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For ensemble filters, accounting for unrepresented errors by inflating the ensemble
perturbations can help improve filter performance. However, tuning the inflation factor can
be costly, thus demanding adaptive covariance inflation (ACI) algorithms that give an online
estimate of a temporally varying inflation factor. Additionally, a spatially varying inflation
factor should be used to account for an irregular observation network. Anderson’s adaptive
inflation method offers a spatially and temporally varying inflation factor estimated from
innovation statistics using a hierarchical Bayesian approach. In this study, we propose
an alternative adaptive covariance relaxation (ACR) method that estimates a relaxation
parameter online. Instead of treating inflation parameters as spatially varying random
variables as in Anderson’s method, the relaxation-to-prior-spread method provides an
ensemble spread reduction term that serves as a spatial mask to account for an irregular
observation network. We demonstrate with a set of experiments using the 40-variable
Lorenz model that the ACR method is able to improve filter performance with the presence
of sampling/model errors over a range of severity. Its reliability and ease of implementation
suggest potential for future applications with atmospheric models.
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1. Introduction

The ensemble Kalman filter (EnKF) combines information from
a prior state estimate and its associated uncertainty (from
an ensemble of model realizations) with observations and
observation uncertainties to get an improved posterior state
estimate and an updated uncertainty (Evensen, 1994). The
accuracy of prior error covariance is one of the necessary criteria
for optimal filter performance. In the presence of sampling
and model error, the ensemble may underestimate the true
uncertainty in the prior causing the filter to place too much
weight on the prior mean state. Over time, the filter will begin
to ignore the observed information, resulting in filter divergence.
There are a number of methods for handling unrepresented
error sources, among which covariance inflation methods are
widely used. Empirical covariance inflation methods include
multiplicative inflation (Anderson and Anderson, 1999), which
increases the ensemble perturbations by a specified factor, and
additive inflation (Mitchell and Houtekamer, 2000), which adds
a random perturbation drawn from a specified error distribution
to each member. Whitaker and Hamill (2012) hypothesize that
multiplicative inflation methods can account for observation
network related sampling error, while additive inflation is more
suitable for treating model error.

There are also methods specifically designed to handle sampling
error due to limited ensemble size. For example, covariance

localization (Hamill et al., 2001) treats sampling errors by tapering
the Kalman gain far from the observation location, which removes
some of the spurious correlations. Houtekamer and Mitchell
(1998) proposed a double-ensemble EnKF in which ensemble-
estimated covariance is used to update the other ensemble,
therefore avoids inbreeding. More recently, a new formulation
of the EnKF is proposed to account for the sampling bias due
to the use of a limited-size ensemble (Bocquet, 2011; Bocquet
and Sakov, 2012). For model error, treatments related to the
forecast model can help maintain ensemble spread and ensure
filter performance; such treatments include the use of a multi-
physics or multi-model ensemble (e.g. Meng and Zhang, 2007),
stochastic kinetic energy backscatter (Shutts, 2005; Berner et al.,
2009), and stochastically perturbed physics tendencies (Buizza
et al., 1999).

Among the aforementioned methods, covariance inflation is
favoured due to its simplicity. However, given the large dimension
of the dynamical systems of interest in atmospheric science,
the process of tuning the inflation factor to suit a particular
application is often costly. A variety of adaptive covariance
inflation (ACI) methods are proposed to estimate inflation
factors from innovation (observation-minus-forecast) statistics.
The innovation statistics was first used to estimate parameters
in forecast and observation error covariance matrices using a
maximum-likelihood approach (Dee, 1995; Dee and da Silva,
1999; Dee et al., 1999). For example, Wang and Bishop (2003)
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formulated an online inflation estimation algorithm within
the ensemble transform Kalman filter (ETKF) framework. Li
et al. (2009) further extended the algorithm to simultaneously
estimate covariance inflation and the observation error, using a
set of observation-minus-forecast diagnostics (Desroziers et al.,
2005). They applied temporal smoothing to reduce the sampling
bias due to a small innovation sample at each time step.
Anderson (2007) provides an alternative algorithm by treating
each innovation as a random variable and updates the inflation
factor using a hierarchical Bayesian approach. These methods
assume observations are uncorrelated. Zheng (2009) and Liang
et al. (2012) relaxed this assumption and estimated an inflation
factor from the innovation vector at each time step using a
maximum-likelihood approach. They found that their algorithm
is only efficient when estimating a scalar inflation factor constant
in space.

