
Potentials in Improving Predictability of Multiscale Tropical Weather Systems Evaluated
through Ensemble Assimilation of Simulated Satellite-Based Observations

YUE YING AND FUQING ZHANG

Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The

Pennsylvania State University, University Park, Pennsylvania

(Manuscript received 19 August 2017, in final form 31 January 2018)

ABSTRACT

As a follow-up of our recent paper on the practical and intrinsic predictability of multiscale tropical weather

and equatorial waves, this study explores the potentials in improving the analysis and prediction of these

weather systems through assimilating simulated satellite-based observations with a regional ensemble

Kalman filter (EnKF). The observing networks investigated include the retrieved temperature and humidity

profiles from the Advanced TIROS Operational Vertical Sounder (ATOVS) and global positioning system

radio occultation (GPSRO), the atmospheric motion vectors (AMVs), infrared brightness temperature from

Meteosat-7 (Met7-Tb), and retrieved surfacewind speed from the CycloneGlobal Navigation Satellite System

(CYGNSS). It is found that assimilating simulated ATOVS thermodynamic profiles and AMV winds im-

proves the accuracy of wind, temperature, humidity, and hydrometeors for scales larger than 200 km. The

skillful forecast lead times can be extended by as much as 4 days for scales larger than 1000 km. Assimilation

of Met7-Tb further improves the analysis of cloud hydrometeors even at scales smaller than 200 km. As-

similating CYGNSS surface winds further improves the low-level wind and temperature. Meanwhile, the

impact from assimilating the current-generation GPSRO data with better vertical resolution and accuracy is

comparable to assimilating half of the current ATOVS profiles, while a hypothetical 25-times increase in the

number of GPSRO profiles can potentially exceed the impact from assimilating the current network of re-

trievedATOVSprofiles.Our study not only shows great promises in further improving practical predictability

of multiscale equatorial systems but also provides guidance in the evaluation and design of current and future

spaceborne observations for tropical weather.

1. Introduction

The tropical weather systems are multiscale in na-

ture. The Madden–Julian oscillation (MJO; Madden

and Julian 1971, 1972) dominates the planetary-scale

intraseasonal variability. The synoptic and mesoscales

feature a variety of waves that interact with moist

convection, also known as convectively coupled equa-

torial waves (CCEWs; Wheeler and Kiladis 1999;

Kiladis et al. 2009), which include the equatorial

Rossby (ER) waves (Kiladis et al. 2009), Kelvin waves

(Dunkerton and Crum 1995), mixed-Rossby–gravity

(MRG) waves (Dickinson and Molinari 2002), and

inertia–gravity (IG) waves (Haertel and Kiladis 2004).

Skillful modeling of these multiscale tropical weather

systems is an important and challenging task for global

numerical weather prediction. Lorenz (1963) first

discovered that the atmospheric flow can be in-

trinsically unpredictable because of its chaotic nature

even with near-perfect model and initial/boundary

condition. Moist convective processes are identified as

responsible for the intrinsic limit of predictability for

moist baroclinic waves (Zhang et al. 2003, 2007; Sun

and Zhang 2016), mesoscale convective systems (Bei

and Zhang 2007; Melhauser and Zhang 2012; Selz and

Craig 2015; Y. Zhang et al. 2016), and tropical cyclones

(Zhang and Sippel 2009; Tao and Zhang 2015). CCEWs

are also susceptible to the moist convective processes

that will limit their predictability. Despite such intrinsic

limits in predictability, there is still room for im-

provement in the current prediction skill by assimilat-

ing better observations and improving the models. For

example, Reynolds et al. (1994) found that the then-

operational global prediction system had deficiencies

in the tropics that lead to large error growth, although

the internal error growth rate is actually slower in the

tropics than in midlatitudes.
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To model the multiscale tropical weather systems, a

high spatial resolution is required to resolve finer-scale

wave components and their interaction with larger-

scale systems. Recent developments in cloud-permitting

model simulation of the tropical weather systems, such

as Wang et al. (2015), who conducted a convective-

permitting simulation of the October 2011 MJO event

observed during the Dynamics of theMJO (DYNAMO;

Zhang et al. 2013) field campaign, start to show better

agreement with observation than previous coarse-

resolution global models. Zhang et al. (2017) demon-

strated that initiation of this MJO event may result

from a global circumnavigating signal and thus can be

potentially predictable at the planetary scale several

weeks in advance. Most recently, Ying and Zhang (2017;

hereafter referred to as YZ17) systematically assessed

the intrinsic and practical predictability of multiscale

tropical weather systems within the moist phase of the

same MJO event. They estimated that the large-scale

ER, Kelvin, MRG, and IG waves have a practical pre-

dictability as much as 8 days, while the small-scale IG

waves have a much more limited predictability that is

less than l day. The intrinsic predictability of large-scale

CCEW modes may be achievable beyond 2 weeks, but

the limit is likely still less than 3 days for small scales.

Because of the lack of in situ soundings with high

resolution and good coverage, the tropics heavily rely on

satellite remote sensing to provide observations for

forecast systems. As a follow-up study of YZ17, we seek

to systematically evaluate the impact of assimilating

current/future satellite observing networks to the pre-

dictability of each CCEW mode and at different scales.

To the best of our knowledge, this study is the first sat-

ellite data assimilation experiment focusing on multi-

scale tropical weather systems beyond tropical cyclones.

TheMJO active phase simulation fromYZ17 is used as a

test case, and an idealized observing system simulation

experiment (OSSE) is conducted under the assumption

of perfect dynamic model and perfect observation error

models used in data assimilation. For observing net-

works with different spatial density, several studies

suggest that a shorter localization distance is required

for denser observations to achieve better analyses

(Dong et al. 2011; Kirchgessner et al. 2014; Periáñez
et al. 2014). In this study, the localization for each ob-

serving network is manually tuned to allow a relatively

fair comparison of their impact.

This paper is organized as follows. Section 2 de-

scribes the dynamic model, test case, and data assim-

ilation method. Section 3 provides details of the

satellite observing networks under investigation. The

sections that follow will discuss results regarding scale-

and variable-dependent predictability (section 4), the

relative contribution from each observing network

(section 5), and the specific improvement found for

each CCEW (section 6). Section 7 will summarize the

findings from this study.

2. Experimental design

a. The verifying truth simulation

A similar configuration of the Weather Research and

Forecasting (WRF) Model is adapted from YZ17 to

conduct a monthlong simulation from 12 October to

12 November 2011. The model domain contains 777 3
444 horizontal grid points with 9-km spacing and has 45

vertical levels with 9 in the lowest 1 km and a model top

at 20 hPa. Cloudmicrophysics processes are represented

by the WRF double-moment 6-class (WDM6) scheme

(Lim and Hong 2010). No cumulus parameterization is

used, and organized convections are explicitly repre-

sented by the 9-km model grid. Shortwave and longwave

radiative processes are simulated using the newGoddard

(Chou and Suarez 1999) and RRTM for GCMs

(RRTMG; Iacono et al. 2008) schemes, respectively.

