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Repeat-pass spaceborne interferometric synthetic aperture radar (InSAR) is commonly
used to measure surface deformation; phase delays due to atmospheric water vapour
may have significant impact on the accuracy of these measurements. In recent years,
there has been a growing interest in using forecasts and analyses from numerical
weather prediction (NWP) models – which can provide good estimates of the atmo-
spheric state – to correct for atmospheric phase delays. In this study, three separate
estimates of atmospheric water vapour content from NWP output are used in combina-
tion with Environmental Satellite (Envisat) Advanced Synthetic Aperture Radar
(ASAR) data over the Pearl River Delta region in South China to mitigate atmospheric
distortion. The NWP-based estimates are derived from: (1) interpolation of National
Centers for Environmental Prediction (NCEP) Final Operational Global Analysis
(FNL) data; (2) Weather Research and Forecasting (WRF) model simulations initia-
lized with FNL analysis without additional data assimilation; and (3) WRF simulations
initialized with a three-dimensional variational (3DVar) data assimilation system that
ingests additional meteorological observations. The accuracy of the atmospheric cor-
rections from these different NWP model outputs is further verified quantitatively with
precipitable water vapour (PWV) data from several ground-based global positioning
system (GPS) stations in Hong Kong. Inter-comparison shows a good agreement
between the PWV derived from the WRF-3DVar simulations and the GPS measure-
ments, suggesting that atmospheric correction by convection-permitting WRF simula-
tions initialized with mesoscale data assimilation may effectively mitigate atmospheric
distortion in InSAR measurements, especially for coastal areas.

1. Introduction

Spaceborne interferometric synthetic aperture radar (InSAR) is one of the most useful
methods to monitor surface movements caused by earthquakes, subsidence, and other
deformations. Specifically, the repeat-pass spaceborne differential SAR interferometry
(DInSAR), at different observation times, is used to detect surface deformation.
However, phase delay in the atmosphere has a significant influence on the accuracy of
DInSAR measurements (Hanssen 2001). Tropospheric water vapour is regarded as one of
the most significant atmospheric factors affecting radar signal propagation, and will
probably introduce unexpected phase changes in the interferogram (Cui et al. 2012). In
some extreme cases, as Zebker, Rosen, and Hensley (1997) have shown, a 20% change in
humidity can lead to errors of up to 10 cm in deformation products. Therefore, correcting
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for the effect of tropospheric water vapour is necessary in some applications where a high
level of accuracy is required.

Several methods have been applied to mitigate the atmospheric delay in InSAR data.
One approach is to use multi-spectrum water vapour products such as precipitable water
vapour (PWV) from the Moderate Resolution Imaging Spectroradiometer (MODIS) or the
Medium Resolution Imaging Spectrometer (MERIS) (Li, Muller, et al. 2006; Zeng, Li,
and Li 2007). Unfortunately this approach has several limitations: both MERIS and
MODIS data are influenced by clouds and have very limited spatial coverage. There is
also a large temporal gap between acquisitions of the individual MODIS sensors.
Furthermore, MERIS is synchronized with the Environmental Satellite (Envisat)
Advanced Synthetic Aperture Radar (ASAR), although unfortunately the Envisat satellite
ceased operations in April 2012. Another approach is to integrate with dense global
positioning system (GPS) networks (Williams, Bock, and Fang 1998; Li, Fielding, et al.
2006), although there are often sparse observations of GPS data. Time-series InSAR
techniques such as Persistent Scatterer InSAR (Ferretti, Prati, and Rocca 2000) have
also been used, but require a large number of SAR images (which may not be available
for a given geographic region and period of interest (Foster et al. 2006)). A final class of
mitigation methods incorporates numerical weather prediction (NWP) models (Foster
et al. 2013; Gong et al. 2013; Liu, Hanssen, and Mika 2009; Mateus et al. 2009;
Puysségur, Michel, and Avouac 2007; Wadge et al. 2002, 2010). Nevertheless, none of
these approaches – or any combination thereof – is presently operational.

The InSAR community has recently taken great interest in NWP models because these
can determine the water vapour content at the same time as SAR acquisitions (for
atmospheric delay prediction), regardless of weather conditions or geographic location.
Several promising results based on high-spatial resolution weather models, including the
Fifth-Generation Pennsylvania State University/National Center for Atmospheric
Research Mesoscale Model (MM5) and the Weather Research and Forecasting (WRF)
model, can be found in the literature (Liu, Hanssen, and Mika 2009; Mateus et al. 2009;
Puysségur, Michel, and Avouac 2007). Some cases demonstrate that the NWP model may
underestimate the spatial variation in the delay (Liu, Hanssen, and Mika 2009), due to
initial condition errors (which can be partially mitigated by data assimilation) and/or
model errors (such as from sub-grid-scale physical parameterization schemes). Also, SAR
data have a spatial resolution that is sometimes two orders of magnitude greater than that
of NWP (e.g. about 30 m for Envisat ASAR data versus >1 km for most NWP simula-
tions). To obtain more realistic and accurate predictions of atmospheric water vapour
content, therefore, further research is needed to explore the use of more accurate NWP
models with finer resolution as well as improved initial conditions. The operational NWP
centres around the world obtain the initial conditions for their forecast models through
‘data assimilation’, a statistical combination of observations and short-range forecasts
(Kalnay 2003). So it is of great significance to use data assimilation to combine various
observational data with the NWP model to better simulate the water vapour.