Another important issue for any effective adaptive inflation
method is how the method handles a spatially irregular
observation network. For areas where no observations are
available, applying an inflation factor constant in space may
cause the variance of these unobserved variables to keep growing,
sometimes even exceeding climatological variance. To alleviate
this problem, Anderson (2009) extends the Bayesian approach to
estimate a spatially and temporally varying inflation parameter,
and assume that the spatial correlation factor of the inflation
parameters is the same as the state variables. Miyoshi (2011)
also introduces an algorithm that estimates inflation parameters
that are spatially varying. He advances Li et al. ’s method by
including variance of the estimated inflation parameter from the
Central Limit Theorem, making it a Gaussian approximation of
Anderson’s method.

In practice, the inflation factor is usually not physically
constrained, which will often give rise to imbalance issues for
complicated dynamic models. Zhang et al. (2004) developed a
method that relaxes the posterior ensemble perturbations to the
prior perturbations that effectively inflates the posterior ensemble
yet preserves physical balances of the ensemble perturbations.
Following this concept, Whitaker and Hamill (2012) proposed a
relaxation-to-prior-spread (RTPS) method that is equivalent to
applying a spatially varying multiplicative inflation. As a property
of ensemble filters, the posterior ensemble spread should be
smaller than prior spread after assimilating observations. Spatially,
the reduction in ensemble spread should only be found where
observations are available. Therefore, the reduction of spread
can serve naturally as a spatial mask for inflation in case of an
irregular observation network. The scalar relaxation parameter
can effectively be an inflation factor given that it is allowed to be
larger than 1.

In this study, we introduce an adaptive covariance relaxation
(ACR) method that estimates the relaxation parameter of RTPS
online according to innovation statistics. We will compare this
new method to the non-adaptive RTPS as well as Anderson’s ACI
method. The advantage of RTPS is its simplicity and its ability to
provide a spatially varying inflation as in Anderson’s method. In
the next section, we will provide the mathematical formulation
of the proposed ACR method, along with Anderson’s method
described with the same notation for comparison. Experimental
designs are presented in section 3 and the results are given in
section 4. Section 5 gives the concluding remarks.

2. Methodology

2.1. Ensemble Kalman filter

Generally speaking, the inflation methods described here should
be applicable to most if not all variations of ensemble Kalman
filters. In this study, we will use an ensemble square-root filter
(EnSRF) introduced by Whitaker and Hamill (2002) for testing.
The EnSRF algorithm is described as follows. Let x be an n-by-1
column vector that holds all state variables. We introduce an

ensemble of N members, or state vectors. The ensemble mean
and ith ensemble perturbation are denoted by x̄ and x′

i = xi − x̄,
respectively. The background error covariance matrix is calculated
from this ensemble using P = 1

N−1

∑N
i=1 x′

ix
′T
i . Let yo be a p-by-

1 column vector that contains all observations at the current
time. The observations are drawn from a normal distribution
N (Hxt, R), where xt is the truth state vector, H is a p-by-n linear
operator that maps the state vector to observation space and R
is the observation error covariance matrix that is assumed to
be diagonal. We denote the jth row of Hj by Hj. The EnSRF
assimilates observations serially to avoid large matrix inversion.
The following equations are applied for j = 1, 2, . . . , p to update
x̄ and x′

i from the prior (x̄b and (xb
i )′) to the posterior (x̄a and

(xa
i )′).

x̄new = x̄ + ρj ◦ Kj(yo
j − Hjx̄), (1)

(xnew
i )′ = x′

i + εjρj ◦ Kj(0 − Hjx
′
i), for i = 1, 2, . . . , N, (2)

where Kj = cov(Hjx, x)/{(σ o
y,j)

2 + (σ b
y,j)

2} is the Kalman gain,
ρj is a localization function, the circle denote an element-wise

production and εj =
(

1 +
√

(σ o
y,j)

2

(σ o
y,j)

2+(σ b
y,j)

2

)−1

is a square-root

modification term to account for the use of unperturbed
observations (see Eq. 13 of Whitaker and Hamill (2002), denoted
as α in their article). Here (σ b

y,j)
2 and (σ o

y,j)
2 represent the

background and observation error variances in observation space;
they are the jth diagonal terms of HPHT and R, respectively.
The model integrates the posterior estimates forward in time,
providing the prior estimates for the next assimilation cycle.

