and 988–1778E
and D2 covering 138–358N and 1138–1358E (results are

shown from the nesting domain only). Initial conditions

are provided from an experimental real-time global

ensemble data assimilation system that is based on the

GFS model. This system assimilates the same observa-

tions as the NCEP operational global analysis, but fea-

tures an ensemble data assimilation technique that uses

60 members to approximate flow-dependent background

error statistics and a probabilistic analysis (Whitaker

et al. 2008).

b. Simulated observations

Z10 showed that the 60-member WRF ensemble

forecast (EN60_GOOD) initialized from the above-

mentioned GFS ensemble analysis performed well in

predicting the severe flooding in Taiwan associated with

Typhoon Morakot. A deterministic forecast from the

ensemble mean predicted a maximum 72-h rainfall

forecast of 2762 mm, which is close to observations

(Fig. 1b). We use the forecast from the ensemble mean

of EN60_GOOD as the true state of the atmosphere for

this event (hereafter referred to as the truth simulation).

Synthetic dropsonde observations of zonal and merid-

ional winds, temperature, dewpoint temperature, and

geopotential height are extracted from the truth sim-

ulation at potential targeted locations. These values are

interpolated to 12 standard pressure levels between

1000 and 50 hPa. Unless otherwise specified, no obser-

vation error was added for any of the synthetic obser-

vations derived from the truth run. Sensitivity to random

observation errors will be presented in section 5c. A

total of 90 equally spaced dropsondes (every 270 km)

are derived from the nested domain of the truth

simulation.

c. Targeting strategy

A set of numerical experiments aimed at targeting

observations to improve ensemble forecasts is carried

out in this study using ensemble sensitivity analysis.

Among the ensemble members that have poor precip-

itation forecasts, most have large position errors that

track Morakot far north of Taiwan. A member with

considerable track error (member 54; Fig. 2a) and

rainfall error (Fig. 1c) is selected from EN60_GOOD

and used as the initial mean for a new ensemble. Per-

turbations from members 10 to 60 of EN60_GOOD are

used to produce the new ensemble (EN50_POOR) at

0000 UTC 5 August, but with member 54 omitted. A

96-h ensemble forecast is generated from EN50_POOR

to test the ensemble-sensitivity targeting technique with

an EnKF data assimilation system. The deterministic

forecast from the ensemble mean of EN50_POOR at

0000 UTC 5 August will be referenced frequently

throughout the paper and denoted by NoDA. Figure 2a

shows Morakot’s track spread produced from the

EN50_POOR forecast. Similar to the forecast from the

ensemble mean, most members fail to make landfall in

Taiwan, causing them to produce rainfall forecasts that

are far from the truth. The ensemble forecast exhibits

large track spread by the end of the simulation, due to

significant differences in the initial conditions. The

large analysis uncertainty motivates an exploration

into targeted observations to reduce the track spread

and to improve the rainfall and intensity forecast of

Morakot.

The accumulated rainfall and SLP averaged over

southern Taiwan (indicated by the rectangular box in

Fig. 1b) are chosen as the forecast metrics or response

functions to be examined. A set of analyses are
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generated by assimilating each dropsonde individually

at 0000 UTC 6 August (24 h after the original start of

the EN50_POOR ensemble) with the WRF-EnKF. A

72-h deterministic forecast is then initialized with the

EnKF mean analysis by assimilating each of the 90

dropsondes individually, and comparing the analyseswith

the truth simulation to calculate the simulated impacts of

each dropsonde in terms of rainfall and SLP.

