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ABSTRACT

Covariance localization remedies sampling errors due to limited ensemble size in ensemble data assimi-

lation. Previous studies suggest that the optimal localization radius depends on ensemble size, observation

density and accuracy, as well as the correlation length scale determined bymodel dynamics. A comprehensive

localization theory for multiscale dynamical systems with varying observation density remains an active

area of research. Using a two-layer quasigeostrophic (QG) model, this study systematically evaluates the

sensitivity of the best Gaspari–Cohn localization radius to changes in model resolution, ensemble size,

and observing networks. Numerical experiment results show that the best localization radius is smaller

for smaller-scale components of a QG flow, indicating its scale dependency. The best localization radius

is rather insensitive to changes in model resolution, as long as the key dynamical processes are

reasonably well represented by the low-resolution model with inflation methods that account for rep-

resentation errors. As ensemble size decreases, the best localization radius shifts to smaller values.

However, for nonlocal correlations between an observation and state variables that peak at a certain

distance, decreasing localization radii further within this distance does not reduce analysis errors. In-

creasing the density of an observing network has two effects that both reduce the best localization radius.

First, the reduced observation error spectral variance further constrains prior ensembles at large scales.

Less large-scale contribution results in a shorter overall correlation length, which favors a smaller lo-

calization radius. Second, a denser network provides more independent pieces of information, thus a

smaller localization radius still allows the same number of observations to constrain each state variable.

1. Introduction

Covariance localization (Hamill et al. 2001) is a

pragmatic procedure for ensemble filters (Houtekamer

and Zhang 2016) to remedy sampling errors due to

limited ensemble size. In practice, the ensemble size is

usually much smaller than the number of state variables

and observations, and is not large enough to span all

possible directions in phase space for the update, which

is known as the rank problem (Lorenc 2003). If no (or

insufficient) localization is applied, the spurious long-

distance sample-estimated correlation is not removed

and contaminates the filter performance. On the other

hand, if too much localization is applied, it not only

discards useful observations, but also introduces noise at

small scales due to the artificial tapering of the analysis

impact. The noise introduced by localization also causes

physical imbalance of the analysis (Kepert 2009;

Greybush et al. 2011; Lange and Craig 2014). A simple

localization function is the Gaspari and Cohn (1999)Corresponding author: Fuqing Zhang, fzhang@psu.edu
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fifth-order polynomial with a specified cutoff radius

(hereafter referred to as the GC function). This tapering

function can be either applied directly to the back-

ground error covariance in model space (Houtekamer

and Mitchell 1998), or to the analysis increment limiting

the impact of observations to nearby state variables

(Houtekamer and Mitchell 2001; Hamill et al. 2001).

The result of either approach is similar but the effective

localization radius is smaller for the latter (Sakov and

Bertino 2011; Nerger et al. 2012). The optimal locali-

zation radius finds a balance between the removal of

sampling noise and the preservation of useful observa-

tion information. Operationally, the tuning of localiza-

tion radius considers multiple factors including fit to

observations, balance, computational cost, model reso-

lution, and observation density. Manual tuning of the

localization radius by trial and error for a particular

model and ensemble filtering system can be very costly.

One may desire a more flexible adaptive scheme to de-

termine the localization a priori. However, to design

such a scheme requires knowledge of the complex co-

dependence of localization on the underlying correla-

tion scale determined by the model dynamics, the

ensemble size, and the observing network.

Anderson (2007) demonstrated that the optimal lo-

calization function could be quite different from a

smoothed Gaussian. This motivates the exploration of

localization functions that adapt to the flow-dependent

error covariance (Anderson 2007, 2012; Bishop and

Hodyss 2007, 2009). Anderson andLei (2013) derived an

empirical localization function (ELF) based on the in-

formation from an observing system simulation experi-

ment (OSSE). The physical intuition behind these

adaptive methods is that localization should only reduce

the observation impact when the signal-to-noise ratio is

low. In practice, localization distance is often tuned to

scale with the overall correlation length. The tuned lo-

calization distance is O(1000) km for global modeling

and data assimilation systems, but a much shorter lo-

calization distance of O(10) km is found more suitable

for convective weather systems using high-resolution

models and observations (Zhang et al. 2009; Sobash and

Stensrud 2013). Since the horizontal correlation length

scale increases with height, several studies have found

that localization radius should also increase with height

(Zhu et al. 2013; Houtekamer et al. 2014; Kleist and Ide

2015). Lei et al. (2015) demonstrated that a narrower

horizontal but wider vertical localization scale is pre-

ferred for precipitating regions. For atmospheric flows

with multiple spatial scales (e.g., high-resolution model

domains capturing both synoptic- and convective-scale

flows), the data assimilation scheme should handle

multiple correlation lengths simultaneously. Zhang et al.

(2009) first proposed a successive covariance localiza-

tion (SCL) approach that localizes the observation im-

pact with a hierarchy of radii to account for different

physical length scales. Multiscale localization methods

are further explored and found more advantageous than

normal single-scale localization in several other studies

(Miyoshi and Kondo 2013; Li et al. 2015; Buehner and

Shlyaeva 2015).

Despite all these efforts to develop a better localiza-

tion scheme, a comprehensive theory of localization is

still lacking. It is still not clear what makes a smaller

localization radius more suitable for convective-scale

weather systems, whether it is due to the higher model

and observation resolution or the shorter overall cor-

relation lengths. Zhen and Zhang (2014) systematically

explored the codependence of localization on the un-

derlying physical scales and the ensemble size for a

single observation. As a result, an optimal localization

scheme was derived and tested in the Lorenz (1996)

model framework. Flowerdew (2015) proposed a similar

method but allowed the localization function to have a

shape other than Gaussian. These methods are yet to be

tested in more complex models that contain multiple

physical scales. A theory for optimal localization with a

dense observing networkmay bemore complicated than

the theory for a single observation (Flowerdew 2015).