2.2. Calculation of inflation factor according to innovation
statistics

The first component of an adaptive inflation algorithm is the
calculation of the inflation factor according to the spread
deficiency indicated by innovation statistics. The innovation
vector associated with the p observations is do−b = yo − Hx̄b. Dee
(1995) derived the following expression for the prior innovation
statistics:

E{do−b(do−b)T} = HPbHT + R. (3)

The expected value for do−b(do−b)T needs multiple realizations
to estimate, which typically comes from observations taken at
different times. For adaptive inflation, we need an online estimate
of the innovation statistics for each time, so a reduced statistic
using only the p observations at one time is used. Given that p is
large, the following relationship will hold:

tr{do−b(do−b)T} = (do−b)Tdo−b = tr(HPbHT) + tr(R). (4)

The deficiency in prior error variance can be expressed in terms
of an inflation factor,

λb =
√

{(do−b)Tdo−b − tr(R)}/tr(HPbHT). (5)

Note that, if (do−b)Tdo−b<tr(R), the square root cannot be
evaluated. In this case, λb is set to 1.

Similarly, covariance inflation can be applied to the posterior
ensemble according to the posterior innovation statistics
(Desroziers et al., 2005):

E{da−b(do−a)T} = HPaHT, (6)

where do−a = yo − Hx̄a and da−b = Hx̄a − Hx̄b. And the
inflation factor can be calculated as

λ =
√

(da−b)Tdo−a/tr(HPaHT). (7)

Note that the inflation factor in both Eqs (5) and (7) is estimated
in observation space, thus additional steps are needed for applying
this inflation in state space.
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2.3. Anderson’s adaptive covariance inflation (ACI) method

Anderson (2009) proposes a Bayesian approach for estimating
a temporally and spatially varying inflation parameter from the
innovation statistics. More specifically, the inflation parameters
λk are treated as random variables with normal distributions,
Pr(λk) = N (λ̄k, σ 2

λ,k). This method uses Bayes’ theorem to update

the distribution of λk by processing each innovation do−b
j serially.

For j = 1, 2, . . . , p, the following procedure is performed for each
state vector element k:

Pr(λk|do−b
j ) ∝ Pr(do−b

j |λk) Pr(λk), (8)

where do−b
j is the jth innovation yo

j − Hjx̄b. Each dj is assumed
to be drawn from a zero-mean normal distribution with variance
θ2 = (λo

kσ
b
y,j)

2 + (σ o
y,j)

2, where λo
k is the expected inflation in the

observation space given the prior inflation value at k. The method
assumes that the inflation parameters and state variables have the
same spatial correlation structure,

corr(Hjx, xk) = corr(λo, λk). (9)

Given the prior value λ̄k, the expected inflation λo
k can be

calculated as

λo
k = 1 + ρkcorr(λo, λk)(λ̄k − 1), (10)

where ρk is the kth component of the localization function used in
Eq. (1). The observation likelihood in Eq. (6) can be expressed as:

Pr(do−b
j |λk) = (

√
2πθ)−1exp{−(do−b

j )2/2θ2}. (11)

The updated λ̄k is found when Pr(λk|dj) reaches its maximum,

thus λ̄k can be solved by taking the derivative of Eq. (6) with
respect to λk and setting it equal to 0. See Appendix A in Anderson
(2009) for a detailed numerical method for finding the maximum
of Pr(λk|do−b

j ). Also note that in Anderson’s derivation he uses√
λ as the λ used in this article.
Anderson’s algorithm updates the inflation parameter at k

according to the jth innovation and the spatial correlation between
the observation and the kth state variable. If the correlation is
large (e.g. for observations near k), λo

k is close to λ̄k. When
the correlation is small, λo

k approaches one. The amount of

adjustment on λ̄k brought by do−b
j depends on the selection

of σ 2
λ,k. A larger σ 2

λ,k indicates that the prior distribution of λ̄k

has larger uncertainty, and should be adjusted more toward the
value suggested by the innovation. Due to the nature of Bayesian
inference, σ 2

λ,k should decrease after each update, limiting the

innovation impact on λ̄k over time. In this study, we implement
the method using the posterior λ̄k as the prior value for the next
assimilation cycle, and σ 2

λ,k is fixed in time for all k.