4. Predicted observation impacts based on
ensemble-sensitivity analysis

The impact factor as defined by (7) estimates the de-

gree to which additional observations will positively

impact the forecast metric at hypothetical observation

locations. Figure 3 shows the normalized impact factor

for individual dropsondes taken at either 0000 UTC 5

or 0000 UTC 6 August with respect to the forecast of

area-averaged 72-h accumulated rainfall valid at 0000 UTC

9 August and the area-averaged SLP over Taiwan at

0000 UTC 8 August. Because the impact factor is meant

to show the relative importance of the hypothetical ob-

servations at different locations, we normalize the origi-

nal value estimated from (7) at each dropsonde location

by the maximum value of the field, which forces the

values shown in Fig. 3 to range from 0 to 1. As antici-

pated, impact factors calculated from the two separate

forecast metrics produce qualitatively similar patterns;

a lower area-averaged SLP value over southern Tai-

wan is usually associated with a track that directly

crosses over the island, thus increasing the possibility

of large precipitation associated with the typhoon in-

teraction with the Taiwan topography (e.g., Xie and

Zhang 2012).

At 0600UTC 5August, 6 h after the start of the EN50

ensemble, dropsonde observations with the largest

FIG. 1. The 72-h (from 6 to 9 Aug) accumulated precipitation (mm) for the (a) observation, (b) truth, and (c) control experiment. The

rectangular box in (b) is chosen as the verification region for the forecast metrics (response functions) to be examined.
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observation impact on the rainfall metric are located

either close to the center of the initial typhoon, or in its

northeast quadrant (Fig. 3a). The distribution of the

largest impact factor on the SLP metric is qualitatively

similar to that of the 72-h accumulated rainfall but more

concentrated in a narrow banded structure that extends

from the storm center to the northeast (Fig. 3c). Nev-

ertheless, the ensemble sensitivity analysis suggests that

individual dropsondes may have considerable impacts

on the SLP and rainfall forecasts over Taiwan, especially

for the SLP forecasts. Twelve hours into the simulation,

the magnitude of impact factors increases in the western

and northwestern regions of the typhoon inner core (not

shown), forming a more isolated area of relatively large

forecast sensitivity. By this time, the ensemble spread in

storm positions has increased, and members have de-

veloped stronger, more organized typhoons (Z10); since

the position uncertainty usually dominates the error

covariance (Poterjoy and Zhang 2011), the increased

track uncertainty in the ensemble may have contributed

to the larger concentration of impact factors at this time.

At the targeting time of 0000UTC 6August (Figs. 3b,d),

anomalously high impact factors are concentrated in an

even smaller area and themaximumhas shifted from the

northwest to southwest quadrant of the typhoon.A large

difference in impact factor should exist between the

location to be targeted and the neighboring regions for

observation targeting to be effective. Here we selected

0000 UTC 6 August as the target time, which yields

a clear local maximumof impact factors in the southwest

quadrant of Morakot. This time also corresponds to the

24-h forecast lead time for the initial ensemble (EN50),

which is a more realistic targeting time in practice be-

cause sufficient time is needed to allow for flight plan-

ning and the target operation. The following section will

show results from assimilation and forecast experiments

to examine the effectiveness of the targeting strategy.

Observations used to estimate the impact factors in

Figs. 3b,d are assimilated to calculate the actual effect

of the targeted observations on the forecasts.

5. Simulated impacts from forecasts with EnKF
assimilation of each dropsonde

a. Simulated impacts through single deterministic
forecasts

Single deterministic forecasts are integrated for 72 h

from the 90 different EnKF analyses (section 3). The

analyses are produced at 0000 UTC 6 August by as-

similating each of the 90 synthetic dropsonde observa-

tions that were created from the truth simulation. For

consistency, covariance localization is not used in the

EnKF data assimilation because it is not used in the

calculation of the predicted observation impact. Figure

3b shows several of the dropsonde locations near the

typhoon. Dropsondes located in the inner core (points

S0 and S5) and outside the typhoon (points S1, S2, S3,

S4, and S6) are selected to show the results of data as-

similation. Although S5 is located closer to the typhoon

FIG. 2. (a) The 50-member ensemble forecast tracks ofMorakot. The best track, truth, and control track are shown

in black, blue, and red, respectively. (b) The difference between the truth and control experiment in sea level pressure

at 0000UTC 6Aug. Four quadrants of the domain are indicated by northwest (NW), southwest (SW), southeast (SE),

and northeast (NE), respectively.
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center, it has a smaller impact factor value than S0,

which has the largest value for the entire domain (i.e.,

a normalized value of 1). Both S1 and S4 are located in

a region of southwesterly flow, and are chosen to assess

the potential impact of the southwest monsoon on the

typhoon track, intensity, and rainfall forecast. Points S2,

S3, and S6 are three locations at different sides of the

storm that have relatively small impact factors. The maxi-

mum (minimum) SLP increments for soundings S0, S1, S2,

S3, S4, S5, and S6 are 2.5 (26.8), 1.7 (28.1), 1.8 (29.2), 1.7

(27.3), 2.2 (26.7), 3.7 (28.3), and 2.2 (26.7) hPa (Fig. 4),

respectively.