Surface processes are simulated using the unified Noah

(Chen and Dudhia 2001) with variable surface skin

temperature (Zeng and Beljaars 2005). Subgrid-scale

turbulent mixing is treated with the Yonsei University

(YSU) boundary layer scheme (Hong et al. 2006). The

initial conditions (IC) and lateral boundary conditions

(LBC) are specified by the ERA-Interim data (Dee et al.

2011). The sea surface temperature (SST) for the lower

boundary conditions is updated every 6 h according to

the National Centers for Environmental Prediction

(NCEP) Final Operational Global Analysis (FNL) data.

Figure 1 shows the computation domain that covers

the precipitation associated with the active MJO phase.

The simulation successfully captures the slow eastward

propagation of the active phase as well as most of the

CCEW modes. Figure 2 shows the Wheeler and Kiladis

(1999) space–time spectra for surface precipitation and

850-hPa zonal wind. For precipitation, the dominant

signals are the MJO, Kelvin, and westward-propagating

IG (WIG) waves. TheWIGwaves contain a hierarchy of

spatial and temporal scales. For spatial scales larger than

2000km, there is the ‘‘2-day wave,’’ while the diurnal and

semidiurnal waves have wavelengths slightly shorter

than 2000km. The Kelvin wave has a precipitation signal

at a shorter wavelength than the wind signal. It is also

evident that the propagation speed of the convectively

coupledKelvinwave is slower than the dryKelvinwaves.

For ER and MRG waves, the precipitation signal is rel-

atively weaker than their wind signal. The precipitation

signal for the ER wave also has a shorter wavelength

than the wind signal, similar to the Kelvin waves. The
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signals related to eastward-propagating IGwaves are not

as strong as their westward-propagating counterparts.

Because of the limitation of computation resources,

the OSSE is conducted in a smaller domain with 378 3
222 grid points (108S–108N, 558–908E) during the 17-day
period from 16 October to 2 November (phases 1–3 of

theMJO). The location of this OSSE domain is shown in

Fig. 1. Themonthlong large-domain simulation provides

IC and LBC for the smaller OSSE domain. The OSSE

domain has the same 45 vertical levels and 9-km grid

spacing as the larger domain.

To extract a certain CCEW mode, a space–time

bandpass filter is applied to themonthlong large-domain

model simulation. Table 1 lists the filter parameters for

each CCEW. Figure 3 shows the filtered surface pre-

cipitation and 850-hPa zonal wind during the 17-day test

period andwithin theOSSEdomain. Hereafter, the time

from 16October to 2 November will be labeled as days 1

to 18. During the test period, the MJO precipitation

signal slowly propagates across the entire OSSE domain

from west to east. The low-level westerly wind anomaly

is trailing the precipitation peak. The ER wave features

two strong westerly wind signals associated with the

cyclonic Rossby gyres within the test domain and re-

placed by easterlies (anticyclonic gyre) later into the test

period. The Kelvin wave has three successive phases

propagating across the test domain during the 17 days;

each one progresses more to the east because of mod-

ulation from the MJO. MRG waves have a strong wind

signal but very weak precipitation signal during the test

period.WIGwaves consist of a wide range of spatial and

temporal scales. Large-scale (.1000km)WIGsignals have

a life cycle of about 2 days and propagate across the whole

test domain, while intermediate-scale (500–2000km)WIG

signals are more transient in space and time. Both types of

WIGwaves appear to bemodulated by theMJO envelope

as well.

b. Data assimilation method: EnKF

The Pennsylvania State University (PSU) WRF

EnKF (Meng and Zhang 2008) is employed as the data

assimilationmethod. The EnKF utilizes an ensemble of

model realizations to estimate flow-dependent error

covariance, which is an approximation of the extended

Kalmanfilter (Evensen 1994). The ensemble perturbations

FIG. 2. Wheeler–Kiladis space–time spectra for the truth simulation: (a) symmetric and (b) asymmetric com-

ponent about the equator. Signal strength from 1.1 to 2 is shown in gray shadings for precipitation and red contours

for 850-hPa zonal wind. Dispersion relations for dry waves are shown with equivalent depth of 25m. Horizontal

(vertical) axis is zonal wavenumber (time frequency) but labeled with zonal wavelength (time period).

FIG. 1. Horizontal map of 15-day averaged daily precipitation

(mmday21) shown in the computational domain with ERA-

Interim as initial and boundary condition. The OSSE domain is

shown in black. The color scale has a value of 25 at the top of the

purple band and a value of 0 at the bottom, and has an interval of

5mmday21.

MAY 2018 Y I NG AND ZHANG 1677



around the mean are updated with the square root algo-

rithm from Whitaker and Hamill (2002). Covariance re-

laxation to prior perturbation (Zhang et al. 2004) with

a 5 0.8 inflates the ensemble variance to prevent filter

divergence. Covariance localization is applied with the

Gaspari and Cohn (1999) tapering function to remedy

sampling noises in error covariance.

The OSSE is conducted under a perfect-model as-

sumption; that is, the forecast model and LBC are the

same from the truth simulation. An ensemble of 60

members is created one day before the data assimilation

cycle begins. The initial ensemble perturbations are

randomly sampled from the climatological error co-

variance matrix created by the National Meteorological

TABLE 1. Space–time filtering parameters for each tropical weather system (CCEW type).

CCEW type Spatial scale l (km) Time scale t (days) Propagation direction Symmetry about the equator

MJO .2000 .20 Eastward Both

ER .1000 8–20 Westward Symmetric

Kelvin .1000 3–10 Eastward Symmetric

MRG .1000 4–10 Westward Antisymmetric

WIG (L) .1000 1–3 Westward Symmetric

WIG (M) 500–2000 1/4–1 Westward Both

FIG. 3. Longitude–time Hovmöller diagrams of precipitation (black contours from 2 to 10mmday21 every 2mmday21) and 850-hPa

zonal wind (color shadings; m s21) averaged over 08–58N from the truth simulation and filtered for each CCEW: (a) MJO, (b) ER,

(c) Kelvin, (d) MRG, (e) large-scale WIG, and (f) intermediate-scale WIG waves.
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Center (NMC) method (Parrish and Derber 1992). The

ensemble mean is created by adding another perturba-

tion to the truth. This perturbation is drawn from the

same error covariance, but we ensured that its magnitude

is close to the ensemble spread. The initial ensemble is

run forward for one day to develop flow-dependent error

covariance.