2.4. Adaptive covariance relaxation (ACR)

Covariance relaxation can be considered as another approach for
covariance inflation. Zhang et al. (2004) first proposed to relax
the posterior ensemble perturbations to the prior:

(xa
i )′inf = (1 − α)(xa

i )′ + α(xb
i )′, (12)

so that the posterior ensemble spread is artificially increased
and the posterior retains a certain degree of physical balance
from the prior ensemble perturbations. Whitaker and Hamill
(2012) suggested relaxing the ensemble spread instead of the
perturbations, and formulated the RTPS method. For the kth

state variable, its ensemble spread is rescaled to a mix of prior and
posterior spread values controlled by α:

(xa
k,i)

′
inf = (xa

k,i)
′
(

α
σ b

k − σ a
k

σ a
k

+ 1

)
, (13)

where σk =
√

1
N−1

∑N
i=1 x′2

k,i is the ensemble spread of the state

variable xk, and the superscripts ‘b’ and ‘a’ denote prior and
posterior values, respectively. Note that α = 0 implies keeping
the original posterior spread, while α = 1 implies increasing the
posterior spread back to the prior spread for each state variable.
The rescaling term α(σ b

k − σ a
k )/σ a

k + 1 works effectively as a
multiplicative inflation factor for the ensemble perturbations of
that state variable. Recall that, after assimilating observations, the
posterior ensemble spread σ a becomes smaller than the prior
spread σ b. This reduction in spread depends on the Kalman
gain, which in turn depends on the localization distance and the
observation location. When localization is applied, the reduction
in spread should be larger in densely observed regions and
taper to nearly 0 in unobserved regions, assuming all else in the
Kalman gain (i.e. observation errors, etc.) are equal. Therefore, in
RTPS, the relative reduction in ensemble spread, (σ b − σ a)/σ a,
naturally serves as a spatial mask and a constant α controls the
magnitude of inflation.

The ACR method we propose takes advantage of the relative
spread reduction term from RTPS, and reduces the problem
to estimating a scalar parameter α online. To use innovation
statistics, we need to calculate the overall relative reduction
in ensemble spread in observation space. The overall relative
spread reduction can be expressed as (σ̄ b

y − σ̄ a
y )/σ̄ a

y , where

σ̄y = √
tr(HPHT)/p and the over-bar indicates an average over

the p observations. We match the expected inflation in observation
space with the inflation factor suggested by posterior innovation
statistics Eq. (7), and solve for α:

α
σ̄ b

y − σ̄ a
y

σ̄ a
y

+ 1 = λ. (14)

Note that the calculated α value does not necessarily fall in the
range of (0, 1). If the observation sample size p is small for each
cycle, the inflation factor could become very noisy; in this case we
apply temporal smoothing to λ in Eq. (14) to resolve this issue:

λt,smooth = λt−1 + (λt − λt−1)/τ , (15)

where λt is the λ calculated for the current cycle and τ determines
how fast α responds to changes suggested by the innovation
statistics. The use of a larger τ is equivalent to using the
innovations from a longer period of time to calculate the observed
inflation factor. The estimated α are applied in Eq. (13) in state
space to relax the ensemble spread.

3. Numerical experiment design

To test the methods described in the previous section, we run
trials of cycling data assimilation using the Lorenz 40-variable
model (Lorenz, 1996). The forecast model equations are

dxk

dt
= a(xk+1 − xk−2)xk−1 − dxk + F, for k = 1, 2, . . . , n,

(16)

where a, d and F are model parameters for the nonlinear advection,
damping and forcing terms and n = 40. The model is defined
on a one-dimensional domain with a periodic boundary. The
true model sets a = 1, d = 1 and F = 8. We set the model time
step to 
t = 0.05, which corresponds to 6 h. At each time step,
the EnSRF update equations described in section 2.1 are applied.
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The radius of influence is set to ten grid points for trials when
covariance localization is applied.

To create synthetic observations, we add random noise to state
variables generated from a simulation designated as the truth
run. We set the observation noise σ o

y to 1.0,∗ commonly used
in previous studies (e.g. Anderson, 2009; Miyoshi, 2011). Two
different types of observation networks are tested: fully-observed
and half-observed. The fully-observed network has observations
located on all state variables (i.e. H is the identity matrix),
while the half-observed network has observations only for the
first 20 ‘land’ variables (the remaining 20 ‘ocean’ variables are
unobserved) following the set-up in Lorenz and Emanuel (1998).