This study provides an inter-comparison of three methods – high-resolution convec-
tion-permitting WRF model simulations (both with and without additional mesoscale data
assimilation), and coarse-resolution global meteorological analysis data – used to estimate
the tropospheric water vapour content during the two SAR overpasses. Key questions to
be addressed include: (1) How much does atmospheric water vapour affect the InSAR
measurements of the surface deformation? (2) How accurate are atmospheric water vapour
estimations by convection-permitting NWP simulations? (3) Will additional mesoscale
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data assimilation for the high-resolution NWP simulations further improve the accuracy of
estimated atmospheric water vapour content?

2. Atmospheric phase delay in InSAR

The phase observed by InSAR can be decomposed into a linear combination of the
following phase contributions:

φInSAR ¼ φorbit þ φtopography þ φnoise þ φdeformation þ φatmosphere; (1)

where φInSAR is the differential interferometric phase between two acquisition times,
φorbit is the phase due to the ‘curved Earth’ geometry (which can be removed by a
precise InSAR orbit), φtopography is the topographic phase that can be removed by
subtracting a simulated topographic phase from a digital elevation model (DEM), and
φnoise is phase noise (due to the decorrelation of the InSAR signal by vegetation or
change of the surface environment). We are concerned with the last two terms on the
right-hand side of Equation (1): φdeformation, the phase by surface movement along the
radar line of sight (LOS) direction, and φatmosphere, the phase contributed by atmo-
sphere, particularly the difference in atmospheric signal contributions between the two
passes. In this article, our main goal is to separate φatmosphere from φdeformation using
different methods. In order to obtain φatmosphere, we will look into the factors that affect
radar wave propagation. When a radar wave propagates through the atmosphere, it will
be delayed and bent due to the differential refraction within the spatially heterogeneous
atmosphere. Here we can ignore the extra length due to bending because we are
interested in the difference between the two curved paths illuminated by a radar sensor
at different observation times (Zebker, Rosen, and Hensley 1997). Some studies also
indicate that the bending error can be ignored for zenith angles of less than 87° (Bean
and Dutton 1968). Therefore, we only take the propagation delay into account. The
zenith atmospheric delay, ΔLatmosphere between two acquisition times can be expressed
as (Hanssen 2001)

�Latmosphere ¼ �LZHD þ�LZWD þ�Lionosphere þ�Lliquid; (2)

where ΔLZHD is the zenith hydrostatic delay (ZHD), ΔLZWD is the zenith wet delay (ZWD)
due to water vapour, ΔLionosphere is the zenith ionospheric delay, and ΔLliquid is the zenith
liquid delay caused by liquid water. Both ΔLionosphere and ΔLliquid can be ignored for the
C-band frequency because these have a minimal impact on InSAR observations (Hanssen
2001). Although ΔLZHD is mainly affected by dry air processes, it does include a contribution
from water vapour (due to the non-dipole component of water vapour refractivity (Bevis et al.
1992)). The magnitude of LZHD is much larger than that of LZWD, but the latter is usually far
more variable: in temperate areas, the daily variability in ΔLZWD usually exceeds that of
ΔLZHD by an order of magnitude (Bevis et al. 1996). This is because LZHD is proportional to
surface pressure, a quantity that typically fluctuates by 0.1–0.2% over a day and rarely by
more than 0.5%; however, LZWD is nearly proportional to the integrated water vapour (IWV),
which can easily fluctuate by 50–100%. Because ΔLZHD has minimal spatial and temporal
variation, it can be eliminated during the interferogram differential step and thus can be
ignored in our study, which is mainly focused on the impact of water vapour. Estimates of
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ΔLZWD can be derived from IWVor precipitable water vapour (PWV) of two SAR acquisi-
tions using a conversion factor Π (which is dependent on the surface temperature):

�LZHD ¼ Π ��ðIWVÞ ¼ Π � ρwater �� PWVð Þ
¼ Π � ρwater � PWVð Þdate1 � PWVð Þdate2