Synthetic observations are created by randomly per-

turbing the observed variable simulated from the truth

with prescribed observation error. The perfect forward

operator is used, and the correct observation errors

matching the uncertainties in synthetic observations are

specified in EnKF. The prescribed observation errors are

unbiased and uncorrelated in this OSSE study. Table 2

lists the prescribed observation error and resolution for

each observing network, which will be discussed in more

details in the next section. Table 3 provides a succinct list

of experiments conducted in this paper. No data assimi-

lation (NoDA) is a free ensemble run from the perturbed

initial ensemble. Control (CNTL) is a benchmark case

assimilating Advanced TIROS Operational Vertical

Sounder (ATOVS) temperature (T) and specific humid-

ity (Q) profiles and atmospheric motion vector (AMV)

winds. The observations are assimilated every 3h during

the 17-day test period, which results in 136 data assimi-

lation cycles in total. We will show that the EnKF spinup

period appears to be shorter than 4 days; therefore, some

of the sensitivity experiments are only conducted for the

first 9 days. The localization cutoff distance [i.e., the ra-

dius of influence (ROI)] is specified separately for each

observing network in consideration of the respective

observation density. A larger ROI is used for sparser

networks, and some manual tuning with a few cycles are

performed to reach a reasonable ROI. A sensitivity ex-

periment that doubles the horizontal ROI in CNTL

confirmed that the resulting change in analysis error is

minor. As pointed out by Zhen and Zhang (2014)

and Lei and Whitaker (2017), the analysis sensitivity

to localization is minor when approaching the best-

performing ROI. Thus, we will not further discuss how

the exact choice of ROI changes analysis accuracy in

this paper.

3. Observing networks

a. Synthetic ATOVS retrieved temperature and
humidity profiles

The ATOVS is a collection of polar-orbiting satel-

lite instruments that are designed to sample the at-

mospheric T and Q at different vertical levels. These

instruments currently include the High Resolution

Infrared Radiation Sounder (HIRS), the Advanced

Microwave Sounding Unit-A (AMSU-A) and Micro-

wave Humidity Sounder (MHS) on board NOAA-19,

MetOp-A, and MetOp-B satellites. Operational cen-

ters routinely produce atmospheric sounding products

from the ATOVS instruments using sophisticated

retrieval methods (Reale 2001), typically including

cloud detection, radiative transfer, and other physical

process–based algorithms. The T and Q profiles can

be retrieved for both clear and cloudy atmospheric

conditions. Although direct assimilation of ATOVS

radiances may yield more realistic results, current

regional-scale data assimilation systems (including

the one employed here) cannot effectively and si-

multaneously assimilate all the ATOVS radiances,

especially for cloud-affected microwave-channel ra-

diances that are extremely sensitive to parameteri-

zations in model microphysical processes and related

representations of scattering properties. Therefore,

we assimilate synthetic retrieved T and Q profiles

with regular spatiotemporal resolutions to evaluate

the impact from these ATOVS radiances (similar to

English et al. 2000), which also serves a baseline for

other observing systems.

TABLE 2. Observed variables, their associated uncertainty (observation error), spatial resolution, and approximate data count within a 3-h

window of each tested observing network.

Observing network

Observed

variable

Observation

error Horizontal spacing

Vertical

spacing–coverage

Observation

count in 3-h window

ATOVS retrievals T ;2K 90 km 1 km; surface to 0.1 hPa ;35 000

Q ;30% 2 km; surface to 200 hPa ;11 000

GPSRO retrievals

(COSMIC-2)

T ;1.7 K Irregular (;600 km) ;100m in low troposphere ;1660

Q ;10% 1 km in stratosphere ;1350

AMV wind u, y 4.5m s21 Irregular (;100 km) Irregular spacing mostly

covers ;200 hPa

;1700

Met7 IR Tb

(channel 3)

Tb 3K 9 km Column averaged with

weighting function

;80 000

CYGNSS retrievals Wind speed 2m s21 45 km At ocean surface ;3200
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The spatial and temporal resolution of ATOVS pro-

files depend on both the availability of satellite in-

struments and the level of quality control during

retrieval. The current profiles have a horizontal spacing

of about 40 km. In the vertical, there are 40 layers from

surface up to 0.1 hPa for T profiles and 17 layers from

surface up to 200 hPa forQ profiles.Miyoshi et al. (2013)

demonstrated how nonorthogonal observation opera-

tors reduce the available information from observations.

Because of the overlapping of weighting functions of

radiances used in the retrieval process, the number of

independent pieces of information from real ATOVS

profiles is likely to be less that what is assumed in this

study, the impact of which will be examined with sen-

sitivity experiments through reducing the information

content in either the horizontal and/or vertical di-

rections and in time. The horizontal spacing is set to a

coarser 90 km to account for missing data due to gaps

between swaths and/or quality control processes. The

current three-satellite constellation could sample the

whole tropics 6 times every day. This observation in-

terval can be shortened with an increase in the number

of participating satellites in the constellation. Since

2015, with the launch of the Global Precipitation Mea-

surement (GPM) mission (Hou et al. 2014), it has been

estimated that there are enough satellites to achieve an

average revisiting time of 1.5 h. Therefore, a 3-h cycling

period is reasonable for ATOVS in this study. Figure 4a

shows the vertical profile of prescribed ATOVS obser-

vation errors in solid lines. Li et al. (2000) validated the

ATOVS retrievals with respect to radiosonde observa-

tions and found the accuracy of retrieved T is about 2K

and dewpoint temperature is 3–6K (about 30% error in

Q). The horizontal distribution of ATOVS profiles is

shown as black dots in Fig. 4b. The horizontal localiza-

tion radius (ROI) is set to 400km. The vertical ROI is

TABLE 3. Description of assimilated observing networks and their benefits (improvement in prediction skills in variables, scales, and

weather systems) found in each experiment.

Experiment name Assimilated observing networks Benefits in analysis/prediction skill

NoDA None Rely on LBC to constrain solution in domain

Large-scale CCEWs (MJO, Kelvin, MRG, and ER)

have some predictability in wave phase but with

large amplitude errors

CNTL ATOVS profiles 1 AMV wind Significantly improve winds, T, Q, and hydrometeors

at large to intermediate scales

Extend the practical predictability limit by ;4 days

for large scales

Further reduce the amplitude error for large-scale

CCEW and improve intermediate-scale WIG waves

1Met7 CNTL 1 Met7-Tb Further improve ice, snow, and graupel mixing ratio

near cloud top for smaller scales

1CYGNSS CNTL 1 CYGNSS wind speed Further improve large-scale low-level u, y, and T

NoProfile AMV wind 1 Met7-Tb 1 CYGNSS

wind speed

AMV 1 Met7 1 CYGNSS can still improve u, y, T,

and Q although less effectively than ATOVS profiles

1ATOVS NoProfile (AMV 1 Met7 1 CYGNSS) 1
ATOVS profiles

ATOVS profiles are essential in improving u, y, T,

and Q thanks to their fine spatial resolution

and coverage

1ATOVScoarse NoProfile 1 ATOVS profiles reduced to

6-hourly and 180-km grid spacing

Although worse than the full-resolution profiles,

there are still persistent improvements at large to

intermediate scales

Reduced resolution degrades smaller-scale WIG

1ATOVSthinV NoProfile 1 ATOVS profiles thinned

in the vertical

Reduced information content in the vertical does

not degrade analysis accuracy as much as

reduction in horizontal and temporal resolution1ATOVSerror1.5 NoProfile 1 ATOVS profiles with errors

inflated to 150%

1GPSRO NoProfile 1 GPSRO profiles at

COSMIC-2 resolution

Approaching but less than improvement from

low-resolution ATOVS because of sporadic

sampling

1GPSROdense NoProfile 1 GPSRO profiles at CubeSat

resolution (25 times more data than

COSMIC-2)