With the exception of S6 (Fig. 4), the spatial pattern of

the SLP increments from each of the EnKF analyses is

qualitatively similar to the difference between the truth

and NoDA (Fig. 2b), implying that each of the drop-

sondes extracted from the truth simulation are assimi-

lated properly by theEnKF to improve the initial analysis.

For example, the north–south-oriented dipole pattern of

the SLP increments acts to move the storm from the

NoDA location to the true location for all dropsondes

(Fig. 2b). Nevertheless, significant differences also exist

between these EnKF updates. Dropsondes closer to the

typhoon inner-core area generally produce larger up-

dates to the pressure field surrounding the minimum

SLP of the background field. For example, assimilating

observations at S0 and S5, located near the inner-core

area of the typhoon, produces slightly stronger dipole

patterns in the analysis increments than dropsondes at

S4 and S6 (Figs. 4a,f vs 4e,g). The method used in this

study is mathematically identical to the ETKF based

method of Majumdar et al. (2002).

For all dropsondes, including those located outside the

inner core, information failed to propagate to synoptic-

scale features of the environment, such as the subtropical

high and southwest monsoon. All updates made by the

FIG. 3. The normalized impact factor of (a),(b) 72-h average rainfall and (c),(d) average sea level pressure at

0000 UTC 8Aug in the verification region to initial condition at two different times: (a),(c) 0600 UTC 5Aug and (b),

(d) 0000UTC 6Aug. Contour lines show the sea level pressure (hPa) of truth for two times correspondingly. The S0–

S6 markers in (b) show the sample dropsondes locations.

1444 MONTHLY WEATHER REV IEW VOLUME 141



EnKF assimilation of dropsonde observations must

come from the ensemble-estimated covariance between

the model-predicted value of the observed quantity and

the remaining state vector. Figure 5 shows the correla-

tions between 850-hPa height at six dropsonde locations

(S1–S6) and the sea level pressure over the nested do-

main. The spatial distribution of correlations is similar

for all four dropsondes, except that the maximum cor-

relation value for a dropsonde outside of the inner core

is much smaller than those estimated for dropsondes

near the inner core. In general, dropsonde variables are

strongly correlated with sea level pressure over broad

areas, especially in the vicinity of the observations. The

reason why large pressure increments are not seen

FIG. 4. The increment (posterior minus prior) in sea level pressure (hPa) after assimilating a single dropsonde (indicated by circled cross

and S symbol) for seven dropsondes and two dropsondes with random error.
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outside the inner core in Fig. 4 is likely due to the lack of

background correlations in the environment.

To verify the impact of assimilating individual drop-

sondes on the model forecast, the 72-h track (Fig. 6) and

rainfall (Fig. 7) forecasts are compared. The assimilation

of individual dropsondes leads to track forecasts that are

closer to the truth simulation than NoDA. The mean

track errors are averaged every 6 h from 0000 UTC 6

August to 0000 UTC 9 August for each of the seven

deterministic forecasts, yielding values of 79 km (S0),

113 km (S1), 114 km (S2), 85 km (S3), 119 km (S4),

124 km (S5), and 139 km (S6). The proximity of the

track forecasts to central Taiwan at this time leads to

maximum 72-h accumulated rainfall amounts in excess

of 2000 mm for the seven selected cases (2480 mm for

S0, 2368 mm for S1, 2407 mm for S2, 246 mm for S3,

2021 mm for S4, 2197 mm for S5, and 1588 mm for S6),

which are also closer to the truth simulation. The

experiment for S0, a dropsonde located in the maximum

impact factor region, has the largest improvement in

forecast track and rainfall. However, the dropsonde with

the second highest impact factor (S5) does not improve

the forecast any more than the S1 and S3 observations

during these experiments. Although S1 and S3 are rela-

tively far from the maximum impact factor area in the

inner core, they make reasonable improvements in

the rainfall and track forecasts. Therefore, the typhoon

case presents a scenario in which the sensitivity algo-

rithm fails to provide an accurate measure of future

error reduction.