� �
; (3)

where Δ(IWV) and Δ(PWV) are the differences of IWV and PWV, respectively, between
two acquisition times, and (PWV)date1 and (PWV)date2 are the PWV of two SAR acquisi-
tion dates. Conversion factor Π can be calculated from surface temperature observations
with a relative root mean square error (RMSE) of about 2% (Bevis et al. 1992), and shows
little variability in a SAR frame. The value of Π ranges from 6.0 to 6.5 and is often
approximately 6.2 (Bevis et al. 1992; Li, Muller, and Cross 2003; Li et al. 2005; Niell
2001). Because the radar incidence angle θincidence is small (about 23° of Envisat ASAR
data), ΔLZWD can be mapped to the radar’s LOS direction by a cosθincidence function,
rather than tracing the ray paths through the three-dimensional (3D) water vapour field
(Foster et al. 2006; Hobiger et al. 2010). In this study, IWV and PWV can be obtained
from WRF model output and Final Operational Global Analysis (FNL) data. The slant
phase delay, Δφatmosphere induced by the presence of atmospheric water vapour can be
calculated via

� φatmosphere ¼
4π� LZWD

λcosθincidence
; (4)

where λ is the radar wavelength. Then Δφatmosphere is subtracted from the original inter-
ferogram to obtain the atmospheric-corrected interferogram. The corrected interferogram
is used with InSAR processing to obtain the baseline-refined atmospheric-corrected
interferogram. We use this atmospheric-corrected interferogram to obtain the deformation
map of the study site by the following equation, which shows that the phase shift is
directly proportional to path length:

Ldeformation ¼ λφdeformation

4π
; (5)

where φdeformation is the unwrapped atmospheric-corrected interferogram and Ldeformation

is the deformation in radar LOS deformation.

3. Methodology

3.1. Water vapour derived from various numerical model analyses and simulations

In this study, we propose three different ways to estimate atmospheric water vapour
(described below), which are then used to correct for the atmospheric effects in the
InSAR measurements of surface deformation.

3.1.1. NCEP GFS-FNL

The first method used for atmospheric correction of the InSAR measurements is the
archived National Centers for Environmental Prediction (NCEP)’s FNL based on NCEP’s
Global Forecast System (GFS, a global NWP model). This GFS-FNL data set has a spatial
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resolution of 1° × 1° (about 80 km × 80 km for the study region), available every 6 hours
and produced by the Global Data Assimilation System through assimilating observations
from the Global Telecommunications System (GTS) and other sources. The meteorologi-
cal variables in GFS-FNL include, but are not limited to, air temperature, cloud top
pressure, humidity, surface winds, upper-level winds, and precipitable water, the last of
which is used for atmospheric correction.

For each acquisition date, the PWV values estimated by GFS-FNL at 0000 UTC and
0600 UTC are linearly interpolated to 0230 UTC, which is the SAR acquisition time.
Differential PWV maps are produced using the temporally interpolated data from the two
SAR acquisition dates. These differential water vapour maps are then interpolated in space
(using a cubic convolution) to the same resolution as the InSAR data. From these spatially
interpolated differential water vapour maps, the differential water vapour delay in phase
can be calculated using Equations (3) and (4).

3.1.2. WRF simulation initialized with FNL (WRF-FNL) without additional mesoscale
data assimilation

The Advanced Research WRF (WRF-ARW) is a state-of-the-art, limited-area NWP
system widely used for research and operations from meso- to convective scales
(Skamarock et al. 2008). The model used here is version 3.5 of WRF-ARW, available
since April 2013. The WRF model is fully compressible and nonhydrostatic, with a large
number of parameterization schemes for sub-grid-scale processes including cumulus
convection, cloud microphysics, radiation, and land-surface processes. It has a terrain-
following vertical coordinate and multiple nesting capabilities. Output data from the WRF
model can be used to generate the 3D water vapour field at a given time, from which the
wet components of atmospheric delay can be calculated.

To enhance the WRF model resolution over the SAR image area, three two-way
nested domains inside a parent outer domain are used (Figure 1(a)). The parent domain
(D01) has a horizontal grid spacing of 27 km and covers most of South China. The two
solid boxes in Figure 1(a) (D02 and D03) correspond to nested domains with 9 and 3 km
horizontal grid spacing, respectively. The dashed box in Figure 1(a) shows the location of
D04, which has a horizontal grid spacing of 1 km and greatly overlaps the SAR data