Previous studies have documented the sensitivity of lo-

calization to observation density. From a perfect-model

OSSE, Anderson (2007) showed that the optimal lo-

calization function is broader for regions with dense

observations than for an isolated observation. However,

in real-data experiments, Dong et al. (2011) and other

studies found that a smaller localization radius is nec-

essary to achieve better analysis accuracy for denser

observing networks. Kirchgessner et al. (2014) sug-

gested that optimal localization radius is obtained when

the effective observation dimension is about equal to the

ensemble size for dense observations. Periáñez et al.

(2014) derived an optimal localization radius by high-

level heuristic arguments assuming a uniform observing

network, and they also suggest using a smaller localiza-

tion radius for denser observations. These studies sug-

gest there may be a more complicated relation between

observing network and localization.

In this study, we seek to systematically explore the

relative importance of physical correlation lengths,

model resolution, ensemble size, and observing net-

works to the selection of localization radius, which will

provide insights on the development of a better locali-

zation scheme for multiscale weather systems. A series

of sensitivity experiments are conducted using the two-

layer quasigeostrophic (QG) model. The QG model,

although simple, can capture the essence of multiscale
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atmospheric dynamics. GC functions with fixed cutoff

radii are investigated in a serial ensemble Kalman filter

(EnKF), and the best localization radius for a given

scenario is determined by trial and error. Section 2 de-

scribes the QG model and EnKF configuration and the

design of sensitivity experiments. Section 3 demon-

strates the scale dependency of the best localization

radius, and is followed by sensitivity experiment results

in section 4 that show how the best localization radius

varies in response to changes in model resolution, en-

semble size, and observing network. Our findings are

summarized in section 5.

2. Experimental design

a. Two-layer quasigeostrophic model

The two-layer QG model described in Smith et al.

(2002)1 is adopted to perform numerical experiments in

this study. Previous literature has comprehensively

documented its dynamical processes (Larichev andHeld

1995; Held and Larichev 1996; Salmon 1998; Smith et al.

2002). Harlim and Majda (2010) used this model to in-

vestigate the assimilation of a sparse observing network

for the atmosphere. The model is defined on a doubly

periodic square domain and simulates the large-scale

atmospheric flow with baroclinic instability induced

from an imposed vertical wind shear. Background

streamfunction is defined asC1 52Uy for the top layer

and C2 5Uy for the bottom layer, where U is the mean

flow. The prognostic equations for perturbations around

this background state can be written as
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where subscript 1 denotes the top layer and 2 denotes

the bottom layer; c is the perturbation streamfunction

and q is the perturbation QG potential vorticity;

J(c, q)5 ›xc›yq2 ›yc ›xq is the Jacobian term repre-

senting the nonlinear advection; b is the meridional

gradient of the Coriolis parameter; kd is the Rossby

deformation wavenumber; and r is the strength of linear

Ekman drag that removes large-scale energy buildup

from the bottom layer. Two characteristic wavenumbers

corresponding to the Rossby deformation scale and the

Rhines scale are defined as

k
d
5 (L/2p)f /

ffiffiffiffiffiffiffiffi
g0H

p
(5)

and

k
b
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ffiffiffiffiffiffiffiffiffiffi
b/U

0

q
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respectively, where f is the Coriolis parameter, g0 is the
reduced gravity, H is the vertical scale height, U0 is the

horizontal velocity scale, and L/2p is a scaling factor.

The kinetic energy spectrum of the QG model features

an energy injection caused by baroclinic instability near

the deformation scale k21
d . For scales larger than the

deformation scale (k, kd), there is an inverse cascade of

kinetic energy with a25/3 power law. The cascade halts

at a scale k21
b,r that is determined by both the b effect and

the bottom drag r. At scales smaller than the de-

formation scale (k. kd), the enstrophy cascades for-

ward and dissipates at the smallest scales, resulting

in a23 power law for kinetic energy. The model mimics

this dissipation with an exponential cutoff filter that

removes energy buildup at the smallest scales [see ap-

pendix B of Smith et al. (2002)].

A baseline configuration used in this study sets the

model parameters as kd 5 20, kb 5 4, U 5 0.2U0, and

r 5 0.5. Let L 5 n dx be the domain size, where n is the

number of grid points in both zonal and meridional di-

rections and dx is the grid spacing. Themodel resolution is

set to n 5 128, which resolves kmax 5 63 modes in each

direction. The exponential filter cutoff wavenumber is

k 5 40. These parameters are chosen similarly to the at-

mospheric case fromHarlim andMajda (2010) except that

the deformation wavenumber here is larger to produce a

wider range of scales with baroclinic instability. The typi-

cal deformation length scale for the large-scale atmo-

spheric flow is 1000km. With this scaling, the model grid

spacing dx corresponds to ;80km in real atmospheric

models. The average eddy turnover time is ;0.15 non-

dimensional time units, which corresponds to ;2 days.

b. Ensemble filter

The data assimilation method used in this study is

a serial version of the ensemble square root filter

(Whitaker and Hamill 2002), which is described as fol-

lows. Let x be the state variable vector, and let yo be the

observation vector. An ensemble of N members is in-

troduced to estimate the flow-dependent background

1 The model code is available at http://www.cims.nyu.edu/;
shafer/tools/.

FEBRUARY 2018 Y I NG ET AL . 545

http://www.cims.nyu.edu/~shafer/tools/
http://www.cims.nyu.edu/~shafer/tools/


error covariance. For each observation indexed with sub-

script j, the following equations are applied to update the

ensemble serially to reach the final analysis:

(x)
update

5 x1 r
j
+K

j
(yoj 2H

j
x) , (7)

(x0i)update 5 x0i 1g
j
r
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(8)

where x is the ensemble mean, x0i is the ensemble per-

turbation for the ith member, rj is a localization func-

tion, Kj is the Kalman gain defined as

K
j
5
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and gj is a square root modification term defined as
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Here cov(Hjx, x) is the background error covariance

between observations and state variables, var(yoj ) is

the observation error variance, and var(Hjx) is the

associated background error variance. The linearized

observation operator Hj is not used in this study. In-

stead, the Hjx and Hjx
0
i terms are approximated by

hj(x) and hj(xi)2 hj(x), respectively, where hj is the

nonlinear observation operator and overbars denote

ensemble averages.

GC functions with fixed localization radii are adopted

as the localization function r. Localization radius [radius

of influence (ROI)] is defined as the physical distance at

which the analysis increments are tapered to zero. The

adaptive covariance relaxation method (Ying and

Zhang 2015) is also applied tomaintain ensemble spread

and prevent catastrophic filter divergence.

c. Observing network and assimilation experiments

A control (CNTL) experiment is first performed using

the baseline configuration in section 2a. The truth (na-

ture run) is generated by initializing the QGmodel with

white noise and running themodel for 50 time units until

it reaches a quasi–steady state. A 15-time-units model

run (;200 days) during the quasi–steady state is taken as

the truth. Cycling data assimilation is performed using

an ensemble of N 5 64 members and assimilating syn-

thetic observations simulated from the truth every

Dt 5 0.05 time units, which yields 300 cycles in total.

Under a perfect-model assumption, the truth model

is used as the forecast model during cycling data

assimilation. Using the trial-and-error method, the best-

performing ROI that yields the lowest analysis error

variance is determined. Analysis errors are also de-

composed into spectral components to evaluate the

scale dependency in filter performance. Sensitivity ex-

periments are designed to test how the best-performing

ROI changes in response to changes in model resolu-

tion, ensemble size, and observing network. Table 1

summarizes themodel and filter parameters used in each

experiment. ROI is defined as a physical distance and

expressed in terms of the number of grid points in CNTL

(i.e., ROI 5 8 means a cutoff distance of 8dx). Cases

with ROI 5 8, 16, 32, 64, as well as no localization

(ROI 5 ‘), are tested for each experiment. Some ad-

ditional values of ROI are tested in the neighborhood of

the minimum analysis error to more accurately estimate

the best-performing ROI.

Instead of assimilating the state variable c directly, a

more challenging scenario is considered where temper-

ature u or horizontal winds (u and y) are observed from

the top model layer. Let kx and ky be the zonal and

meridional wavenumbers, respectively. The nonlinear

observation operators that convert c to u, y, and u can

be described in spectral space:

û52ik
y
ĉ , (11)

ŷ5 ik
x
ĉ , (12)

û52
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x 1 k2

y

q
ĉ , (13)

where hats denote the two-dimensional Fourier transform

of a variable. Figure 1 shows snapshots of the top-layer u

and u in comparison to the corresponding c from the truth

simulation. The u field is overall in phase with c but has

more small-scale details. On the other hand, u is not in

phase with c and their peaks are not collocated. Synthetic

observations are generated by first converting c from the

truth simulation to observations according to (11)–(13),

and then adding simulated observation errors randomly

drawn from a zero-mean normal distribution with an error

variance of s2. The observation errors are considered

uncorrelated both in space and in time. For CNTL, a

uniform observing network of top-layer u with s5 3 is

used. Although the bottom layer is not observed, the top-

layer observations provide information for both layers

because the flow simulated in CNTL is mostly barotropic,

especially for the large scales. However, not all model grid

points on the top layer are observed. Therefore, the hori-

zontal propagation of information is important for good

filter performance. Let Dx be the spacing between obser-

vations in both horizontal directions, the number of ob-

servations in each direction is no 5 n dx/Dx. For CNTL,
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the observation density is set to Dx5 3dx. For a uniform

observing network with independent random instrument

errors, the spectral variance of its observation error can

be exactly calculated. The observation error variance

associated with wavenumber k, R(k), is inversely pro-

portional to the number of observations n2
o:

R(k)5 2pks2/n2
o . (14)

TABLE 1. Description of model and filter parameters used in control and sensitivity experiments. In each experiment, a range of ROIs is

tested and the ROI that minimizes analysis RMSE is determined.

Expt Model and filter parameters (changes relative to CNTL)

CNTL kmax 5 63, kd 5 20, kb 5 4, U 5 0.2U0, r 5 0.5 (spectral peak at large scale);

Ensemble size N 5 64;

Assimilate u observations every 3dx with s 5 3 every t 5 0.05

Scale dependence

M_Scale U 5 0.5U0, r 5 6 (spectral peak at intermediate scale)

S_Scale kd 5 35, U 5 0.6U0, r 5 20 (spectral peak at small scale)

Sensitivity to model resolutiona

LowRes kmax 5 31 for both truth and forecast model

LowRes_Model kmax 5 31 forecast model but truth is from CNTL

LowRes2 kmax 5 21, kd 5 14 for both truth and forecast model

LowRes2_Model kmax 5 21, kd 5 14 forecast model but truth is from CNTL

Sensitivity to sampling errorb

N16, N32, N256, N1024 Ensemble size N changed to 16, 32, 256, and 1024

Sensitivity to observing networkc

ObsSparse, ObsDense Horizontal observation interval changed to 9dx and 1dx, respectively

ObsErrorX3, ObsError/3 Observation error standard deviation changed to s 5 9 and s 5 1, respectivelyd

a The ROI is in physical distance units (number of grid points from CNTL model); for example, ROI 5 8 means 8 grid points in CNTL,

which corresponds to 4 grid points in LowRes, and only 2.67 grid points in LowRes2.
b The ensemble size experiments are also repeated for the case where u and y are assimilated instead of u.
c The observing network experiments are first performed with regular (horizontally uniform) networks, then repeated with irregular

networks (randomly located) that match the density and accuracy of the regular ones.
d The observation error level is the same for ObsErrorX3 and ObsSparse; they both have 3 times larger RMSE than CNTL.

