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ABSTRACT

Several sets of short-range mesoscale ensemble forecasts generated with different types of initial pertur-
bations are used in this study to investigate the dynamics and structure of mesoscale error covariance in an
intensive extratropical cyclogenesis event that occurred on 24–25 January 2000. Consistent with past pre-
dictability studies of this event, it is demonstrated that the characteristics and structure of the error growth
are determined by the underlying balanced dynamics and the attendant moist convection. The initially
uncorrelated errors can grow from small-scale, largely unbalanced perturbations to large-scale, quasi-
balanced structured disturbances within 12–24 h. Maximum error growth occurred in the vicinity of upper-
level and surface zones with the strongest potential vorticity (PV) gradient over the area of active moist
convection. The structure of mesoscale error covariance estimated from these short-term ensemble fore-
casts is subsequently flow dependent and highly anisotropic, which is also ultimately determined by the
underlying governing dynamics and associated error growth. Significant spatial and cross covariance (cor-
relation) exists between different state variables with a horizontal distance as large as 1000 km and across
all vertical layers. Qualitatively similar error covariance structure is estimated from different ensemble
forecasts initialized with different perturbations.

1. Introduction

Immediately following the poorly forecasted, intense
snowstorm of 24–25 January 2000, extensive studies
were conducted to explore the possible reasons for the
forecast failure at different temporal and spatial scales
(e.g., Tracton and Du 2001; Buizza and Chessa 2002;
Langland et al. 2002; Zhang et al. 2002, hereafter
ZSR02; Zupanski et al. 2002; Jang et al. 2003). All of
these studies concluded that errors in the initial condi-
tions might have contributed significantly to the real-
time forecast difficulty. More recently, Zhang et al.
(2003, hereafter ZSR03) demonstrated that the meso-
scale predictability can be seriously limited by strong
upscale growth of small-scale small-amplitude initial er-
ror in the presence of moist convection, much as fore-
seen by Lorenz (1969). Consistent with this result,
Buizza and Chessa (2002) pointed out the significance
of including stochastic perturbations in the global en-

semble prediction system at the European Centre for
Medium-Range Weather Forecasts (ECMWF). The in-
herent rapid growth of forecast error from convective
scales and from stochastic processes suggests the need
for short-range mesoscale probabilistic forecasts
through ensembles. However, since uncertainties in the
initial analysis in practice remain large, significant pre-
diction skill can be gained with better data assimilation
techniques (Zupanski et al. 2002; Jang et al. 2003).

One of the key issues for data assimilation is the
specification of background error covariance. Although
the deficiencies of isotropic and stationary representa-
tions of background error covariance have long been
realized in the literature (e.g., Benjamin and Seaman
1985; Cohn and Parrish 1991; Daley 1992; Evensen
1994; Cohn 1997; Talagrand 1997), an isotropic and sta-
tionary error correlation is commonly used for data as-
similation at most operational centers, such as the Na-
tional Centers for Environmental Prediction (NCEP;
Bishop et al. 2001). Over the past decade, ensemble
forecasting has emerged as a powerful tool for numeri-
cal weather prediction (Tracton and Kalnay 1993; Mol-
teni et al. 1996; Toth and Kalnay 1997). Ensemble fore-
casting not only has the promise of producing the mini-
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mum-error estimate of the future atmospheric state, it
also provides uncertainties associated with this estimate
and thus provides information valuable for estimating
the flow-dependent background error covariance
(Evensen 1994).

The ensemble-based data assimilation method (en-
semble Kalman filter or EnKF; Evensen 1994), which
uses short-term ensemble forecasts to estimate flow-
dependent background error covariance, has recently
been implemented in various atmospheric and oceanic
models. These models vary from idealized examples
based on simplified equation sets to those based on the
complete, primitive equations with assimilation of real
observations (Houtekamer and Mitchell 1998; Hamill
and Snyder 2000; Keppenne, 2000; Keppenne and Rie-
necker 2002; Zhang and Anderson 2003; Snyder and
Zhang 2003; Houtekamer et al. 2005; Whitaker et al.
2004; Dowell et al. 2004). These experimental studies
demonstrated the feasibility and effectiveness of the
EnKF for different scales and flows of interest and the
advantages of using the EnKF over existing data as-
similation schemes, which assume stationary, isotropic
background error covariance.