For the RTPS, ACI, and ACR inflation methods, we run ten
trials, each trial consisting of 5000 time steps (corresponding to
∼3.4 years). To evaluate the filter performance of each method,
we calculate the analysis root mean square error (RMSE) and
the consistency ratio (CR) for the final 1000 time steps of all ten
trials, mitigating issues that may arise during the spin-up period
of data assimilation. The RMSE is calculated by averaging the
squared analysis error (x̄a − xt)2 over the n state variables for the
final 1000 time steps of all ten trials, then taking the square root.
For the fully-observed cases, all n = 40 state variables are used to
calculate RMSE, while for the half-observed cases the ‘land’
(‘ocean’) variables located at k = 1, . . . , 20(k = 21, . . . , 40)
are used to calculate RMSE land (RMSE ocean). The CR is
calculated by averaging the ratio

√
tr(HPbHT + R)/(do−b)Tdo−b

over these time steps. If CR < 1, the background error variance
is underestimated and the ensemble spread is too small, and vice
versa. We specify the true R in our filter so that an erroneous Pb

is the only reason why the statistical relation in Eq. (4) does not
hold and CR deviates from one. We define ‘filter divergence’ as a
significant drop in the CR below 1 (ensemble spread is too small)
and a growth in the RMSE to a value above the observation noise.

We introduce sampling error by reducing ensemble size (N)
from 80 to 5. To introduce model error, we change the default
parameters a, d and F in the forecast model. The forcing parameter
F is gradually reduced from the true value 8 to 5, incrementally
producing a less chaotic model. We change parameter a from
1 to 0.8 (d from 1 to 1.2) to introduce error in the advection
(damping) process in the forecast model. The inflation methods
are also tested with combinations of errors in a, d and/or F to
examine if they can handle model errors from a mixture of
processes.

For each error regime, we test the performance of Anderson’s
method and the proposed ACR method. For simplicity, we will
denote Anderson’s method as ‘ACI σ 2

λ ’, where σ 2
λ is the selected

value for the variance of inflation parameter. We have tested ACI
with σ 2

λ = 0.1, 1 and 10, and show that results are sensitive to this
parameter. For ACR, we have tested with the temporal smoothing
parameter τ = 1, 10 and 100, and only show results for τ = 100.
Although the estimated inflation factor depends on the choice
of τ , we found that the analysis RMSEs, on average, are not
sensitive to this choice for the Lorenz 40-variable toy model. We
also show results using the RTPS method with a range of α values
(0–1) to serve as a benchmark. Note that α = 0 corresponds to
the case when no inflation is applied. For both sampling and
model errors, we test the inflation methods either with or without
applying covariance localization.

4. Results

4.1. Performance with sampling error due to limited ensemble size

Sampling error may occur when using a limited-size ensemble
to estimate the background error covariance. Figure 1 shows
the results from the perfect-model fully-observed cases where

∗We also tested most of the cases with (σ o
y )2 = 0.1 (i.e. σ o

y ∼ 0.316). The
results (not shown) are qualitatively the same as presented in this study.

we gradually increase sampling error by reducing sample size N.
Figure 1(a)and (c) show the analysis RMSE as a function of sample
size for the case without and with localization, respectively, and
Figure 1(b) and (d) show the corresponding CR. RMSE values
in Figure 1(a) are also documented in Table 1. Generally, as N
decreases, the filter diverges (RMSE jumps above observation
noise while CR drops below 1) at some point. We can define three
ranges of N values: (i) stable range in which the filter is stable even
without inflation; (ii) unstable range in which the filter diverges
even for the best-tuned inflation; and (iii) the transition range
in between the unstable and stable ranges. We are interested in
the transition range, because within this range a properly tuned
inflation method can help restore filter stability. For the case
without localization (Figure 1(a) and (b)), the transition range is
(15, 40). Results from non-adaptive RTPS show that, within this
range, a larger amount of inflation (larger α for RTPS) is needed
to restore filter stability for larger sampling error (smaller N). At
N = 30, α = 0.1 is enough, while at N = 17, α = 0.3 is needed.
In the stable range, no inflation is needed and α = 0 results in the
lowest RMSE; increasing inflation (larger α) will increase RMSE.
In the unstable range, we see that using a larger α can help reduce
RMSE slightly, but cannot prevent filter divergence. The ACR
method is able to restore filter stability through the transition
region, although the resulting RMSE is not as small as the best-
tuned RTPS. For the ACI method, we found that relatively large
σ 2

λ = 1 is needed to bring a similar improvement as ACR. Recall
that the value of σ 2

λ tunes how much an innovation impacts the
final inflation field, thus a large σ 2

λ will lead to a final inflation
that is close to the value suggested by innovation statistics. Note
that Anderson (2009) sets σ 2

λ = 0.01 in his study. We found that
this value only works well in the stable range. With localization
(Figure 1(c) and (d)), the filter’s tolerance to sampling error is
greatly increased. The transition range shifts to (4, 10). The ACR
method can also restore filter stability in this case, and the ACI
still needs at least σ 2