More improvement than ATOVS thanks to finer

vertical resolution and more accurate measurements

1GPSRON 1GPSROdenseN Same as 1GPSRO and 1GPSROdense

but assimilating refractivity (N) profiles

Nonlinear observation operator requires shorter

localization distance

Similar sensitivity to observation density
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set to 5 levels, which correspond to ;500m near the

surface and increases to ;3000m near the tropopause.

b. Synthetic GPSRO observations

The global positioning system radio occultation

(GPSRO) samples the atmosphere with limb radio

signals transmitted by the GPS satellites and received

by low-Earth-orbiting (LEO) satellites. Atmospheric

T and Q can be retrieved from the refraction of GPS

signals. Since radio signals are not influenced by par-

ticulates, the retrieval can be performed for both clear

and cloudy weather conditions. The limb sounding

geometry provides a higher vertical resolution than the

passive nadir sounders (Kursinski et al. 1997; Yunck

et al. 2009). The achievable vertical spacing is;100m for

the low troposphere and reduces to 1km into the strato-

sphere for both temperature and humidity. The horizontal

density of retrieved profiles depends on the number of

LEO satellites in operation. For the second Constellation

Observation System for Meteorology, Ionosphere and

Climate (COSMIC-2) mission (Cook et al. 2011), 12 LEO

satellites will be launched that provide more than 8000

profiles globally within a 3-h window. The retrieval prod-

ucts also have better accuracy than ATOVS. Wang et al.

(2013) validated the GPSRO profiles with global radio-

sondes and found that T error is 1.72K and Q error is

0.67gkg21. Figure 4a shows the GPSRO error profiles as

dashed lines in comparison to ATOVS error profiles.

In this study, synthetic GPSRO profile location is ran-

domly specified. At COSMIC-2 density, there are about

20 profiles in the OSSE domain. A much higher horizon-

tal density may be achieved with the future launch of

the CubeSat constellation (U-class spacecraft; Mannucci

et al. 2010). Assuming a 300-satellite CubeSat constellation,

there will be 25 times more profiles in the domain.

Figure 4b compares the horizontal distribution of

FIG. 4. (a) Vertical observation error profiles from ATOVS (solid) and GPSRO (dashed) for T (red) and Q

(blue); (b) horizontal map of observation location during a 3-h window forATOVS (solid black dots), ATOVSwith

reduced resolution (black cross), GPSRO at COSMIC-2 resolution (red dots), and GPSRO at CubeSat resolution

(blue circles); (c) AMV observation count (per 50-hPa vertical layer) during a 3-h window; (d) horizontal map of

AMV observation location color coded with observation pressure height (hPa); black dots show location of

CYGNSS wind observations.
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GPSRO at COSMIC-2 and CubeSat density to the

ATOVS profile grid. The horizontal ROI is set to 1600km

for GPSRO profiles at COSMIC-2 density, while a shorter

400km is used for denserCubeSatGPSROprofiles.Vertical

ROI is set to five levels, the same as for theATOVSprofiles.

To compare the assimilation of retrieved T and Q

profiles with the direct assimilation of refractivity (N)

data, synthetic N profiles are generated at the same

location of the T and Q profiles according to the fol-

lowing equation (Smith and Weintraub 1953):

N5 77:6
p

T
1 3:733 105

e

T2
, (1)

where p is pressure, T is temperature, and e is water

vapor pressure. According to Kursinski et al. (1997), the

observation errors for N is ;0.2% above 500 hPa

and increases to ;1% at lower levels. Since the obser-

vation operator is nonlinear, a shorter localization

distance is specified. The horizontal ROI is 600 km for

coarser network and 200 km for denser network. Verti-

cal ROI is set to 3 levels.

c. Synthetic AMV wind

TheAMV is derived from a sequence of geostationary

satellite images by tracking features such as cloud edges

and water vapor gradients (Nieman et al. 1997). A cross-

correlation tracking algorithm locates sharp gradients in

raw satellite images, and their displacement vectors are

retrieved as wind observations. Heights are assigned to

each AMV according to its observed brightness tem-

perature. Operational centers now produce routine

AMV wind products from the Geostationary Opera-

tional Environmental Satellite (GOES) images. NCEP

GFS assimilates AMVs in real time every 6 h with rel-

atively strict quality control processes. CIMSS prepares

hourly AMVproducts withmore detailed coverage over

tropical regions (Velden et al. 1997). A ‘‘rapid scan’’

mode can be switched on to achieve even higher tem-

poral frequency (every 15min). Velden and Bedka

(2009) performed a careful comparison of large volumes

of AMV data with collocated rawinsonde wind profiles

and estimated that AMV observation errors are about

5m s21 and the height assignment is the dominant error

source (up to 70%).

To generate synthetic AMV observations, instead of

simulating the cloud detection and tracking algorithms,

the real AMV observation locations from the Global

Telecommunication System (GTS) dataset are directly

used to interpolate wind from the truth simulation.

Such treatment does not guarantee the synthetic AMVs

to be located at the simulated clouds, especially for

cloud features at smaller scales. The simulated AMV

observations at real-data observed locations may some-

times be located in the clear-air regions of the simulation

experiments. At smaller scales, such biased coveragemay

potentially introduce flow dependence in analysis per-

formance; thus, the results obtained from the OSSE may

vary for real-case scenarios. However, for larger scales,

the results should be less influenced since simulated cloud

clusters agree well with observations. More important is

that such a procedure yields synthetic AMVs that match

the spatial resolution and distribution of the current real-

world data. Figure 4c shows the number ofAMVs at each

vertical layer. Most of the AMVs are located at upper

levels (;200hPa), and only a small fraction is at low

levels (;750hPa). At upper levels, the number of AMVs

is comparable to ATOVS profiles (;800). Figure 4d

shows the horizontal distribution of AMVs. The hori-

zontal ROI is set to 400km. The vertical coverage is

limited to where the cloud or vapor gradient is located;

therefore, a larger vertical ROI of 15model levels is used.

d. Synthetic Met7 infrared brightness temperature

Among the first-generation geostationary satellites,

Meteorological Satellite 7 (Meteosat-7, hereafterMet7)

has coverage to the Indian Ocean. It provides full-disk

brightness temperature (Tb) every 30min from two

infrared channels and a visible channel. The horizontal

observation spacing is 5km. Met7 was replaced by the

second-generationMeteorological Satellite 8 (Meteosat-8)

in 2017, which has more channels and increased reso-

lution (similar toGOES-16, which achieves a spatial grid

spacing of 2 km every 15min). Although clear-air sat-

ellite Tb is routinely assimilated in operational centers,

the direct assimilation of cloud-affected Tb is still quite

challenging. Recent development in methods that rem-

edy the non-Gaussian observation errors makes the as-

similation of all-sky Tb much more effective (Geer and

Bauer 2011; Tavolato and Isaksen 2015; F. Zhang et al.