FIG. 1. Snapshots of (a) u and (b) u in color shadings and state variable c in black contours (solid lines for positive

and dotted lines for negative values). The c, u, and u variables are nondimensionalized. The scaling of the QG

model is described in section 2a.
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With fixed instrument error s, a denser observing network

yields lower observation error spectral variance thanks to

the larger number of observations. Sensitivity to changes in

observing network, including its density, accuracy, and

spatial homogeneity, will be tested in section 4c.

To diagnose filter performance, the analysis error

(difference between posterior ensemble mean and the

truth) variance is averaged over the cycling data as-

similation period. When u is assimilated, the state

variables will be converted to u to calculate the analysis

error variance. When u and y are assimilated, the

analysis error variance for u and y will be calculated

and then combined as an error kinetic energy, which is

defined as (u2 1 y2)/2. The errors are further decom-

posed into spectral components to facilitate the com-

parison across scales. The analysis error variance

associated with the wavenumber k component is de-

fined as

E(k)5 �
k2x1k2y5k2

«̂(k
x
, k

y
)

h i2
, (15)

where «̂ is the two-dimensional Fourier transform of the

analysis error andk5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x 1 k2

y

q
is the globalwavenumber.

Summing E(k) over a range of wavenumbers will yield

the mean square error (MSE), or root-mean-square

error (RMSE) if the square root is taken, associated

with this scale range. In this study, the spectrum is

divided into three bands: large (L; k 5 1–4),

intermediate (M; k 5 5–20), and small (S; k 5 21–63)

scales.

To generate the prior ensemble, randomwhite noise is

added to the truth initial condition for eachmember and

an ensemble forecast is run for a spinup period of 1.5

time units until the ensemble spread reaches climato-

logical level. Figure 2a shows the kinetic energy spec-

trum from the truth (black line) and time evolution of

error kinetic energy from the ensemble mean (colored

lines) during this spinup period. Error saturates when its

kinetic energy reaches the level of the reference kinetic

energy. TheM scale follows a25/3 power law associated

with the inverse energy cascade, where the small-scale

errors saturate faster than the large-scale errors and an

overall upscale error growth is present. As errors grow

upscale, they have more large-scale components, which

results in an increasing overall correlation length scale.

An estimation of this correlation length is shown in

Fig. 2b for u observations and Fig. 2c for u observations.

The mean absolute correlation (MAC) estimated from

the ensemble is averaged over the observing network

and plotted as a function of horizontal distance. Both

MACs for u and u are broadening over time. The MAC

for u has a nonlocal peak because u and cmaxima are not

FIG. 2. (a) Spectra of error kinetic energy from ensemble mean

(color coded with forecast time) and the time-averaged reference

kinetic energy from the truth (black) during an ensemble spinup

period of 1.5 time units. (b) Spatially averaged mean absolute

correlation (MAC) between u and c plotted as a function of hor-

izontal distance (number of grid points) also color coded with

forecast time as in (a). (c) As in (b), but showing correlation be-

tween u and c.
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collocated, and the correlation between u and c is overall

much lower than the correlation between u and c. The

ensemble after spinup is used as the prior for the ensuing

data assimilation cycles.

3. Scale-dependent best localization radius

Figure 3 shows the time evolution of u MSE at L, M,

and S scales from CNTL using ROI 5 8, 16, 32, and 64.

The analysis errors undergo an initial adjustment (filter

spinup) period of approximately 20 cycles before the

filter performance reaches steady state. The cases using

smaller ROIs experience longer filter spinup periods

than the cases using larger ROIs. Earlier in the spinup

period, the larger ROI5 32 and 64 cases perform better

than smaller ROIs. However, for the steady state, the

ROI5 16 case appears to improve, while the ROI5 64

case is clearly suboptimal. At L scale, ROI5 32 is more

favorable. ROI 5 16 occasionally performs as well as

ROI5 32, but on average is worse. On the other hand, at

M scale, the ROI 5 16 and 32 cases are competitive at

steady state. For the S scale, the ROI5 16 case appears

to have better performance. These results indicate a

scale dependency for favorable ROIs. The following

calculation of time-averaged analysis errors will exclude

the first 50 cycles to make sure that results reflect steady-

state filter behavior, and the long record (250 cycles)

ensures robust statistics not influenced by transient

behavior. Figure 4a shows the time-averaged u

spectral error varianceE(k) fromCNTL. Along with the

analysis error variance, the observation error variance

R(k) and error variance from a free ensemble without

data assimilation (NoDA) are also plotted for reference.

The observation error variance follows a 11 power law

FIG. 3. Time series of u MSE from CNTL filtered for the (a) L, (b) M, and (c) S scales.

Results are shown for errors from free ensemble (NoDA; black), observation (gray), and

from analysis mean using ROI 5 8, 16, 32, and 64 (colored).