With exceptions such as Hamill (2005, his Figs. 6–8),
few studies have examined the detailed structure and
the degree of anisotropy of background error covari-
ance estimated from the ensemble forecast. Even less
studied is the error growth dynamics that leads to the
flow-dependent error covariance structure for regional
or mesoscale atmospheric flows. In this study, several
sets of mesoscale ensemble forecasts initialized with
different perturbation generation methods are used to
investigate the dynamics and structure of mesoscale
error covariance in the context of an explosive extra-
tropical cyclogenesis event. The model and experimen-
tal design will be described in section 2. Section 3
examines forecast uncertainties and error growth dy-
namics derived from different sets of short-term meso-
scale ensemble forecasts. Demonstrations of the flow-
dependent mesoscale error covariance are presented in
section 4. Section 5 contains the concluding remarks.

2. Experimental design

a. Forecast model

The study uses the fifth-generation Pennsylvania
State University–National Center for Atmospheric Re-
search (PSU–NCAR) Mesoscale Model (MM5; Dudhia
1993). The model has 27 vertical layers with the model
top at 100 hPa. The horizontal domain covers the con-
tinental United States with a grid spacing of 30 km (Fig.
1), the same as the coarse domain used in ZSR02 and
ZSR03. The reference initial analyses at 1200 UTC 23

January and 0000 UTC 24 January 2000 are both gen-
erated using the real-time operational Eta Model analy-
sis (Mesinger 1998) as the first guess and are then re-
analyzed with conventional observations using the stan-
dard objective analysis tools available in MM5. Details
and references on the model configurations and gen-
eration of the initial and boundary conditions can be
found in ZSR02.

b. Ensemble initializations

1) RESCALED RANDOM PERTURBATIONS

(EF-BGV)

First, “gridpoint” random perturbations with stan-
dard deviations of 3 m s�1 and 3 K are added to the
reference analyses of the horizontal wind (U and V)
and temperature (T ) fields at all model grid points at
1200 UTC 23 January to generate five sets of perturbed
initial conditions. Each of these initial states is then
integrated with MM5 for 12 h. Since these initial per-
turbations are totally uncorrelated white noise, the do-
main-integrated difference total energy (DTE),

DTE � 0.5�U�U� � V�V� � kT�T��, �1�

where primes denote difference between any two simu-
lations and k � Cp/Tr (Cp � 1005.7 J kg�1 K�1 and the
reference temperature Tr � 270 K), has decreased to
�20% of its original value after 12 h. The decrease of
DTE comes largely from numerical diffusion used in
the forecast model, in which smaller-scale disturbances,
especially those with scales smaller than the minimum
resolvable wavelength (approximately 4–6 times the
model grid spacing), are heavily damped. The decrease
of DTE over these 12-h preforecast periods may also
come from the geostrophic adjustment process because
the initial gridpoint perturbations are largely unbal-
anced (Errico and Baumhefner 1987). Note that the
isotropic initial perturbations do not decrease uni-

FIG. 1. Map of model domain. The region that is the focus of
this study is indicated by the shaded area.
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formly across the model domain. Coherent difference
structures, albeit still at relatively small scales, begin to
develop from these random perturbations during the
12-h preforecast integration. The variations are maxi-
mized in the vicinity of the surface and upper-level
fronts where strong gradients exist and over the region
of moist activity. An example of such disturbances at
the 300-hPa level after rescaling (described below) is
shown in Figs. 2a,c,e.