Ensemble sensitivity analysis is based on a linear

theory that connects the response of a forecast metric to

changes in initial conditions, so it is necessary to verify

the predicted observation impacts with the actual change

in forecast errors found after integrating the full non-

linear model with assimilation of observations at

FIG. 5. The correlations between sea level pressure (from 984 to 1012 hPa every 2 hPa) in the nested domain and the

850-hPa heights at the observation locations for four of the dropsondes.
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different locations. Several indicators are used to

quantify differences between the predicted and actual

changes in the forecast after assimilating adaptive ob-

servations. The first is to examine the predicted and ac-

tual reduction in root-mean-square error (RMSE) of the

forecast metric (or the response function that is used to

calculate the impact factor). As in Bei et al. (2012), the

square root of the nonnormalized impact factor is defined

as the predicted (or expected) RMSE reduction in the

forecast metric using (7). To perform the comparison, the

actual reduction in RMSE for the 72-h accumulated

rainfall and SLP averaged in the verification region is

calculated from forecasts initialized from themeanEnKF

analysis of eachOSSE. The scatterplots in Figs. 8a,c show

that assimilating synthetic dropsonde observations lo-

cated in regions with higher predicted observation im-

pacts will, on average, lead to a better rainfall forecast

than in regions with smaller predicted impacts. However,

the correlation between the expected and the actualRMS

error reduction is rather weak for both rainfall (0.38) and

SLP (0.42). This suggests that there are strong limitations

in the effectiveness of using ensemble-based impact factors

for observation targeting to improve tropical cyclone

forecasting that are deeply rooted in the assumptions

used in deriving (7). In particular, the background error

valid at the targeting time for this case may be too large

for the linear assumption to be valid.

Another way of verifying the validity of the linear as-

sumption is to compare the expected with the actual

changes in the forecast metric. The expected change is

computed using (11) for each of the selected grid points

over all single-dropsonde assimilation cases. The actual

results are given by the average changes compared with

NoDA in the 72-h accumulated rainfall and SLP at the

landfall time in the verification region. The scatterplots

in Figs. 8b,d again show that the linear relationship be-

tween the expected and actual change are not as good as

expected in the linear theory; the regression coefficients

are 0.59 for average rainfall and 0.34 for average SLP.

This result is consistent with Bei et al. (2012), though the

correlation coefficients are even smaller in the current

study. The discrepancy between predicted and actual

impacts may be due to the assumption in ensemble

sensitivity theory that forecast errors grow linearly over

the forecast period during which targeting is applied.

This assumptionmay not be valid in typhoons because of

large initial condition errors caused by the location of

the vortex in numerical weathermodels, as well as errors

originating from scales equal to or smaller than the

mesoscale that may have grown nonlinearly during the

72-h forecast. The ensemble sensitivity method can also

be limited by error/bias in the forecast model, ensemble,

and/or the dropsonde observations the last of which will

be examined in section 5c.