FEBRUARY 2018 Y I NG ET AL . 549



associated with white noise, and the NoDA error is

fully saturated at all scales and thus resembles the

reference spectrum from the truth. Note that the u

spectrum follows a similar power law to the kinetic

energy. From L to S scales, the best ROI that mini-

mizes analysis error variance at that scale appears to

shift toward smaller values. The S scale is not ob-

served because of coarser observation resolution than

the model grid, thus the analysis errors remain mostly

saturated at this scale.

Two experiments, M_Scale and S_Scale, similar to

CNTL but with changed reference kinetic energy

spectra are conducted to further demonstrate the

scale dependency of the best ROI. Figures 4b and 4c

show their resulting error spectra. The CNTL refer-

ence spectrum has a peak at the L scale (k 5 3), and

this spectral peak is shifted toward M and S scales by

changing model parameters r, kd, and U. As bottom

drag r increases, more energy is removed from the

large-scale end of the spectrum, and the halting scale

k21
b,r becomes smaller. The zonal wind shear (6U) is

increased to inject more baroclinic instability to en-

sure that eddies have similar amplitudes as the CNTL.

For S_Scale, the deformation scale (k21
d ) is also shifted

to a smaller scale (kd 5 35) to allow baroclinic in-

stability to develop. The resultingM_Scale and S_Scale

experiments simulate eddies with different sizes from

CNTL. M_Scale is dominated by eddies at M scale and

S_Scale is dominated by eddies at S scale, which is also

reflected in their averaged eddy turnover time (;0.1

for M_Scale and ;0.07 for S_Scale).

Results confirm that the best-performing ROI de-

creases as the dominant scale of the system becomes

smaller. For a given system, if there is one dominant

scale, our results suggest that this scale will determine

the best localization radius. A fixed ROI works well

when there is only one dominant scale. Figure 5a plots

the analysis errors for all scales with respect to ROIs.

The overall best ROI that minimizes domain-

averaged analysis RMSE is near 24 for CNTL, and it

shifts to 16 for M_Scale and 12 for S_Scale. When a

wider range of scales is present, a fixed ROI may be-

come insufficient to minimize errors at all scales, and a

different ROI should be specified for each scale, as

suggested by previous studies (Zhang et al. 2009;

Miyoshi and Kondo 2013; Li et al. 2015; Buehner and

Shlyaeva 2015). Figure 5b illustrates this by plotting

the CNTL analysis RMSE filtered for the L, M, and S

scales with respect to ROIs. The L-scale component

favors ROI5 32, theM scale favors ROI5 24, and the

S scale favors ROI 5 16.

The relationship between correlation length scale and

localization distance is not necessarily one-to-one

(Anderson and Lei 2013; Anderson 2016). In this

study, we hypothesize that the best localization radius

scales with the overall correlation length. One can

FIG. 4. Temperature (u) error spectra from (a) CNTL, (b)M_Scale,

and (c) S_Scale. Results are shown for errors from a free ensemble

(NoDA; black), observation (gray), and from analysis mean using

ROI5 8, 16, 32, and 64 (colored). TheCNTLNoDAerror is shown as

dotted lines in (b) and (c) for reference.
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consider a multiscale data assimilation problem as suc-

cessively constraining from the large to small scales that

have decreasing correlation lengths. Figure 6 plots the

MAC functions filtered for L and S scales from CNTL.

The shape of correlation functions on average is very

different for L and S scales. The correlation function is

broader at L scale than at S scale. The magnitude of

overall correlation at zero distance is lower at L scale

than at S scale. When a larger ROI is used, the averaged

correlation remains lower than when a smaller ROI is

used, which indicates that larger ROIs constrain the

analysis ensemble more than smaller ROIs. The analysis

ensemble also tends to be more dispersive for cases us-

ing smaller ROIs, which can be inferred from the

amount of inflation determined by the adaptive co-

variance relaxation algorithm. The relaxation co-

efficient averaged over time for the ROI5 8, 16, 24, 32,

and 64 cases are a 5 20.23, 0.17, 0.27, 0.35, and 0.57,

respectively. A larger a means more inflation is applied

to the analysis ensemble.

4. Sensitivity experiments

a. Model resolution

Numerical models usually cannot resolve all the scales

of an atmospheric flow. In this section, we investigate

cases using models that have lower resolutions than the

truth model that generates the synthetic observations.

For the QG model used in CNTL, the S scale features a

forward enstrophy cascade, and the M scale features an

inverse energy cascade. A model with resolution re-

duced to kmax 5 31 is first investigated. Comparing it

to the CNTL model, it has most of its S scale truncated

and cannot accurately resolve the forward enstrophy

cascade. Model parameters are selected to ensure that

the low-resolution model has a large-scale energy

spectrum matching with the high-resolution model in

CNTL. Without the forward enstrophy cascade, a

stronger enstrophy filter (exponential cutoff at k5 20) is

applied, and the baroclinic instability is slightly in-

creased. Such model tuning is typically done in real at-

mospheric models, too, although more sophisticated

methods such as parameterization are used to account for

processes that these models cannot resolve. The low-

resolution model is first tested in a perfect-model sce-

nario in the LowRes experiment, where the observations

FIG. 5. (a) Temperature (u) RMSE plotted with respect to ROI fromCNTL (black),M_Scale (blue), and S_Scale

(red). (b) As in (a), but showing u RMSE from CNTL filtered for the L (black), M (blue), and S (red) scales. The

filled circles indicate the ROI with lowest analysis error.