The 12-h forecast difference of all prognostic vari-

ables between any of the two preforecast simulations is
then rescaled according to the difference between the
operational Eta analysis and ECMWF gridded analysis
(in terms of domain-integrated DTE) valid at 0000
UTC 24 January (see ZSR02, p. 1623). That is to say, if
the difference between two simulations after the 12-h
preforecast is DTE1 and the difference between the Eta
and ECMWF analyses is DTE0, then the difference of
all prognostic variables between these two simulations
is rescaled by a factor of

FIG. 2. The 300-hPa difference between member 1 and the mean of EF-BGV for (a) U, (c) V, and (e) T at 0 h,
and for (b) U, (d) V, and (f) T at 24 h. Contour intervals for U, V, and T are 10 m s�1 and 2 K for the ensemble
mean (gray) and 0.5 m s�1 and 0.5 K for the difference (solid: positive; dashed: negative), respectively. Zero
contours are suppressed in this and all subsequent figures.
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� � �DTE0 � DTE1�1�2 � 2.0. �2�

Thus, 10 sets of such rescaled differences (perturba-
tions) are obtained from the five preforecast simula-
tions. These perturbations are then added to (and sub-
tracted from) the reference MM5 analysis valid at 0000
UTC 24 January to generate initial conditions for a
20-member ensemble forecast (“EF-BGV”). As a re-
sult, the reference MM5 analysis is the initial ensemble
mean at this time. After the preforecast and rescaling,
the initial DTE between the mean and each of the new
ensemble members is equal to the DTE between the
Eta and ECMWF analyses. The ensemble forecast gen-
erated with the rescaled perturbations thus has uncer-
tainties comparable to those in real-time analysis-
forecast systems (in terms of DTE). The ensemble gen-
eration method described herein is similar to the
breeding method used at NCEP (Toth and Kalnay
1993) except that gridpoint random perturbations are
used initially and the difference was scaled up instead
of scaling down after the single 12-h breeding cycle.
With only one breeding cycle, spectrum analyses show
that initial uncertainties between ensemble members
have more energy in smaller scales (and are thus less
organized) than those between the Eta and ECMWF
analysis. The error growth (ensemble spread) in the
subsequent ensemble forecast is expected to be even
greater when more organized and larger-scale initial
uncertainties are used. The EF-BGV is initiated at 0000
UTC 24 January 2000 and integrated forward for 36 h.
All ensemble members use the same real-time Eta fore-
cast initialized at 0000 UTC 24 January as the lateral
boundary conditions. The storm of interest and the
analysis domain are chosen to be far away from the
model inflow (west) boundary (Fig. 1) to minimize the
impacts of using the same lateral boundary conditions
in assessing the error growth dynamics and covariance
(e.g., Vukicevic and Errico 1990).

Another set of ensemble forecasts (“EF-DRY”) is
configured in exactly the same way as EF-BGV, except
that the latent heating/cooling due to moist processes is
turned off during the model integrations.

2) “BALANCED” RANDOM PERTURBATIONS

(EF-BAL)

To test the sensitivity of the covariance structure, an
independent set of ensemble forecasts (“EF-BAL”) is
produced by randomly selecting initial perturbations
from the background error covariance used by the
MM5 three-dimensional variational data assimilation
(DVAR) system developed at NCAR (Barker et al.
2004). The MM5 3DVAR analysis was performed on a
transformed, geostrophically balanced streamfunction

field. Twenty such random perturbations of the stream-
function were thus created and then transformed to
derive the balanced wind, temperature, and pressure
perturbations (Barker et al. 2003, see 58–59), similar to
the ensemble generation method used in Mitchell et al.
(2002). These perturbations are then added to the ref-
erence MM5 analysis at 0000 UTC 24 January 2000 to
generate a 20-member ensemble forecast integrated for
36 h with the same model configuration and boundary
conditions as in EF-BGV.

3) GRIDPOINT RANDOM PERTURBATIONS

(EF-RDM)

Another ensemble of 20 forecasts (“EF-RDM”) is
produced by adding gridpoint random perturbations
with standard deviations of 3 m s�1 and 3 K to the
reference analyses of the horizontal wind (U and V)
and temperature (T ) fields at all model grid points at
0000 UTC 24 January 2004 and then integrating for 36
h with the same model configuration and boundary
conditions as in EF-BGV. There are no correlations
between perturbations of any two independent state
vectors at the initial time. These perturbations are thus
largely unbalanced with little projection to larger-scale
flows.