Figure 1. (a) Configuration of WRF domains. (b) SAR intensity image in D04; red box denotes
the domain of (c). (c) Locations of permanent ground-based GPS stations (names in blue and red) in
Hong Kong. All 12 GPS stations are used in the PWV verification; six stations (labelled in red) that
overlapped with the SAR interferogram are employed to validate the deformation.
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swath (Figure 1(b)). Twenty-seven vertical levels are used in each simulation, and the
model’s initial and lateral boundary conditions are generated from GFS-FNL data. For
both WRF model start dates – 3 January and 14 March 2009 – the start time is set to
1200 UTC, about 14 hours before SAR acquisitions. In D01 and D02, convection is
parameterized using the Kain–Fritsch cumulus scheme (Kain 2004); in the innermost
domains (D03 and D04), convection is resolved explicitly – that is, these domains (with
horizontal grid spacings of 3 and 1 km, respectively) can be regarded as ‘convection-
permitting’. In all domains, atmospheric water vapour, as well as liquid water and ice, is
handled by the WRF Single Moment 3-class (WSM3) microphysics scheme (Hong,
Dudhia, and Chen 2004). Because there is no substantial reported precipitation from
moist processes in the study domain during either simulation period, selection of the
microphysics and cumulus schemes will not directly affect the atmospheric corrections
in this case study. The parameters in the WRF output files, including water vapour
mixing ratio, pressure, and temperature, are used to calculate the water vapour content
in each layer and finally to obtain the IWV. Two WRF simulations (both configured as
described above) are run in this study. The first, hereafter referred to as WRF-FNL,
derives its initial conditions directly from the GFS-FNL data. The second simulation –
WRF-DA, discussed below – uses data assimilation to improve upon the GFS-FNL-
derived initial conditions.

3.1.3. WRF simulation initialized with additional mesoscale data assimilation (WRF-DA)

The WRF data assimilation system (Huang et al. 2009) includes a 3D variational data
assimilation algorithm (3DVar, Barker et al. 2004). Data assimilation is the technique by
which observations are combined with the first guess (the background) from a NWP
model and relevant error statistics in an optimal way to provide an improved estimate (the
analysis) of the atmospheric state (Talagrand 1997). Variational data assimilation achieves
this through the iterative minimization of a prescribed cost function. Differences between
the analysis and the observations/background are penalized depending on their perceived
error. The cost function to be minimized in the WRF-3DVar data assimilation system is
(Barker et al. 2004; Huang et al. 2009)

2J xð Þ ¼ x� xbð ÞT B�1 x� xbð Þ þ yo � H xð Þð ÞT R�1 yo � H xð Þð Þ; (6)

where xb is the background field, B is the background error covariance matrix, yo is the
observations, and R is the observation error covariance matrix; these elements are all
inputs from users. J(x) is the scalar cost function, x is the analysis, and H(x) is the
observation operator; these three elements are the outputs from the WRF 3DVar data
assimilation system.

For the WRF-DA experiment in this study, we use the observations from GTS,
which include, but are not limited to, wind speed and direction, pressure, geopotential
height, air temperature, dew point, and precipitation amount. These observations are
mainly from surface observations, synoptic radiosondes, aircraft reports, GPS refractivity
measurements, and data from satellites (such as the SeaWinds instrument on
QuikSCAT). The observations are from NCEP ADP global surface and upper air
observational weather data (NCEP 2008). The number of observations in D01 within
1 hour of the model start time (1200 UTC) is 562 on 3 January 2009 and 314 on 14
March 2009; these observations are mainly located near Hong Kong. Specifically, the
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562 observations on 3 January 2009 comprise 328 from QuikSCAT (SeaWinds), 134
aircraft reports (Airep), and 55 surface synoptic observations (Synop); the remaining 45
reports are from radiosondes, Meteorological Terminal Aviation Routine Weather Report
(METAR), upper-wind reports (Pilot), and ships. The 314 observations on 14 March
2009 comprise 211 Airep and 55 Synop, with the remaining 48 from radiosondes,
METAR, Pilot, and ships. These observations are from GTS, which are part of the
assimilated observations in the GFS (note that FNL is the operational analysis of the
GFS). Only operational observations – those that are available in near real time – are
assimilated into FNL (Carvalho et al. 2014). Although the observations in WRF-DA
may have already been included in the FNL analysis, it is common practice in regional-
scale modelling to perform additional data assimilation using the global analysis as a
background to generate initial conditions for high-resolution mesoscale models (Ahasan
and Debsarma 2015). After assimilating the observations mentioned above to derive the
initial conditions, we run the WRF model to produce updated outputs and then obtain
the water vapour content.

It is worth noting that although 3DVar is not the most advanced data assimilation
system available in WRF (Meng and Zhang 2008; Zhang, Zhang, and Poterjoy 2013), it is
the most computationally affordable and the easiest to implement. Nevertheless, future
research will examine the impact of using more advanced data assimilation methods such
as the ensemble Kalman filter, four-dimensional variational data assimilation, and their
hybrids (Zhang and Zhang 2012; Zhang, Zhang, and Poterjoy 2013) in the atmospheric
correction of InSAR measurements.