b. Simulated impacts through ensemble forecasts
initialized with EnKF members

For a more direct comparison, the theoretical results

should be verified using the actual reduction in forecast

error variance from each dropsonde experiment. The

large computational cost of running ensemble forecasts

for all the experiments limits this type of verification to

seven individual dropsondes (S0 to S6, with locations

marked in Fig. 3b). Here the analysis ensembles pro-

duced from the assimilation of single-dropsonde ex-

periments are integrated forward to estimate the actual

forecast variance at the verification time. One of the

dropsondes is located in the maximum impact location,

and the others are selected from locations that are dis-

placed in four different directions with respect to the

center position of the typhoon. Figure 9 shows the en-

semble spreads and mean forecast errors of track, SLP,

and rainfall for each dropsonde experiment verified

against the truth. In general, dropsondes located in the

larger impact regions havemore accurate track forecasts

and smaller ensemble spread. Nevertheless, the forecast

error variance of average rainfall over Taiwan for each

of the single-dropsonde experiments is larger than the

case without data assimilation, which is inconsistent with

the track forecast and sensitivity analysis. The ensemble

reveals complex relationships between storm track and

the amount of total rainfall. For example, a heavy rainfall

forecast for Morakot depends on both the accuracy of

the simulated track and physical processes that lead to

the topographically forced rainfall over Taiwan (Xie and

Zhang 2012). This causes the ensemble variance in 72-h

accumulated rainfall to be larger for an ensemble of

reasonably accurate track forecasts, as opposed to an

ensemble in which most members fail to track over

Taiwan. This case provides a scenario in which the

ensemble has a higher-than-average probability of

FIG. 6. The 72-h tracks for after assimilating seven single drop-

sondes. The numbers in the brackets denote the mean track error for

each experiment averaged through the 72-h forecast.
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FIG. 7. The 72-h accumulated precipitation for the forecast assimilating (a)–(g) seven single dropsondes and

(h),(i) two dropsondes with random errors.
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underestimating the true forecast error near the time

of landfall, which may decrease the effectiveness of the

targeting system.

c. Impact of random error in the dropsonde
observations

The single-dropsonde assimilation experiments show

that neighboring dropsondes with different impact fac-

tors have similar effects on the forecast metric. One is-

sue is the representativeness of the observations, which

is beyond the scope of this study. Another issue that

should not be ignored is errors in the observations. To

explore the impact of observation errors on forecasts,

random errors (RE) proportional to the observation

error assigned by the WRF variational data assimilation

system are added to dropsonde observations S4 and S5,

and the experiments are redone using the two new

dropsondes: S4-RE and S5-RE. The resulting SLP

differences with and without the random observation

errors are plotted at the initial (Figs. 10a,b) and 72-h

forecast lead times (Figs. 10c,d). Figure 11 shows the

corresponding difference in the track predictions of

Morakot initialized from the EnKF analyses with and

without the random observation errors. These calcula-

tions examine the sensitivity of the targeting to obser-

vation errors and further demonstrate how nonlinear

forecast error growth violates the linear assumption

made in deriving the sensitivity analysis equations.

In the case of S4, which is a low-impact factor obser-

vation that is located south of the storm center in a region

of southwesterly monsoon flow (Fig. 3e), the addition of

random noise to the observations produces small but

noticeable differences. For example, SLP differences of

less than 1 mb are observed over the northeastern and

western sides of the storm center in the analysis (Fig. 10a).

These small initial differences grow much larger over

FIG. 8. Scatterplots and linear regression between expected and actual reduction in RMSE of (a) average rainfall and

(c) average SLP, and expected changes vs actual changes in (b) average rainfall and (d) average SLP.

MAY 2013 X I E ET AL . 1449



the 72-h forecast (Fig. 10c), but cause only marginal

changes to the track (Fig. 11), intensity (Fig. 10c), and

rainfall (Figs. 3e,h) forecasts.

The impact of random error in dropsonde observation

S5, on the other hand, is rather dramatic, despite an

equally small initial difference in SLP (Fig. 10b). The

track forecast of Morakot differs greatly between S5

(Fig. 10d) and S5-RE (Fig. 11). Consequently, the dif-

ference in rainfall prediction over Taiwan is equally

dramatic; the maximum 72-h accumulated rainfall (Figs.

7f,i) is reduced from 2197 (S5) to 1459 mm (S5-RE).

The sensitivity experiments with and without random

observation errors in the dropsondes further suggest the

error growth is strongly nonlinear and the predictability

of tropical cyclones can be limited, which is consistent

with the ensemble sensitivity experiments shown in

subsection 5b, as well as past tropical cyclone predict-

ability studies (Zhang and Sippel 2008, 2009; Sippel and

Zhang 2010). These limitations reduce the effectiveness

of using ensemble sensitivity analysis, particularly for

observation targeting.