λ = 1 to bring such improvement.
For the half-observed case, we only show results when

localization is applied (Figure 2), because the model becomes
unstable when the unobserved variables are also inflated;
localization helps limit the inflation within the observed region
in RTPS. In this case, we calculated analysis RMSE separately for
the observed variables (RMSE land, Figure 2(a)) and unobserved
variables (RMSE ocean, Figure 2(b)), and Figure 2(c) shows
CR in observation space. Comparing RMSE land to RMSE in
Figure 1(c), we can see that the analysis RMSE is smaller for
the land variables in the half-observed case compared with the
fully-observed case. The ocean variables maintain a relatively
large ensemble spread that propagates downstream, effectively
inflating the ensemble covariance over land. We found that the
filter does not diverge for the land variables until N reaches 5,
while the ocean variables maintain a noise level higher than the
observation noise that remains within the climatological bound.
Similar to the fully-observed case, the ACR method also restores
filter stability for N < 6. The ACI still needs a larger σ 2

λ value to
exhibit the same improvement. The RMSEs for ocean variables
are also improved for N < 6 when adaptive inflation is applied to
the land variables, which may result from the more accurate state
estimates over land that propagates downstream to the ocean.

4.2. Performance with an imperfect forecast model

In this subsection, we test the inflation methods under the
condition where an imperfect forecast model is used. Figure 3
shows results from the fully-observed cases with N = 40 and no
localization. RMSE values in Figure 3(a) are also documented
in Table 1. In Figure 3(a) and (b), the F parameter is the only
model error source. In this case, we see that only a tiny model
error (F = 7.9) will lead to filter divergence without inflation.
The RTPS method shows that, for larger model error, larger
α values are needed to restore filter stability. For example,
α = 0.2 is enough for F = 7.9, while α = 0.9 is needed for
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Figure 1. (a,c) Analysis RMSE and (b,d) consistency ratio (CR), for the fully-observed cases with different degrees of sampling errors introduced by changing the
ensemble size (N). Panels (a,b) and (c,d) shows result without and with localization (radius of influence = 10), respectively. The grey line shows the observation noise
level. The coloured lines show inflation parameters for RTPS with α ranging from 0 to 1; the cross markers (no inflation) are equivalent to α = 0. Triangle and square
markers correspond to the ACI methods with σ 2

λ = 0.1 and 1, respectively. Circle markers correspond to the ACR method. Note that we show more data points
in the transition region ranging from the filter being stable to diverging. The transition region is different for the cases without localization (N = 15–40) and with
localization (N = 4–10).

Table 1. Analysis RMSEs using no inflation, ACR, best-tuned RTPS and ACI methods (columns) for different error sources (rows) including sampling error N and
model error F. The fully-observed case without localization is shown (corresponding to figures 1(a) and 3(a)).

No inflation ACR RTPS (optimal α) ACI 0.1 ACI 1

N 80 0.1920 0.2163 0.1851 (0.1) 0.1925 0.1955
40 0.2181 0.2275 0.1821 (0.1) 0.2106 0.1977
20 4.0032 0.2766 0.1926 (0.2) 2.4608 0.3541
17 4.1459 0.4561 0.2198 (0.3) 2.7773 0.5846
15 4.2028 1.6785 1.5101 (0.9) 3.0480 0.8755
10 4.4331 3.3941 2.9290 (0.9) 3.8840 3.3389

5 4.7771 4.5219 3.7310 (1.0) 4.6173 4.4831
F 8 0.2154 0.2378 0.1880 (0.1) 0.1979 0.2012

7.9 3.9566 0.2918 0.2221 (0.3) 1.9667 0.3285
7.5 4.0564 0.4435 0.3424 (0.6) 2.0047 0.6668
7 4.0107 0.5835 0.4231 (0.7) 2.2781 0.8577
6 4.0423 0.7783 0.5234 (0.8) 2.7079 1.0630
5 4.1770 0.9044 0.5939 (0.9) 2.9864 1.1891

F = 5. Similar to the sampling error cases, we found the ACR
method able to estimate an α close to the optimal value and
reduce the RMSEs significantly. As for ACI, σ 2

λ = 0.1 only brings
limited improvement, while σ 2

λ = 1 brings improvement that
is comparable to the ACR method. To show the performance
under a combination of model error sources, we also increase
damping by 20% (d = 1.2, Figure 3(c) and (d)) and decrease
nonlinear advection by 20% (a = 0.8, Figure 3(e) and (f)). In
both cases, the optimal value for α is much larger (∼0.8) with a
smaller reduction in RMSE, with both cases’ RMSE still under the

observation noise. We found that the ACR method handles all

types of model error well; a similar improvement can be achieved

by ACI only when using a relatively large σ 2
λ .