3.2. InSAR data and processing

The InSAR data used in this study are from Envisat ASAR operated by the European
Space Agency and obtained around 0230 UTC on both 4 January and 15 March 2009, and
the perpendicular baseline is 365 m. The study site (Figure 1(b)) is located in the Pearl
River Delta region, China. It includes parts of Guangdong Province, Hong Kong, and
Macau. Figure 1(b) shows the geocoded SAR intensity image generated from Envisat
ASAR data that were processed using the repeat-orbit interferometry package (ROI_PAC)
software, developed at the Jet Propulsion Laboratory and California Institute of
Technology (Rosen et al. 2004). The InSAR processing can be divided into several
main steps: SAR image formation, co-registration, interferogram formation, flattening
(using precise orbits from ESA), topography removing (using a three arc-second (about
90 m) DEM from the Shuttle Radar Topography Mission), unwrapping (using Statistical-
cost, Network-flow Algorithm for Phase Unwrapping (SNAPHU) (Chen and Zebker
2002)), baseline re-estimation, and finally geocoding. The above InSAR processing was
further adjusted to include atmospheric correction. Because the atmospheric signal intro-
duces a phase artefact similar to that of the residual orbit phase, several studies have
suggested applying water vapour corrections to the unwrapped phase first and then using
the corrected unwrapped phase to refine the baseline (Buckley et al. 2003; Li, Fielding,
et al. 2006). For this study, the differential water vapour is first converted to the phase
delay in the LOS via Equation (4). Second, the phase is mapped from the geographic
coordinate system to the radar coordinate system. Third, this atmospheric phase is
subtracted from the original unwrapping interferogram generated after the unwrapping
step. Last, this unwrapped interferogram after water vapour correction comes to the
baseline refinement and is then geocoded.

International Journal of Remote Sensing 2135
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3.3. GPS verification

GPS data are used in this study as verification for two purposes: the first for comparison
of the PWV from meteorological methods in order to evaluate the model simulation
accuracy, the second to validate the surface deformation derived from InSAR. Ground-
based GPS has become an operational tool that can measure PWV with high accuracy
(1.0–1.5 mm) and high temporal resolution (5 s in this study) (Li 2004). Here, we verify
PWV estimates from the NCEP GFS-FNL interpolation and WRF-FNL and WRF-DA
simulations against the GPS observations from the 12 ground-based stations as part of the
Hong Kong Satellite Positioning Reference Station Network (Figure 1(c)). These GPS
data are not assimilated in the WRF-DA experiment. Six of these stations overlapping
with the SAR interferogram are used to validate the atmospheric correction results over
the Hong Kong area. The GPS data are collected over a continuous 24-hour period. We
deduce PWV from the GPS observations using version 10.4 of GAMIT/GLOBK (a high-
accuracy GPS processing software package). After post-processing of precise point
positioning by GAMIT/GLOBK software, we can obtain the latitude, longitude, and
ellipsoidal height of each GPS station accurate to the millimetre level. We use the
ellipsoidal height of the two dates to produce the differential displacements of height
and then map these GPS-derived height offsets into the radar LOS direction by
cosθincidence (Foster et al. 2006).

4. Results and discussion

4.1. Phase of atmospheric signals

Here we analyse the differential phase of water vapour derived by different methods.
Figure 2(a) shows the initial DInSAR unwrapped phase without atmospheric correction.
Note that the ocean (white) has been masked during DInSAR processing. Relatively high
magnitudes of differential phase are located in the western and northwestern parts of the
domain, as well as in Hong Kong. Figures 2(b)–(d) show the phase of the atmospheric
signal (Δφatmosphere) derived from the water vapour estimated by the GFS-FNL, WRF-
FNL, and WRF-DA experiments, respectively. It is obvious that the atmospheric signal
from the coarse-resolution (1° × 1°) NCEP GFS-FNL data can only capture the large-scale
variations in water vapour distribution (with generally higher phase difference in the

Figure 2. (a) Original DInSAR unwrapped phase. (b)–(d) Water vapour phases in LOS direction
from NCEP GFS-FNL data, WRF-FNL, and WRF-DA, respectively. The black line in (b)–(d) marks
the coastline.
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northern and eastern portions of the domain). In contrast, the phase differences estimated
from the water vapour in the 1 km domains (D04) of both high-resolution WRF simula-
tions (WRF-FNL and WRF-DA, Figures 2(c) and (d)) exhibit much finer (small-scale)
variability and have considerably higher phase difference values over land (northern two-
thirds of the domain) than over the sea and coastal areas. Water vapour phase estimates
from the two high-resolution WRF simulations share similar spatial patterns, except over
the southwest portion of the domain (where the IWV in WRF-DA is higher than that in
WRF-FNL) and (to a lesser extent) in areas near the coastline. Moreover, the overall phase
difference estimated with the GFS-FNL interpolated analysis is much smaller than the
phase differences estimated from WRF-FNL and WRF-DA, especially over both coastal
areas and land. The magnitude of and spatial differences in estimated atmospheric phase
delay are derived exclusively from the differences in estimated atmospheric water vapour
estimation from the various NWP model products (to be discussed in detail in
Section 4.3).