6. Conclusions

This study examines the effectiveness of using an

ensemble-based sensitivity analysis method with the

WRF-EnKF for observing system design and observa-

tion targeting, in order to improve tropical cyclone

forecasts. Typhoon Morakot (2009), a western Pacific

storm that brought record-breaking rainfall to Taiwan,

is selected for this study. The ensemble sensitivity

analysis using a 50-member convection-permitting en-

semble predicts that observations located in the south-

west quadrant of the typhoon (48 h prior to making

landfall) will have the highest impact on reducing the

forecast uncertainty of track, intensity, and rainfall for

Morakot.

A series of OSSEs are performed by assimilating

targeted dropsonde observations located in the envi-

ronment and inner core of Morakot. After assimilating

the synthetic sounding observations with the WRF-

EnKF, noticeable improvements can be seen in the

initial conditions of sea level pressure (and other model

state variables), with the maximum SLP increment in

the inner core of the typhoon being greater than 5 hPa

for some dropsonde locations. The 72-h deterministic

forecasts initialized from the EnKF analyses show that

the selected dropsondes are capable of improving the

track and precipitation forecasts, but with varying im-

pacts. Generally, dropsondes near the typhoon center

have a greater impact than dropsondes in the environ-

ment. However, regressions suggest that the relationship

between the expected and actual changes in forecast

FIG. 9. Error and ensemble spread of (a) averaged 6-h track,

(b) SLP at 0000 UTC 8 Aug, and (c) the 72-h accumulated rainfall

for each ensemble forecast with respect to each single dropsonde

experiment. The impact factor with respect to SLP and 72-h rainfall

for each single dropsonde experiment is also shown in (b) and (c).
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metrics is nonlinear, which is not consistent with the

linear theory of ensemble sensitivity.

Several sets of ensemble forecasts initialized from the

EnKF posterior members are performed to examine the

impacts of individual dropsondes on the actual and

predicted uncertainty reductions in the forecast metrics.

These additional ensemble OSSEs show that in cases

with a more accurate mean track forecast, the ensemble

spread of typhoon tracks is smaller, which is expected

with a larger observation impact factors. However, the

ensemble spread of precipitation is larger, which con-

tradicts the predicted impact of the ensemble sensitivity

analysis. One reason for this result is that a larger number

of members captures the landfall of Morakot after the

targeted observations are assimilated, thus increasing

the forecast variance. The dynamics governing the pre-

cipitation associated withMorakot were also shown to be

highly nonlinear and sensitive to topography. Because

ensemble sensitivity cannot resolve errors that grow non-

linearly, the actual simulated error variance from theEnKF

ensemble forecasts differs from the predicted forecast

error variance.

In summary, the current study demonstrates serious

limitations in using the current-generation ensemble-

based linear-sensitivity targeting strategies for tropical

cyclones. The effectiveness of these linear methods can

be adversely impacted by the strong nonlinearity in the

governing dynamics of tropical cyclones, the accuracy of

the sample ensemble background covariance, and the

projection of individual dropsonde observations to the

complex targeted sensitivity vectors from the ensemble.

Though beyond the scope of the current study, we spec-

ulate that other types of observation errors including

measurement bias, representativeness error, and/or error

in the observation operators (which are not examined in

the current study) may lead to further degradation of the

FIG. 10. The differences (shading) in SLP between the dropsonde experiments with (brown lines) and without

(orange lines) random error for S4, S4-RE and S5, S5-RE in (a),(b) initial time and (c),(d) 72-h forecast time.
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overall effectiveness of this method. Given the common

assumptions made between the ensemble and adjoint

sensitivity analysis, as demonstrated inAncell andHakim

(2007) and Liu and Kalnay (2008), future research will

explorewhether the limitations examined in this study for

ensemble-based sensitivity analysis may be applicable to

adjoint-based linear sensitivity analysis methods that are

widely used for observation targeting.
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