Figure 4 shows results from half-observed cases for N = 10

with localization. In this case, similar to sampling error cases in

Figure 2, the filter tolerates model error more when localization

is applied. The filter does not diverge without inflation until F

is as small as 6 (Figure 4(a)). We also show a combination of

error sources from F, a and d as in Figure 3, and found that the
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Figure 2. Analysis RMSE and consistency ratio (CR) for the half-observed cases
(N = 10 with localization). (a) RMSE land ((b) RMSE ocean) is calculated using
the observed (unobserved) variables along with the truth, while the (c) consistency
ratio is calculated in observation space (observed variables only). The legend is
the same as for Figure 1.

ACR method also handles all types of model error well, while ACI
needs large σ 2

λ to achieve this improvement.

4.3. Spatial and temporal behaviour of inflation parameters

In this subsection, we examine the spatial and temporal behaviour
of the inflation parameters estimated by the ACR method, namely
the α(σ b

k − σ a
k )/σ a

k + 1 term in Eq. (13). It is desirable that the
adaptive methods automatically adjust the inflation parameters
both in space and time to account for the inhomogeneity. Figure 5
compares the spatial pattern of inflation parameters averaged over
time between different inflation methods for two half-observed
cases with large error sources. The inflation from RTPS can be
thought of as a scalar α value ranging from 0 to 1 that tunes a
spatial pattern (the relative ensemble spread reduction term). We
set the localization distance to 10, so that observations over land
(k = 1, . . . , 20) do not impact the centre of the ocean (k = 30).
The average inflation is larger over land than over the ocean, with
a maximum near k = 1 and tapering to 0 from k = 20 to k = 30.
Since the domain is cyclic (periodic boundary condition), the
maximum is at the downstream side of the ocean, where large
uncertainties propagate toward the land. For the ACR method,
the resulting inflation pattern has the same properties as the RTPS
method. On the other hand, the ACI method uses the σ 2

λ value
to tune the overall amount of inflation. In the presence of large
model error (Figure 5(b)), σ 2

λ = 0.1 leads to overall inflation of
only ∼1.01 over land. Increasing σ 2

λ to 1 increases the inflation
to ∼1.05, but the maximum near k = 1 is not well captured.

Increasing σ 2
λ to 10 produces the inflation pattern similar to

ACR, but it appears to be noisier.
Figure 6 shows the time series ofλ, the inflation factor estimated

in observation space from ACR, for the cases with no error
sources (Figure 6(a)) and with large model error (Figure 6(b)).
The temporal smoothing τ value is set to 1, 10 and 100. As
expected, a larger τ value leads to a more smoothed λ in time.
For the case with no error sources, the λ value is close to 1
throughout the time period, while for the case with large model
error, λ is elevated to ∼1.2. In our experiments, although λ has
different temporal variability depending on the τ value used,
the resulting temporally averaged λ and analysis RMSE are not
particularly sensitive to the choice of τ (not shown). One caveat
arises if τ is set too large, e.g. as large as the model integration
time period, so the algorithm adjusts the inflation too slowly
causing the filter to diverge before inflation reaches the required
magnitude. Therefore, the optimal τ should not be too large so
that the adjustment of the inflation magnitude is faster than the
accumulation rate of unrepresented errors, but not too small so
that inflation becomes too noisy in time.

The ACI method treats each innovation as one observation
and uses it to update the inflation field. The updated inflation
will be a weighted average of its prior value and the ‘observed’
value suggested by the innovation, with the weight dependent on
the selection of σ 2

λ values. The ACR method will be equivalent
to ACI if we use one innovation at a time in Eq. (7) to get an
‘observed’ inflation factor and also update the prior inflation
factor by the weighted average. We can reformulate the temporal
smoothing equation (15) as an update equation that weights the
observed and prior inflation factors, similar to the reformulation
of the temporal smoothing equation in Li et al. (2009) by Miyoshi
(2011) as a Gaussian approximation to the ACI method. In doing
so, we should expect both methods to have similar sensitivity to
the choice of σ 2

λ or τ values. However, in our experiments,
we used all p innovations at each time step to derive the
‘observed’ inflation factor deterministically in Eq. (7), rather than
treating each innovation as a random variable. Even if τ = 1, the
inflation factor is still derived from innovation statistics using
p observations, which is equivalent to using a large σ 2

λ in the
ACI method. In consequence, the analysis RMSE is insensitive
to the choice of τ from 1 to 100. However, increasing τ reduces
the noise and variability in the estimated inflation factor. From
Figure 6 we see that the inflation factor has larger variance and
frequently exceeds 1.5 when τ is set to 1. Though the noisy
inflation factor works for the Lorenz 40-variable model, further
research is needed to show whether it still works for other more
complex models and/or observation networks. It is possible that
an inflation factor that has too large a variance in time may be a
potential issue for less autonomous models.