2016; Minamide and Zhang 2017). The Tb from infrared

channels are easier to assimilate than those from mi-

crowave channels thanks to less sensitivity to scattering

processes that are not well represented in current mi-

crophysics schemes and radiative transfermodels. In this

study, the water vapor band Tb (channel 3) is assimi-

lated directly using the Community Radiative Transfer

Model (CRTM) as forward operator. The thermal in-

frared window (channel 2) is preserved for verification

purposes. The adaptive observation error inflation

(AOEI;Minamide and Zhang 2017) is applied to reduce

the negative effect from clear/cloudy-air representa-

tiveness errors. Horizontal ROI is set to 30km. The

vertical height of a Tb observation is specified according

to its cloudy/clear-air condition. A cloudy Tb is assigned

to 250 hPa and a clear-air Tb to 400hPa (peaks of their
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weighting function). The vertical ROI is set to 25 levels

around theTbobservation at its specified height so that the

localization function is similar to its weighting function.

e. Synthetic CYGNSS surface wind speed

The Cyclone Global Navigation Satellite System

(CYGNSS) is a constellation of eight microsatellites

that receive both direct and reflected signals from GPS

satellites (Ruf et al. 2016). The direct signals pinpoint

the location of a CYGNSS observation, and the re-

flected signals carriy information of the roughness of

ocean surface, from which wind speed is retrieved. The

relatively low-inclination orbits of the microsatellites

are designed to provide excellent coverage for the

tropics. The observation footprint is 25 km wide with a

mean and median revisit time of 7.2 and 2.8 h, re-

spectively. The observation error is about 2m s21 or

10% for a wide dynamic range of wind speed. The

synthetic CYGNSS observation is generated at 45-km

grid spacing every 3 h. Instead of locating the observa-

tions along the realistic orbits that are horizontally

inhomogeneous, a slightly coarser uniform grid is used

for simplicity. The CYGNSS observation grid is shown

as black dots in Fig. 4d. The horizontal ROI is set to

200 km for the CYGNSS observation, and their vertical

ROI is 15 model levels from surface up to ;700 hPa.

4. Scale- and variable-dependent improvements in
prediction skill

In this section, the benchmark CNTL experiment is

compared to NoDA to evaluate the impact from as-

similating synthetic ATOVS and AMV observations.

First, to assess the EnKF performance in CNTL, the

two-dimensional spectra of error in prior ensemble

mean are compared to the ensemble spread in Fig. 5. For

FIG. 5. Temporally and vertically averaged spectra for (a) kinetic energy (m2 s22), (b) vertical motion (m2 s22), (c) temperature (K2),

(d) specific humidity (g2 kg22), (e) rain1 cloud water mixing ratio (g2 kg22), and (f) ice 1 snow1 graupel mixing ratios (g2 kg22). Gray

lines show spectra of the truth signal; red lines the spectra of the CNTL prior mean; black lines show spectra of CNTL error (difference

between CNTL prior mean and the truth); and green lines show spectra of CNTL ensemble variance.
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most variables and scales, the ensemble spread well

represents the prior error, and no filter divergence oc-

curred. Figure 5 also shows the spectra from the CNTL

prior ensemble mean and truth signals as references.

The two reference spectra match at the large scales;

however, the ensemble-mean spectral power are lower

than the truth at smaller scales. This drop in spectral

power is due to the smoothing of small-scale features

that are dislocated among the members, which to a

certain extent reflects the more limited predictability for

small scales, where error grows and displacing these

features at a higher rate than the data assimilation cycles

can constrain. YZ17 characterized the predictability

limits by comparing the ensemble spread spectra to the

ensemble mean reference spectra. Going from large to

small scales, at a given time, the ensemble spread rea-

ches and exceeds the signal level from the reference

(signal-to-noise ratio smaller than 1), indicating loss of

predictability. Notice that hydrometeors and vertical

motion (w) reach predictability limits at larger scales

than temperature (T), specific humidity (Q), and winds.

At even smaller scales, when signal-to-noise ratio is

dropped significantly below 1, the error spectra match

the truth signal (error saturation). Scales smaller than

200 km appear to have saturated hydrometeor and w

errors and wind, T, and Q errors approaching their

predictability limits at 3 h in the prior ensemble.

Therefore, the following diagnostics will filter out these

smaller scales for a clearer demonstration of observation

impact. For the sake of simplicity, ‘‘NoDA’’ will refer to

NoDAensemblemean and ‘‘CNTL’’ to CNTL posterior

ensemble mean.

Figure 6 compares the longitude–time plots of sur-

face precipitation fromNoDA and CNTL to the truth.

The NoDA mean precipitation signal is much weaker

than the truth, although it still captures the pre-

cipitation events around days 6, 11, and 14–17. On the

other hand, the CNTL analysis precipitation better

agrees with the truth than NoDA. The amplitude,

location, timing, and propagation of the precipitation

signals are much improved by assimilating the obser-

vations. Snapshots of low-level horizontal wind and

relative humidity fields from NoDA and CNTL just

prior to the precipitation event at day 6 are compared

to truth in Fig. 7. The truth low-level flow forms a

convergence line and an anticyclonic shear around the

precipitation, and a cyclonic gyre is located northeast

to the precipitation. Although NoDA has the perfect

FIG. 6. Longitude–time Hovmöller diagrams of precipitation (mm day21) averaged over 08–58N latitudes from (a) truth

simulation, (b) NoDA ensemble mean, and (c) CNTL posterior ensemble mean. The precipitation fields are filtered for

l . 200 km.
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lateral boundary conditions by the current OSSE de-

sign, the convergence line and precipitation peaks are

almost missing by the ensemble simulation without

data assimilation. EnKF assimilation of satellite ob-

servations in CNTL recovers the flow pattern, al-

though the location of precipitation is still slightly but

noticeably different from the truth. Similarly, CNTL

has a better representation of atmospheric moisture

near the line of precipitation than NoDA as shown

from the relative humidity fields. Note that CNTL

has a weaker precipitation signal because of the

averaging among members that have precipitation

at different locations. Although small-scale signals

(l, 200 km) are filtered out, this effect is still present.

Figure 8 shows time series of the domain-averaged

root-mean-square errors (RMSEs) with respect to the

truth from NoDA, CNTL, and the forecasts from CNTL.

Zonal wind (u) and meridional wind (y) errors are com-

bined and shown as root-mean difference kinetic energy

(RM-DKE). Difference kinetic energy (Zhang et al.

2002) is defined as (u02 1 y02)/2, where u0 and y0 are the

errors in u and y, respectively. The forecasts are used to

evaluate how long in time the prediction skill can be re-

tained. The posterior ensemble mean is lack of small-

scale signals, which is unrealistic and not necessarily in

physical balance. Therefore, an ensemble forecast is re-

quired. Schwartz et al. (2014) suggested that sub-

ensembles of 20–30 members will have comparable

forecast skills with a full 50-member ensemble. In this

study, a small 10-member ensemble forecast is per-

formed, and forecast errors are calculated from the mean

of ensemble forecasts. The directly observed variables

(u, y,T, andQ) all show evident error reduction in CNTL

from NoDA. The hydrometeor mixing ratios and w are

also improved slightly from the better flow pattern and

thermodynamic structures. The horizontal wind,T, andQ

forecast errors grow linearly for the first day and more

flow dependent afterward as errors approach the NoDA

level. Hydrometeor andw error growth is flow dependent

almost right from the beginning. The apparent error

peaks at days 6, 11, and 14–17 are associated with the

precipitation episodes.