4.2. Atmospheric effect mitigation

Figures 3(b)–(d) show the deformation maps after atmospheric correction by different
NWP model products. For the sake of comparison, the deformation map from the initial
unwrapped interferogram is made using Equation (5) and is shown in Figure 3(a). After
atmospheric correction using the NCEP GFS-FNL water vapour results (Figure 3(b)), the
deformation magnitude is generally larger than the uncorrected one, although the overall
spatial pattern remains nearly identical. However, after atmospheric correction based on
WRF-FNL (Figure 3(c)) and WRF-DA (Figure 3(d)), it is clear that the positive signals in
the northwest and Hong Kong and the negative signal in the west have been largely
removed: the range of the middle 95% distribution (that is, excluding the lowest 2.5% and
highest 2.5%) of deformation values decreases from −20 mm, +43 mm to −13 mm,
+26.5 mm, which renders the corrected interferogram much flatter. A relatively high
(corrected) deformation value of about 35 mm is measured in the northwest corners of
both WRF-FNL and WRF-DA. This corresponds to a forested area with low coherence,
where the quality of the InSAR interferogram is poor. The deformation maps derived
from the WRF-FNL and WRF-DA simulations (Figures 3(c) and (d)) exhibit very

Figure 3. (a) Deformation map in the radar LOS direction before atmospheric correction. (b) As in
(a), but after atmospheric correction using NCEP GFS-FNL water vapour data. (c) As in (b), but
using WRF-FNL. (d) As in (b), but using WRF-DA.
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high-frequency spatial features in the middle of the domain. These features, with hor-
izontal scales of around 10 km or less, are likely a consequence of small-scale variability
and uncertainty in atmospheric water vapour from the WRF simulations (Figures 2(c) and
(d)) rather than a reflection of the real spatial variability in surface deformation at such
fine scales during the study period.

Figures 4(a)–(c) show the differences between the atmospheric-corrected surface
deformation (Figures 3(b)–(d)) and the uncorrected values (Figure 3(a)). These deforma-
tion differences are due solely to the phase differences in accounting for the effects of
atmospheric water vapour derived from the three different NWP model products. From
these different NWP products, we can see that the atmospheric signal observed in repeat-
pass SAR in this study can lead to deformation differences between about −43 and
+17 mm. One striking result is that the deformation differences for GFS-FNL
(Figure 4(a)) are poorly correlated with the WRF-derived deformation differences
(Figures 4(b) and (c)): in the northwest corner of the domain and around (22.75° N,
114° E), there are large positive (negative) deformation differences in the GFS-FNL
(WRF-derived) results. Although it is very difficult to verify, this result suggests (and
is supported by Figure 5) that the coarser resolution of the GFS-FNL does not
accurately represent important smaller-scale atmospheric processes (captured by
WRF) that determine the water vapour distribution in this region. The WRF-DA and
WRF-FNL deformation maps are very similar (Figure 4(d)), except along the coast
where the deformation differences are in the order of ±8 mm.

4.3. Inter-comparison of IWV

Comparison of IWV derived from NCEP GFS-FNL data, WRF-FNL, and WRF-DA is
shown in Figure 5. It is apparent that the water vapour level was higher on 4 January
2009 than on 15 March 2009, resulting in a significant atmospheric phase delay in
DInSAR. Therefore it is necessary to estimate and eliminate such atmospheric effects.
As stated above and evident from Figure 5, NCEP GFS-FNL data cannot resolve key
small-scale features of water vapour distribution: the GFS-FNL result (Figures 5(a)
and (b)) for both days has a strong WNW–ESE gradient while the WRF results have a
N–S gradient, so it is not ideal to use such coarse-resolution NWP analysis data directly to
estimate atmospheric delay. The third column in Figure 5 is the differential IWV between

Figure 4. Deformation differences between the original DInSAR and (a) NCEP GFS-FNL data;
(b) WRF-FNL; and (c) WRF-DA. The deformation difference between WRF-DA and WRF-FNL is
shown in (d).
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the two dates (4 January minus 15 March). From Figures 5(f) –(i), it can be seen that the
discrepancies between WRF-FNL and WRF-DA are mainly along the coastline where
more observations were gathered, consistent with the rather small difference in corrected
surface deformation between these two methods (Figures 3(c) and (d)).