5. Concluding remarks

Covariance inflation can improve filter performance by inflating
the ensemble to account for the unrepresented sampling/model
errors. Tuning the inflation parameter can be costly, therefore
adaptive algorithms that estimate the inflation online according
to innovation statistics have been introduced in previous studies
(Wang and Bishop, 2003; Anderson, 2007, 2009; Li et al.,
2009; Miyoshi, 2011). The online estimated inflation parameter
adjusts to the value suggested by innovation statistics. When
a spatially irregular observation network is used leaving some
state variables unobserved, a spatially varying inflation parameter
is likely needed. Inflating the unobserved variables may cause
their ensemble spread to keep increasing, and therefore likely
leads to filter/model instability. To introduce spatially varying
covariance inflation, the ACI method (Anderson, 2009) treats
the inflation parameters as individual random variables and
updates them using ‘observed’ inflation from innovations. In
this study, an alternative ACR method is introduced. We start
with the RTPS method (Whitaker and Hamill, 2012), in which a
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Figure 3. (a,c,e) Analysis RMSE and (b,d,f) consistency ratio (CR), for the fully-observed cases (N = 40 without localization) with different degree of model errors
introduced by varying parameters F, a and d. Within each panel, F varies from 5 to 8. For each row, a different combination of a and d values are used. The legend is
the same as for Figure 1.

spatially varying relative ensemble spread reduction term is used
to mask the inflation to only the observed variables. We show
that this reduction term is a direct result from assimilating
observations whose spatial pattern depends on observation
location and localization distance. The ACR method estimates the
relaxation parameter in RTPS by matching innovation statistics
in observation space, therefore it is equivalent to a spatially and
temporally varying inflation. Numerical experiments with the
Lorenz 40-variable model show that the ACR method can restore
filter stability with the presence of sampling/model error for a
range of severities. It is found that the spatial inflation pattern
estimated by ACI is noisier compared to ACR and does not
capture the location where ensemble spread deficiency is most

severe. Also, ACI results are sensitive to the tunable variance of
the inflation parameter, while ACR results are less sensitive to the
tunable temporal smoothing parameter.

Both the RTPS and the algorithm for online estimation of the
relaxation parameter are easy to implement for the proposed ACR
method. Therefore it has the potential for real-data atmospheric
model applications. The results in this study only apply to the
Lorenz 40-variable model, thus there are several potential issues
regarding the use of real observations and more complicated
models that we want to stress. First, the real observations usually
contain variables with different units. In this case, the innovation
statistics Eqs (5) and (7) should use normalized observations so
that each type of observation has a comparable contribution (see
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Figure 4. Same as Figure 3, but showing half-observed cases (N = 10 with localization).
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Figure 5. The spatial structure of inflation parameters for the half-observed cases (N = 10 with localization) with two types of severe error sources: (a) sampling
error with N = 5 and (b) model error with F = 5. The coloured lines show inflation parameters for RTPS with α ranging from 0 to 1. Grey triangle, square and cross
markers correspond to ACI methods with σ 2

λ = 0.1, 1 and 10, respectively.
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Figure 6. Time series of the inflation factor (λ) from ACR method for half-
observed cases (N = 10 with localization) with (a) perfect model and (b) model
error F = 5. Only the first and last 200 steps are shown. Blue, red and black lines
correspond to τ = 1, 10 and 100, respectively.

Eq. 18 in Wang and Bishop (2003)). Second, for complicated
models, the dynamics can be also inhomogeneous in space. In
this case, one needs to verify that the system of interest (e.g. a
hurricane) is well covered by observations and the observations
outside the system are excluded so the innovation statistics truly
reflect the inflation needed for the system of interest. Finally,
for real observations, the observation operator may be nonlinear.
Since we estimate the relaxation parameter in observation space
and apply it in state space, the nonlinear relation between
observation and state space may cause the relaxation parameter
to be either under- or overestimated. In this case, one may
need a tangent linear observation operator to map state space to
observation space.
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