FIG. 6.MACbetween u and c filtered for L (dotted) and S (solid)

scales estimated by the prior CNTL ensemble using ROI 5 8, 16,

24, 32, and 64. The MACs are averaged over space and time and

plotted as a function of horizontal distance (number of grid points).
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are generated from a truth run using the same low-

resolution model. Figure 7a shows the analysis error

spectra from the cases using different ROIs. Other than

the slightly elevated smallest-scale energy in LowRes,

the results are very similar to the CNTL experiment

(Fig. 4a). In LowRes_Model experiment, the low-

resolution model is only used in the forecast step of

the data assimilation and observations sampled from the

high-resolution truth in CNTL are assimilated. The re-

sulting analysis error spectra are shown in Fig. 7b.

Figure 8 plots the analysis RMSE filtered for L and M

scales with respect to ROIs. Comparing LowRes (red),

and LowRes_Model (blue) to CNTL (black), the re-

duced model resolution does not appear to influence the

best ROI at the well-resolved L scale, while the best

ROI at M scale slightly decreases because of the

representation errors. The time-averaged adaptive

relaxation coefficients are a5 0.25 for LowRes (similar

to CNTL where a 5 0.27) and a 5 0.32 for LowRes_

Model, indicating more inflation is applied to the en-

semble spread when representation errors are present.

Another model with even lower resolution kmax 5 21

is tested in LowRes2 (Fig. 7c) and LowRes2_Model

(Fig. 7d). In this case, the lack of resolution starts to

influence the representation of baroclinic instability

near the deformation wavenumber. To fully resolve the

baroclinic instability, the deformation wavenumber is

changed to kd 5 14. Although some tuning is made to

match the model climatology with CNTL, the error

growth rate is slightly higher at larger scales for this low-

resolution model. This is a common situation for real

atmospheric models where key dynamical processes

cannot be well represented at the small scale and

therefore model forcing is biased. In the perfect-model

FIG. 7. Temperature (u) error spectrum of NoDA (black), observation (gray), and analysis ensemble mean using

ROI 5 8, 16, 32, and 64 (colored) from (a) LowRes, (b) LowRes_Model, (c) LowRes2, and (d) LowRes2_Model

experiments. The CNTL NoDA error spectrum is shown as dotted lines for reference. The ROI is in physical

distance units (number of grid points from CNTL model); for example, ROI 5 8 means 8 grid points in CNTL,

which corresponds to 4 grid points in LowRes, and 2.67 grid points in LowRes2).
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scenario, LowRes2 (Fig. 7c) shows that the best ROI be-

comes larger because of the increased error growth rate at

larger scales. Figure 8 also shows this shift in best ROI

from CNTL to LowRes2 for both L and M scales. When

observations from CNTL are assimilated instead, Low-

Res2_Model (Fig. 7d and green line in Fig. 8) shows that

although the steady-state analysis RMSE is larger because

of the presence of larger model errors, the best ROI stays

relatively unchanged from CNTL for the L scale. The

averaged adaptive relaxation coefficient is larger for

LowRes2_Model (a5 0.58) than for LowRes2 (a5 0.23)

because of the presence of a large representation error.

Previous studies (e.g., Aksoy et al. 2012) have dem-

onstrated the negative impact from representation

errors when assimilating observations from a high-

resolution nature run while the model is at a coarser

resolution. Variousmethods are proposed to account for

these representation errors in data assimilation algo-

rithms to reduce their negative impact (Janjić and Cohn

2006; Bocquet et al. 2011; Hodyss and Nichols 2015; van

Leeuwen 2015). Our results indicate that localization is

not sensitive to model resolution as long as a dynamical

process is well resolved and/or model representation

errors are well accounted for in the data assimilation

scheme. Note that we define the localization ROI in

terms of the physical length, which does not change as

model resolution reduces. If the ROI is defined as a

number of grid points, it will change as model resolution

changes (i.e., fewer grid points for lower resolution).

Also note that our conclusions are drawn from QG

model experiment results. Whether this can be gener-

alized to other systems is yet to be confirmed with fur-

ther experimentation.

b. Sampling error due to limited-size ensemble

Given the same observing network and a perfect

model, a larger ensemble size provides more accurate

sample-estimated error covariances and therefore im-

proves the accuracy of the analysis. The negative impact

of sampling error on filter performance can be demon-

strated by decreasing the ensemble size N. To test the

sensitivity of localization to N, experiments are con-

ducted with N5 16, 32, 256, 1024, and compared to N5
64 as in CNTL. Figures 9a–c plot the resulting L-,M-, and

S-scale analysis RMSEs as a function of ROI. The trend

that the ROI that minimizes analysis RMSE at a certain

scale becomes larger as N increases is seen for all three

bands. These results are consistent with previous studies

(Houtekamer and Mitchell 2001; Lorenc 2003; Zhang

et al. 2006; Anderson 2007, 2012). When a larger N is

used, there is also a wider range of ROIs around the best

ROI that produce similar filter performance, indicating

less sensitivity to localization scale in this case (Lei and

Whitaker 2017). Not surprisingly, the minimum analysis

RMSE is achieved using the largest N 5 1024. This is

consistent with the recent study of Kondo and Miyoshi

(2016) who demonstrated with their 10240-member en-

semble that with large enough ensemble size one can

achieve the best filter performance without localization.