Figure 9 shows vertical error profiles from NoDA,

CNTL, and the forecasts, and Fig. 10 shows their spectra.

FIG. 7. (a)–(c) Snapshots of 850-hPa streamlines and 3-h accumulated precipitation (shading; mm) and (d)–(f) 850-hPa relative

humidity (%) after 5.5 days of cycling (valid at 1200 UTC 21 Oct). Results are compared for (a),(d) truth simulation, (b),(e) NoDA

ensemble mean, and (c),(f) CNTL posterior ensemble mean. All fields are filtered for l. 200 km. The left half of the OSSE domain is

shown (108S–108N, 558–758E).
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The forecast errors at certain lead times are averaged

over 10 forecast runs during the test period (five forecasts

starting from 0000 UTC on days 5, 7, . . . , 13, and five

forecasts starting 1200 UTC). Errors peak at different

vertical levels for each variable. Horizontal wind, w, T,

and solid hydrometeor (ice, snow, and graupel) errors

have peaks at upper levels that associate with cloud

tops. Deep convective clouds are likely responsible for

the liquid hydrometeor (rain and cloud) errors at

midlevel, while shallow low-level clouds likely induce

errors in horizontal wind, T, and Q around 900 hPa.

Their spectral error distribution confirms that im-

provement from NoDA to CNTL is mostly at scales

larger than 200 km. The forecast errors saturate faster

for smaller scales. For 200–500-km scales, error satu-

rates after 2 days; for scales larger than 1000 km, errors

have not reached saturation after 4 days. The hydro-

meteors and w have faster small-scale error growth

than other variables. This scale- and variable-dependent

forecast error growth is consistent with the findings from

Bei and Zhang (2014) and YZ17.

5. Relative impact from different observing
networks

The 1Met7 experiment assimilates Met7 channel-3

Tb in addition to CNTL. Figs. 11a–d shows a snapshot

of its resulting channel-2 Tb as an independent verifi-

cation in comparison to other experiments. In CNTL,

the assimilation of ATOVS and AMV recovers the

large-scale precipitating cloud cluster from NoDA al-

ready. However, its small-scale details of convective

clouds are still erroneous comparing to the truth.

The1Met7 result has a better agreement with the truth

for the location and strength of cloud clusters (low Tb)

than CNTL. The horizontal distribution of ice, snow,

and graupel, to which infrared Tb is most sensitive, are

shown in Figs. 11e–h. Although not perfect comparing

to the truth, the 1Met7 hydrometeors are improved

over CNTL.

The 1CYGNSS experiment assimilates CYGNSS

wind speed in addition to CNTL, and another experi-

ment NoProfile assimilates bothMet7-Tb and CYGNSS

FIG. 8. Times series of domain-averaged (a) RM-DKE (m s21) and RMSEs of (b) vertical motion (m s21), (c) temperature (K),

(d) specific humidity (g kg21), (e) rain1 cloud water mixing ratio (g kg21), and (f) ice1 snow1 graupel mixing ratio (g kg21). The errors

are also averaged over the vertical column and filtered for l . 200 km. Black lines show error from CNTL posterior ensemble mean and

gray lines fromNoDA ensemble mean. Colored lines show error evolution from ensemble forecasts initiated at days 5, 7, 9, 11, 13, and 15.

All ensemble means are calculated from 10 members.
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in addition to CNTL but excludes ATOVS profiles.

Figure 12 plots the error time series, vertical profiles,

and spectra from these experiments for comparison.

The 1Met7 can effectively reduce errors in ice, snow,

and graupel mixing ratios (Fig. 12d) but not so much for

rain and cloud (not shown). Horizontal wind, T, and Q

are also slightly improved by assimilating Met7-Tb.

Since Met7-Tb has a much higher horizontal resolution

than ATOVS profiles, it can potentially improve the

predictability for scales smaller than 200 km. The sum-

med error spectra of solid hydrometeors (Fig. 12l) show

that 1Met7 indeed reduces error at small scales. How-

ever, in this study, the 3-h cycling period is too long to

constrain errors at these scales before their saturation.

Potentially, assimilatingMet7-Tb at hourly intervals and

with a higher-resolution model will better utilize its

positive impact. The single-channel Tb assimilated is

also not providing sufficient vertical profile information.

Comparing NoProfile to CNTL, it is evident that

ATOVS profiles constrain better the horizontal wind, T,

and Q. The ATOVS profiles combine the information

from multiple satellite Tb images that are sensitive to

different vertical heights, effectively having better ver-

tical resolution than a single-channel Tb. The future

development in all-sky infrared and microwave Tb as-

similation will allow a fairer comparison between direct

Tb assimilation and assimilating retrieved profiles. In

addition to AMV wind, CYGNSS observations provide

extra wind information for the lowest levels, reducing

horizontal wind, T, and Q errors from surface up to

850 hPa. This improvement is mostly found for larger

scales because of its moderate resolution. In NoProfile,

FIG. 9. Vertical profiles of (a) RM-DKE (m s21) and RMSEs of (b) vertical motion (m s21), (c) temperature (K), (d) specific humidity

(g kg21), (e) rain 1 cloud water mixing ratio (g kg21), and (f) ice 1 snow 1 graupel mixing ratio (g kg21). The errors are averaged over

days 5–18 and filtered for l. 200 km. Black lines show error from CNTL posterior ensemble mean and gray lines from NoDA ensemble

mean. Colored lines show error at forecast lead time of 12 h and 1, 2, and 4 days. All ensemble means are calculated from 10 members.
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the denial of ATOVS profiles causes a larger error in

midlevel horizontal winds; however, their errors at up-

per and low levels remain small with the assimilation of

AMV and CYGNSS (Fig. 12e).

To further test the sensitivity to resolution of the retrieval

T and Q profiles from either ATOVS or GPSRO, several

additional experiments are conducted assimilating re-

trieved profiles in addition to NoProfile. The 1ATOVS

assimilates the ATOVS profiles at their current resolution,

while1ATOVScoarse assimilates themwith temporal and

horizontal resolution reduced by half. The 1GPSRO as-

similates GPSRO profiles at COSMIC-2 resolution,

while1GPSROdense assimilates a denser version from the

hypothetical populated CubeSat constellation. Note that

the localization distance is increased for coarse networks

according to the increase in observation intervals. Figure 13

compares their resulting error time series, vertical profiles,

and spectra.When reduced-resolutionATOVSprofiles are

assimilated, their impact is also reduced for all variables and

scales. The COSMIC-2 GPSRO profiles bring an impact

that is approaching but from time to time less than the

reduced-resolution ATOVS profiles. The random lo-

cation of these profiles is a disadvantage over the uni-

formly spaced ATOVS profiles in continuous sampling

of convective systems of interest. This issue is likely re-

solved with an increase in observation density. As shown

in1GPSROdense, theCubeSat constellationwith 25 times

more data will yield a retrieval product dense enough

to surpass the performance of the current network of

ATOVS profiles.