Figure 6 also shows the differences in IWV between WRF-FNL and WRF-DA at the
two InSAR pass times, and the differential result between the differences of the two dates.
On 4 January (Figure 6(a)), the IWV from WRF-DA is lower than that of WRF-FNL near
the Pearl River Delta. Also, the IWV difference between WRF-DA and WRF-FNL is
greater on 4 January (Figure 6(a)) than on 15 March (Figure 6(b)). It should be mentioned
that the IWVon 4 January is greater than on 15 March, which indicates that the former is

Figure 5. Integrated water vapour (IWV) (corresponding to D04 in Figure 1(a)) derived from (a)–
(c) interpolated NCEP GFS-FNL data, (d)–(f) WRF-FNL, and (g)–(i) WRF-DA. (a), (d), (g) are
valid on 4 January 2009 and (b), (e), (h) are valid on 15 March 2009. (c), (f), (i) are the differences
in IWV between 4 January (date 1) and 15 March (date 2). The dashed rectangles indicate the
domain of the InSAR data (cf. Figure 1(b)).
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moister than the latter. So in the moister environment, the difference between WRF-DA
and WRF-FNL is higher than in the drier environment. Combining the results of these two
dates, we obtain the discrepancy of the differential IWV (Figure 6(c)). It is clear that the
difference in Figure 6(c) is along the coastline area, with a magnitude of about 0.2 g cm–2.
This difference leads to a deformation of about 8 mm after atmospheric correction and
InSAR baseline refinement (see Figure 4(d) for comparison). Meanwhile, the coastline
areas with a significant land–sea difference had more observations than the other parts of
study site. The differences along the coastline indicate that additional mesoscale data
assimilation of coastal observations had a substantial impact on the high-resolution WRF
simulations. Therefore, it may be advantageous to incorporate further observations via
mesoscale data assimilation to improve the performance of NWP simulations for the
purpose of mitigating atmospheric effects in InSAR measurements.

4.4. Vertical profile of water vapour

We chose two cross-sections – denoted AB and CD – near the coastline (see Figure 6 for
location), to compare the vertical distribution of water vapour between WRF-FNL and WRF-
DA. The differences along cross-sections AB and CD are shown in Figures 7 and 8,
respectively, from the surface to a height of 6 km. Not surprisingly, the greatest concentrations
of water vapour are near the surface, with nearly negligible moisture at 6 km (Figures 7(a),
(b), (d), (e) and 8(a), (b), (d), (e)). The horizontal gradients in water vapour – with more
moisture over water (right-hand side of cross-sections) than over land (left-hand side of cross-
sections) – are generally confined to the lowest 2 km of the atmosphere. Therefore, for the
purposes of atmospheric correction, it is essential to capture accurately the atmospheric
processes associated with air–sea–land interactions (such as sea breezes, coastal fronts, surface
fluxes, and turbulent boundary layer fluxes). As mentioned above, additional mesoscale data
assimilation of finer-scale observations, especially those near the ground, may further improve
estimates of atmospheric water vapour (cf. Figures 7(g), (h) and 8(g), (h)), although future
studies or field campaigns are needed to verify the fidelity of the finer-scale estimation of
water vapour content by high-resolution, convection-permitting NWP model simulations.

Figure 6. IWV from WRF-DA minus IWV from WRF-FNL for (a) 4 January 2009 (the same as
Figure 5(g) minus 5(d)) and (b) 15 March 2009 (the same as Figure 5(h) minus 5(e)). (c) Differential
result between the two dates, which is (a) minus (b) (the same as Figure 5(i) minus 5(f)). The white
lines indicate the cross-sections in Figures 7 and 8.
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4.5. Verification by GPS data

Figure 9 shows the PWV from NCEP GFS-FNL data and WRF-FNL, WRF-DA, and GPS
(observations) at the two SAR acquisition times (0230 UTC on 4 January and 15 March
2009) at the locations of the GPS sites. Clearly, the bias in PWV from NCEP GFS-FNL data
is substantially higher than those from WRF-FNL and WRF-DA. The larger bias in the
NCEP GFS-FNL PWV is most likely the result of the coarser horizontal resolution (1° × 1°
grids), which can induce a representative error – especially over coastal areas where PWV is
quite variable. The RMSE for each of the three model data sets (using GPS data as the truth)

Figure 7. Vertical profiles of water vapour mixing ratio along cross-section AB (Figure 6) from
(a)–(c) WRF-FNL and (d)–(f) WRF-DA. (a), (d) are valid on 4 January 2009 and (b), (e) are valid
on 15 March 2009. (c), (f) are the water vapour mixing ratios on 4 January (date 1) minus those on
15 March (date 2). (g)–(i) are the differences between (a)–(c) and (d)–(f), respectively.
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is also shown in Figure 9. By this metric, the most accurate PWV field is derived fromWRF-
DA, with differences of generally less than 3 mm. It is important to reiterate that the GPS
data were not assimilated intoWRF-DA, and thus are a fully independent validation of PWV.