Figure 10a shows the steady-state MACs estimated from

analysis ensembles of different sizes. Correlation de-

creases as horizontal distance increases. Beyond the de-

correlation length scale, the true correlation should be

zero on average. Because of sampling error, the limited-

sized ensembles have MACs that asymptote to nonzero

correlation values, and the asymptotic value increases as

N decreases. Since data assimilation constrains the ob-

served scales and reduces error, the analysis error has less

large-scale contribution and a shorter overall correlation

FIG. 8. Temperature (u) RMSEfiltered for (a) L and (b)M scales

plotted with respect to ROI. Results are compared for CNTL,

LowRes, LowRes_Model, LowRes2, and LowRes2_Model.
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length compared to errors from a free ensemble without

data assimilation (Yoon et al. 2010). Ensemble forecasts

from the analyses will have correlation lengths that in-

crease as errors grow upscale and eventually saturate

again as shown in Fig. 10c.

Assimilating u and y observations is more challenging

than u observations since their correlation functions are

nonlocal. The sensitivity experiments mentioned above

are repeated using u and y as observations, and the re-

sulting analysis RMSEs are plotted with respect to ROIs

in Figs. 9d–f. Figure 10b shows the steady-state MACs

for each experiment, and the time evolution of a MAC

during ensemble forecasts is shown in Fig. 10d. Similar

to the u observation cases, the asymptotic correlation

values are unchanged when u and y observations are

assimilated. The overall correlation is much lower

compared to u observations. As forecast errors grow and

larger scales contribute more, the nonlocal correlation

peak shifts toward longer distances. For larger ROIs, the

trend that the best ROI increases as N increases is un-

changed. However, an extra penalty is present for

smaller ROIs that are too short and exclude the nonlocal

correlation peaks that are important sources of in-

formation for this case. As a result, as N decreases, the

best ROI does not decrease beyond the distance at

which these nonlocal correlations peak.

FIG. 9. Temperature (u) RMSEfiltered for (a) L, (b)M, and (c) S scales plottedwith respect to ROI compared for

theN5 16, 32, 64 (CNTL), 256, and 1024 cases. Filled circles indicate the minimum error corresponding to the best

ROI. (d)–(f) As in (a)–(c), but showing root-mean-error kinetic energy from the cases assimilating u and y.
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c. Accuracy and density of the observing network

The sensitivity of localization to changes in the ob-

serving network is tested in this section. In CNTL, we

considered a uniform observation grid coarser than the

model grid (Dx5 3dx). When observation density in-

creases (no increases), the observation error spectral

variance R(k) will decrease according to (14). In the

ObsSparse experiment, the horizontal observation in-

terval is set to Dx5 9dx, which yields an R(k) 9 times

larger than that from CNTL. Changes in network den-

sity have two different effects on filter performance.

First, the observation error variance R(k) is changed

(‘‘accuracy effect’’). Second, the number of independent

pieces of information available within the localization

scale to constrain each state variable is also changed

(‘‘number effect’’). To separate these two effects, an-

other experiment, ObsErrorX3, is conducted in which

the observing network is of the same density as CNTL

but its observation error standard deviation s is in-

creased by a factor of 3 resulting in the same R(k) as

ObsSparse (i.e., only the accuracy effect is present in

ObsErrorX3). In both ObsSparse and ObsErrorX3, the

information provided by the observation is less accurate.

The other effect of increasing observation accuracy is

tested in ObsDense where the horizontal observation

interval is set to Dx5 1dx, and ObsError/3 where ob-

servation density is unchanged but observation error

standard deviation s is decreased by a factor of 3.

Figure 11 shows error spectra from these experiments,

and Figs. 12a–c plot their analysis RMSEs filtered for L,

M, and S scales with respect to ROIs. For ObsSparse

FIG. 10. (a) MAC between u and c from the posterior ensemble with changing ensemble sizeN5 16, 32, 64, 256,

and 1024 using the best ROI. (b) As in (a), but showingMAC between u and c from the cases assimilating u and y.

(c) Time evolution of MAC between u and c from ensemble forecasts initialized with posterior from the N 5 64

case, the lines are color coded with forecast time t 5 0 to t 5 1.5 every 0.05 time units. (d) As in (c), but showing

MAC between u and c from the cases assimilating u and y.
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(Fig. 11a), the ROI 5 8 case is excluded because this

ROI is smaller than the observation interval that results

in only one observation available to constrain each state

variable.

With both accuracy and number effects, a sparser

observing network favors a larger ROI to achieve the

best filter performance, and a denser network favors a

smaller ROI (cf. CNTL, ObsSparse, and ObsDense in

Figs. 12a–c), which is consistent with findings from sev-

eral previous studies (Dong et al. 2011; Zhu et al. 2013;

Periáñez et al. 2014; Kirchgessner et al. 2014; Snook

et al. 2015). It is evident that the observation error

variance R(k) influences the lowest analysis error vari-

ance E(k) achievable, and the best-performing ROI is

larger when a less accurate observing network is used.

The accuracy effect alone is responsible for some of the

sensitivity in localization at L and M scales as R(k) is

reduced. A more accurate observing network with

smaller R(k) yields a smaller E(k) that has reduced

contribution from large scales, which causes its corre-

lation length to be shorter so that a smaller ROI is

favorable. However, for S scale, the accuracy effect does

not change the best ROI because prior error is still

saturated at this unobserved scale despite a lower R(k).

The number effect can be seen by comparing ObsSparse

to ObsErrorX3 (also ObsError/3 to ObsDense) in

Figs. 12a–c. The former has lower observation density

than the latter while they share the same R(k). As fewer

pieces of independent information are available within

the localization scale (ROI), the range of ROIs with

good performance around the best ROI gets narrower.

This implies that the sensitivity to localization increases

as fewer independent observations are available. Both

accuracy and number effects contribute to the sensitivity

of localization to changes in the observing network. The

accuracy effect appears to be more important when

observations are dense. As observations become sparse,

the number effect becomes more important.