In 1ATOVS, the ATOVS profiles are assumed to

have;40 independent pieces of information for T in the

vertical, which likely overestimates the information

content and may yield an analysis that is too optimistic.

FIG. 10. As in Fig. 9, but showing the temporally and vertically averaged error energy spectra. The spectral errors are in variance units

(m2 s22 for DKE and K2 for temperature). The spectrum is shown with respect to global horizontal wavenumber, k 5 (k2
x 1k2

y)
1/2, but

labeled with its corresponding wavelength (l 5 k21).
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To at least partially address this concern, two additional

experiments are conducted. The 1ATOVSthinV as-

similates ATOVS profiles with vertical levels thinned to

10 levels for T and 4 levels forQ, and1ATOVSerror1.5

assimilates ATOVS profiles with vertical resolution

unchanged but errors for bothT andQ inflated to 150%.

Note that for1ATOVSthinV, the verticalROI is enlarged

to 20 levels as the observations are thinned in the vertical.

Figure 14 shows that reduction in vertical resolution/

accuracy does not considerably degrade the analysis ac-

curacy. The increase in analysis error in these experiments

is much smaller compared to 1ATOVScoarse with re-

duced horizontal and temporal resolutions. This also in-

dicates that the vertical information content estimated to

contain ;10 independent pieces of information is likely

able to capture the key vertical modes in the tropics.

Figure 15 compares the direct assimilation of GPSRO

N profiles (1GPSRON and 1GPSROdenseN) with

assimilation of retrieved T and Q profiles (1GPSRO

and 1GPSROdense). The overall analysis error is sim-

ilar for both assimilation strategies. The nonlinear ob-

servation operator results in a shorter decorrelation

length scale, which requires the localization distance to

be shorter to achieve similar performance. The non-

linearity also causes longer filter spinup period for Q

(Fig. 15c) and causes the analysis for T and winds to be

less accurate than those from assimilating retrieved

profiles (Figs. 15a and 15b). Since our idealized experi-

ment assumes no errors in the retrieval process and error

correlation and bias are not considered, the perfor-

mance of assimilating retrieval profiles is an optimistic

expectation compared to real-data cases.

6. Observation impact on CCEWs

The same space–time bandpass filter from section 2 is

applied to posterior ensemble mean to evaluate the

observation impact for each CCEW mode. The poste-

rior mean fields lack the spatial and temporal coverage

to directly filter for large-scale waves; thus, the month-

long large-domain truth simulation is used to fill in the

gaps before applying the bandpass filter. Figure 16 plots

the longitude–time diagrams of the filtered 850-hPa

zonal wind from NoDA and CNTL and compares

them to the truth, and Table 4 quantifies these errors.

Two error sources can lead to a large RMSE: the waves

being out of phase with the truth and/or the amplitude of

the waves being wrong. The pattern correlation quan-

tifies the contribution from phase errors; if the waves are

perfectly in phase with the truth (correlation equals 1),

the RMSE is solely due to amplitude errors. Compared

to the truth, NoDA does capture most of the large-scale

low-frequency wave phases. For theMJO, its correlation

is up to 0.98, indicating that using a perfect LBC in the

current OSSEs plays a dominant role in modulating the

model solution ofMJO, which agrees with the sensitivity

experiment results from Zhang et al. (2017). The ER,

Kelvin, MRG and large-scale WIG waves also have

FIG. 11. (a)–(d) Snapshots of channel-2 Tb (K) and (e)–(h) column-integrated ice (gray), snow (red), and graupel (blue) mixing ratios

(g kg21) after 5.5 days of cycling (valid at 1200 UTC 21 Oct) from (a),(e) truth simulation, (b),(f) NoDA ensemble mean, (c),(g) CNTL

posterior ensemble mean, and (d),(h) 1Met7 posterior ensemble mean.
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reasonable forecasted phases in NoDA, but errors grow

as wave phases propagate away from LBC and further

downstream. TheER andMRGwesterly signals at day 7

start from the middle of the domain, which is not cap-

tured by NoDA. The large-scale WIG signals at the east

side of the domain are much weaker in NoDA than the

truth, and for intermediate-scaleWIGwaves, the signals

are almost wiped out in the east half of the domain.

By assimilating observations in CNTL, the phase and

amplitude of these wave modes are significantly im-

proved. Figure 17 shows the error reduction from

NoDA to CNTL as measured by root-mean difference

total energy (RM-DTE; Melhauser and Zhang 2012).

The MJO amplitude error is further reduced in CNTL

for all variables. For ER, Kelvin, MRG, and large-scale

WIGwave, the phase correlation is improved from;0.9

FIG. 12. (a)–(d) Time series, (e)–(h) vertical profiles, and (i)–(l) spectra of domain-averaged analysis errors in (a),(e),(i) kinetic energy,

(b),(f),(j) temperature, (c),(g),(k) specific humidity, and (d),(h),(l) summed error from ice, snow, and graupel mixing ratios. Errors are

shown as RMSE (RM-DKE for kinetic energy) except that the spectra show error variance. The time series are vertically averaged and

filtered for l. 200 km; vertical profiles are averaged over time and filtered for l. 200 km; spectra are averaged temporally and vertically.

Results from NoDA, CNTL, 1Met7, 1CYGNSS, and NoPofile are compared.
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to almost perfect (Table 4). As for the more challenging

intermediate-scale WIG waves, the phase correlation is

also much improved for all variables (e.g., from 0.51 to

0.83 for zonal wind). The precipitation has larger phase

errors than other variables because of its more limited

predictability. Table 5 shows the relative impacts on

WIG waves from assimilating different observations.

Since these sensitivity experiments are only run for

9 days, they are not diagnosed for lower-frequency

large-scale waves. Assimilating AMV, Met7-Tb, and

CYGNSS (NoProfile) significantly improves both large-

scale and intermediate-scale WIG waves. The addition

of ATOVS profiles further reduces the errors in all

variables. The additional merit from higher-resolution

profiles appears to be more important for better analysis

and prediction of intermediate-scale WIG waves.

7. Concluding remarks

In this study, a perfect-model OSSE is performed to

evaluate the potential impact from assimilating satellite

observations on the practical predictability of tropical

multiscale weather systems. Following YZ17, a regional

WRF Model is configured to simulate the CCEWs

during a 17-day period within the active phase of the

October 2011 MJO event. The simulation captures the

FIG. 13. As in Fig. 12, but showing results from NoDA, NoProfiles, 1ATOVS, 1ATOVScoarse, 1GPSRO, and 1GPSROdense.
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strong precipitation signals associated with the MJO,

Kelvin, and IG waves. The ER and MRG waves have

relatively weak precipitation but well-defined zonal

wind signals. Most wave components are at scales larger

than 1000km except for IG waves that have a smaller-

scale subdiurnal component. The OSSE assumes that a

perfect forecast model is used, and observation errors

are also modeled perfectly during data assimilation.