Six of the 12 GPS stations are used in the deformation verification (see Figure 1(c)).
Comparisons of range changes derived from InSAR and GPS techniques are performed by
mapping the GPS-derived displacements, which is the relative offset of two dates, into the
radar LOS direction (Figure 10). Figure 10 shows that applying atmospheric correction
decreases the relatively large displacement (of the uncorrected InSAR measurements) by
up to 30 mm, yielding values that are closer to those of GPS. Not surprisingly, applying
atmospheric correction with NCEP GFS-FNL data shows a slight reduction (of about

Figure 8. As in Figure 7, but for cross-section CD (see Figure 6).
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5 mm) in the bias of the deformation. The deformations derived from WRF-FNL and
WRF-DA are in much better agreement with the GPS validation, especially so for WRF-
DA at the HKFN, HKKT, and HKLT stations. To understand this further, we look at the

Figure 9. Comparison of precipitable water vapour (PWV) derived by different methods at the
locations of the GPS sites at 0230 UTC on (a) 4 January 2009 and (b) 15 March 2009. Black solid
line with cross represents the PWV from GPS, which can be treated as the truth of observations. The
dashed dot line with the square is the PWV from NCEP GFS-FNL data at same points with GPS
sites. The dashed line with triangle is the PWV from WRF-FNL. The dotted line with round circle is
the PWV from WRF-DA. The root mean square error (RMSE) of the three methods versus GPS is
shown in the legend. The horizontal axis is the name of the GPS site.

Figure 10. Relative displacement between GPS stations (sorted by coherence) in Hong Kong
between 4 January and 15 March 2009 in the radar LOS direction. Black solid line with cross
represents the displacement from GPS. Grey solid line with blank circle is the relative LOS
displacement from the uncorrected interferogram at same points with GPS. The dashed dotted line
with square, triangle, and round circle denotes the relative LOS displacements from the interfero-
gram with the atmospheric correction with NCEP GFS-FNL data, WRF-FNL, and WRF-DA,
respectively. The coherence for each station is also shown on the abscissa.
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coherences of all six stations. Coherence has a major influence on the precision of the
InSAR results; high coherence values are associated with ‘good quality’ whereas low
coherence values are associated with ‘poor quality’ – increasing levels of noise and erratic
deformation patterns. The coherence of InSAR data at each GPS station is shown in
Figure 10. It indicates that the coherence of HKFN, HKKT, and HKLT, the stations where
WRF-DA shows excellent agreement with GPS observations, is higher than that of the
other three stations (HKST, HKNP, and HKSS). In the current study, the corrected results
at stations with low coherence (that is, ‘poor quality’ of SAR interferogram) are still
biased compared with the GPS validation, suggesting that further studies are necessary to
improve the quality of InSAR results and, more importantly, to improve the initial
conditions through either better observations or more advanced data assimilation methods
for the high-resolution NWP model simulations (e.g. Zhang, Zhang, and Poterjoy 2013).

5. Concluding remarks

In this study, we propose the use of three different model-based data sets – NCEP GFS-
FNL data, the WRF model without data assimilation (WRF-FNL), and WRF with 3DVar
data assimilation (WRF-DA) – to correct for atmospheric effects in DInSAR. The
correction by NCEP GFS-FNL data performed poorly due to its coarse resolution. Both
WRF-based data sets (WRF-FNL and WRF-DA) performed substantially better due to the
higher resolution of the model. Of these three approaches, WRF-DA provides the best
atmospheric correction for DInSAR. The differences in water vapour between WRF-FNL
and WRF-DA were greatest along the coastline, where the land–sea difference is sub-
stantial. Verification with GPS data concluded that deformation obtained from the WRF-
DA-corrected interferogram was the most consistent with the observations at stations with
a high coherence. At stations with a low coherence (where the InSAR data are of ‘poor
quality’), however, all the correction methods had a non-negligible bias.

Overall, this work demonstrates the high potential and effectiveness of WRF-based
data assimilation to both reduce water vapour signals and correct the atmospheric phases,
despite the fact that few observations – only of standard meteorological data – are
assimilated. Future research should focus on making further improvements to NWP
model estimates of atmospheric water vapour content, which will result in a more accurate
correction of the effects of atmospheric water vapour on InSAR measurements. For
example, it is likely that not all observations assimilated by the model have the same
impact on the estimated water vapour field; therefore, it is important to determine the
location (i.e. surface versus upper air or coastline versus inland), type (i.e. satellite,
radiosonde, etc.), and spatio-temporal density of the observations that result in the greatest
improvements to water vapour estimation. In addition, a more advanced data assimilation
system – such as the ensemble Kalman filter, four-dimensional variational data assimila-
tion, or their hybrids – is expected to yield even more accurate forecasts; these methods
have yet to be tested for DInSAR atmospheric correction and thus will be the focus of
ongoing research. Finally, the effects of model error can be investigated by looking at
different physical parameterization schemes – particularly for cloud microphysics, which
determines the atmospheric water vapour field.
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