Spatially inhomogeneous observing networks are

more common than uniform observation grids. The ir-

regularity in the horizontal location of observations

precludes the calculation of observation error spectral

FIG. 11. Error spectra of free ensemblemean (NoDA; black), observation (gray), and analysis mean using ROI5 8,

16, 32, and 64 (colored) from (a) ObsSparse, (b) ObsErrorX3, (c) ObsDense, and (d) ObsError/3 cases.
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variance. We repeated the experiments in this section

using observations randomly located in the domain but

keeping the number of observations and instrument

error unchanged. Figures 12d–f show results from using

these irregular observing networks compared to their

regular network counterparts (Figs. 12a–c). Overall, the

behavior of an irregular network is very similar to a

regular one with the same accuracy and density. The

only difference is that an irregular network yields larger

analysis error, especially for sparse networks where

there are occasionally fewer observations within the

localization scale. For a sparse irregular observing

network, the best ROI is larger than the best ROI for a

regular network with the same number of observations.

These results suggest that an irregular observing net-

work is less efficient in reducing analysis error than a

uniform network with the same number of observations.

5. Conclusions

In this study, numerical experiments are conducted to

test the scale dependency of localization and its sensi-

tivity to several aspects of an ensemble modeling and

data assimilation system. The two-layer quasigeostrophic

FIG. 12. Temperature (u) RMSEfiltered for (a) L, (b)M, and (c) S scales plotted with respect to ROI for the cases

with changing observing networks: ObsSparse, ObsDense, ObsErrorX3, and ObsError/3. Filled circle markers

indicate the minimum error corresponding to the best ROI. (d)–(f) As in (a)–(c), but showing results from using

irregular observing networks.
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(QG) model is employed as the forecast model. It is a

simple model but captures the essence of large-scale at-

mospheric dynamics with a realistic spectral energy dis-

tribution. Compared to standard test models such as the

Lorenz (1996) system, the QG model has better repre-

sentation of multiscale dynamics and therefore is better

suited for testing when scale is the key concern. The data

assimilation method considered here is the square root

filter (Whitaker and Hamill 2002) with an adaptive co-

variance relaxation (Ying and Zhang 2015) that ensures

filter stability. The Gaspari and Cohn (1999) function

with fixed localization radius is applied in the filter, and

the localization radius that minimizes analysis error is

determined by trial and error. The findings are summa-

rized as follows:

1) The best localization radius is scale dependent. For a

weather system, the overall best localization radius

scales with its dominant correlation length scale.

When multiple scales of motion are present simulta-

neously, the localization that minimizes analysis

error at a certain scale also depends on the correla-

tion length for that scale. For example, larger scale

favors larger localization radius. A multiscale local-

ization can achieve better filter performance by

specifying a scale-dependent localization radius.

2) A lower model resolution does not change the best

localization radius (defined as a physical distance) for

the resolved scales as long as the model representa-

tion of the dynamical processes is correct. If the low-

resolution model cannot adequately resolve some

key dynamical processes, the incorrect model dy-

namics will give rise to representation errors when

assimilating observations. However, if adaptive in-

flation methods are applied to account for these

representation errors, the localization radius is not

sensitive to model resolution changes.

3) Consistent with previous studies, a decrease in

ensemble size is found to cause the best localization

radius to shift to smaller values, and the range of

localization radii with good performance also be-

comes narrower. However, this behavior changes

when assimilating observations whose correlations

with state variables are nonlocal. For correlation

functions with peaks at a certain distance (i.e.,

correlation between u and c), further reducing the

localization radius will not remedy sampling error as

ensemble size decreases.

4) Increasing the density of observing networks without

changing the instrument error causes the best local-

ization radius to shift to smaller values. Two effects

contribute to this behavior. (i) A denser network

yields lower spectral observation error variance for

the large scales, which lowers the large-scale prior

error. As a result, the overall correlation length scale

decreases for the prior ensemble due to less contri-

bution from large-scale errors. (ii) A denser network

provides more pieces of independent observation

information within a localization radius, and a

smaller radius is enough to allow the same number

of observations to constrain each state variable.

Irregular networks behave similarly to regular ones

with the same density in terms of best localization

radius, except that a larger radius is favored for

irregular networks when observations are too sparse

to sample a certain scale.

The particular type of localization used in this study is

observation-space localization (Houtekamer and

Mitchell 2001; Hamill et al. 2001), which tapers the

sample covariance between an observation and state

variables and between an observation and other obser-

vation priors. Model-space localization (Houtekamer

and Mitchell 1998) directly tapers the background error

covariance before the observation operator is applied.

Although the similarity of the two approaches is proven

(Sakov and Bertino 2011; Nerger et al. 2012), these ap-

proaches can have different behavior under certain

conditions such as small ensemble size and short local-

ization distance (Lei and Whitaker 2015). For example,

when assimilating satellite observation impact in the

vertical, Campbell et al. (2010) suggested that model-

space localization is superior. However, Lei and

Whitaker (2015) showed that the opposite can be true

for some cases. To develop a more robust localization

theory, both types of localization need to be further in-

vestigated, especially for cases where nonlocal obser-

vation operators involve spatial averaging. Correlated

observation errors may also change the behavior of lo-

calization. The impact from observation operators and

error models are currently being investigated in a fol-

low-up study.

Although the flow simulated by the QG model pos-

sesses many scales, its dynamical process (baroclinic

instability) is relatively simple. In real atmospheric

models, there could be multiple sources of instability at

different scales. For example, the addition of moist

convective instability may change the error growth rate

at small scales, and the scale interaction may be more

complicated. Our study motivates further exploration of

the behavior of localization in different contexts in

pursuit of a more generalized theory.
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