Table 3 summarizes the benefits of assimilating each

observing network every 3 h using EnKF. According

to Zhang et al. (2017), the global circumnavigating

signals play an important role in MJO initiation inside

their domain. Therefore, the perfect LBC alone is

able to provide the correct phase of most of the large-

scale waves (MJO, ER, Kelvin, MRG), and their

errors are dominated by amplitude errors. The smaller-

scale high-frequency waves (WIG), on the other hand,

are less well constrained by LBC, and large phase errors

occur without data assimilation. The CNTL experiment

tests assimilation of ATOVS T and Q profiles and

AMV wind observations for the 17-day period and

showed an improvement in winds, T, Q, and hydro-

meteors for scales larger than 200 km. For large-scale

(l . 1000 km) CCEWs, their predictability limit can be

extended by about 4 days after assimilation. However,

the small-scale (l , 500 km) waves have more limited

FIG. 14. As in Fig. 12, but showing results from NoProfiles, 1ATOVS, 1ATOVScoarse, 1ATOVSthinV, and 1ATOVSerror1.5.
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predictability with the extra prediction skill lasting for

less than 1 day. The EnKF assimilation further im-

proved amplitude for the large-scale waves and re-

duced phase errors of intermediate-scale WIG waves

as well. Assimilating CYGNSS wind speed retrievals

reduces errors in large-scale low-level horizontal wind

and T. It provides complementary wind information to

the surface and low levels where not many AMVs are

available.

TheMet7 infrared Tb has higher horizontal resolution

and thus further improves themodel variables at smaller

scales. The improvement is found mostly in the ice,

snow, and graupel mixing ratios near cloud top. How-

ever, the 3-h cycling is probably not frequent enough to

maintain the extra prediction skill at small scales. As-

similating Tb from only one infrared channel does not

constrain model dynamic and thermodynamic variables

as efficiently as the ATOVS profiles. The later has the

advantage of combining multiple satellite images that

have information at different vertical levels. The uni-

form horizontal distribution of ATOVS profiles yields a

more persistent observation impact than the sporadic

sampling of sparser GPSRO profiles. At COSMIC-2

resolution, GPSRO profiles have impacts approaching

FIG. 15. As in Fig. 12, but showing results from NoProfiles, 1GPSROdenseN, 1GPSRON, 1GPSROdense, and 1GPSRO.
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half of those from ATOVS profiles. Although the

number of profiles is likely still 10 times fewer than the

reduced-resolution ATOVS, their higher vertical reso-

lution and more accurate retrievals of both T and Q

bring more impact per profile. The better horizontal

resolution from the ATOVS retrieval profiles and better

vertical resolution from the GPSRO profiles can po-

tentially complement each other. With expected future

improvement in CubeSat resolution, the GPSRO pro-

files may have an impact comparable to or exceeding

that from the current ATOVS profiles. The high-

resolution profiles can potentially improve smaller-

scale weather systems, such as the subdiurnal WIG

waves coupled with transient convective processes.

While these results encourage the future develop-

ment and use of satellite-based observations for the

analysis and prediction of tropical weather, the real-data

application faces more challenges. There may be non-

trivial uncertainties in model dynamics, physics schemes,

and forward operator not accounted by the present

study. The exact retrieval algorithms are not used in

this study to generate ATOVS and GPSRO profiles;

thus, the simulated errors for these synthetic profiles do

not account for complicated error sources from the

retrieval processes. Thus, the idealized experiment re-

sults should be interpreted with these caveats in mind.

The assimilation of these satellite observations in real-

data cases needs to be tested in future studies. In this

study, a limited-area domain is used and a perfect LBC

is specified, and uncertainties from the LBC and fore-

cast model itself are not accounted for. Therefore, the

NoDA experiment is not intended to account for all

realistic sources of forecast errors that can impact

practical predictability. Since we only focused on the

FIG. 16. Longitude–time Hovmöller diagrams of 850-hPa zonal wind (color shading; m s21) averaged over 08–58N from (a)–(f) truth

simulation, (g)–(l) NoDA ensemble mean, and (m)–(r) CNTL posterior ensemble mean. (left to right) The fields are filtered for each

CCEW.
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impact of assimilating data in a limited-area domain for a

selected period, one should be cautious in generalizing

our findings. Although the 9-km horizontal grid spacing

used is comparable to the current operational global

models, it will be interesting to further test the sensi-

tivity of EnKF performance in satellite data assimilation to

the horizontal resolution, especially for smaller-scale trop-

ical weather phenomena and CCEWs. In this study, we

FIG. 17. Longitude–timeHovmöller diagrams of RM-DTEwith respect to the truth (m s21) averaged over 08–58N and vertical levels for

(a)–(f) NoDA ensemble mean and (g)–(l) CNTL posterior ensemble mean. (left to right) A space–time filter is applied to u, y, and T for

each CCEW before calculating the RM-DTE.

TABLE 4. RMSEs with respect to the truth simulation for u (m s21), T (K),Q (g kg21), and precipitation (mmday21) filtered for CCEW

types described in Table 1. The errors are averaged over latitude (08–58N) and time (17-day period). Pattern correlations with the truth are

shown in parentheses. Results are compared between NoDA ensemble mean and CNTL posterior ensemble mean.

CCEW type Experiment u T Q Precipitation

MJO NoDA 0.39 (0.98) 0.063 (0.98) 0.072 (0.99) 1.97 (0.99)

CNTL 0.17 (1.00) 0.025 (1.00) 0.020 (1.00) 0.53 (1.00)

ER NoDA 0.50 (0.90) 0.064 (0.90) 0.073 (0.94) 1.18 (0.88)

CNTL 0.19 (0.99) 0.033 (0.97) 0.027 (0.99) 0.61 (0.98)

Kelvin NoDA 0.40 (0.92) 0.089 (0.92) 0.078 (0.87) 2.37 (0.83)

CNTL 0.13 (0.99) 0.025 (0.99) 0.027 (0.98) 0.69 (0.99)

MRG NoDA 0.33 (0.91) 0.029 (0.85) 0.088 (0.90) 1.00 (0.77)

CNTL 0.15 (0.98) 0.012 (0.98) 0.021 (0.99) 0.41 (0.97)

WIG (L) NoDA 0.38 (0.82) 0.067 (0.90) 0.078 (0.80) 2.83 (0.79)

CNTL 0.14 (0.98) 0.025 (0.99) 0.032 (0.97) 1.20 (0.97)

WIG (M) NoDA 0.38 (0.51) 0.097 (0.69) 0.060 (0.54) 4.88 (0.35)

CNTL 0.25 (0.83) 0.061 (0.89) 0.047 (0.77) 2.83 (0.84)

MAY 2018 Y I NG AND ZHANG 1695



highlighted the different performance from ATOVS and

GPSRO profiles due to their spatial coverage and resolu-

tion. A similar OSSE can be useful for assessing the cost

effectiveness of other future space-based sensors. We also

believe that a more systematic direct assimilation of satel-

lite Tb is needed for substituting the assimilation of

retrieved profiles. The synthetic observations that are

available evenly in space and time allow better quan-

tification of multiscale analysis errors. One caveat of

this assumption is that results are rather optimistic in

terms of the information content and availability of the

current satellite observing networks. On the other hand,

although methods like the AOEI make the direct assim-

ilation of Tb possible, we believe the filter performance is

still suboptimal, and a better methodology in dealing with

nonlinearity in forward operator is still much desired.
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