3. The ensemble forecasts and error growth
dynamics

Figure 3 shows the 24-h forecast of the mean sea level
pressure (MSLP) and simulated radar reflectivity valid
at 0000 UTC 25 January 2000 from three members of
EF-BGV (Figs. 3a–c), EF-BAL (Figs. 3d–f), and EF-
RDM (Figs. 3g–i). Despite a general agreement among
the different forecasts with respect to the large-scale
flow patterns, strong variability of all aspects of the
snowstorm is found in the short-range ensemble fore-
casts between different sets of ensemble forecasts and
between members in the same set of ensemble forecast
using different initial conditions, consistent with the
real-time, experimental NCEP short-range ensemble
forecast of this event (Tracton and Du 2001). In real
time, Raleigh, North Carolina, reported frozen precipi-
tation starting at 0000 UTC 25 January followed by
heavy snow in the next 12–18 h. Among all the mem-
bers shown, we can see that 1) the central pressure of
the surface cyclone varies from 991 to 997 hPa; 2) the
structure and location of the surface cyclone centers
differs significantly; and 3) most importantly, the loca-
tions of the instantaneous precipitation bands indicated
by the simulated reflectivity can be completely shifted.
For example, though the surface low pressure centers
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are very close to each other (Figs. 3b,c), most of the
inland precipitation in Fig. 3b is along the coast of
North Carolina, while most of the inland precipitation
in Fig. 3c is along the coast of South Carolina and Geor-
gia. As in Tracton and Du (2001), there are strong pre-
cipitation bands approaching the Washington, D.C.,
area in several of the ensemble members at the 36-h
forecast time valid at 1200 UTC 25 January, which
agrees well with real-time observations (not shown).

To compare the forecast sensitivity to the MM5 ini-

tial analysis in ZSR02 (their Fig. 15, p. 1629), the 36-h
accumulated precipitation forecast difference between
member 1 and the ensemble mean of EF-BGV is plot-
ted in Fig. 4a. The precipitation evolution of all mem-
bers of EF-BGV in a 240 km � 240 km rectangular box
surrounding Raleigh is plotted in Fig. 4b. ZSR02 found
that the maximum precipitation difference was as large
as 40 mm over the Atlantic Ocean between experi-
ments with and without the sounding from Little Rock,
Arkansas, in the initial analysis (ZSR02, their Fig. 15a).

FIG. 3. MSLP (every 2 hPa) and model-derived low-level averaged reflectivity (below 639 hPa, shaded) from three members of (a),
(b), (c) EF-BGV, (d), (e), (f) EF-BAL, and (g), (h), (i) EF-RDM at the 24-h forecast time (0000 UTC 25 Jan 2000).
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FIG. 5. Evolution of the 300-hPa mean PV (solid, every 1.0 PVU) and its std dev (dashed, every 0.25 PVU
staring from 0.5 PVU; greater than 1.0 PVU shaded) at the (a) 0-, (b) 12-, (c) 24-, and (d) 36-h simulation time.

FIG. 4. (a) The 36-h accumulated precipitation difference (D � 10 mm) between member 1 and the mean of
EF-BGV. (b) Time evolution of the accumulated precipitation (mm) averaged over a 240 km � 240 km box around
Raleigh, NC, for each member. The location of the box is shown in (a).
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They also found that the 36-h forecasted precipitation
averaged over Raleigh can vary by 40% among the 10
individual sounding experiments (ZSR02, their Fig.
15b). In EF-BGV in which members have larger initial
uncertainties, the maximum 36-h forecast precipitation
difference is well over 100 mm (�4 in.) between mem-
ber 1 and the ensemble mean (Fig. 4a). Moreover, the
average 36-h precipitation forecast over Raleigh can
differ by a factor of 4 (Fig. 4b). Large uncertainties of
accumulated precipitation forecasts coincide with a
high likelihood of moist convection, consistent with
Mullen et al. (1999) and ZSR03 (their Fig. 6). Compa-
rable variability of short-range precipitation forecasts
were reported previously by Du et al. (1997) and Stens-
rud et al. (1999) with the NCEP short-range ensemble
forecasting (SREF) system, although longer-term sta-
tistics of SREF displayed a general lack of error growth
in mesoscale precipitation forecasts (Wandishin et al.
2001).

Consistent with large precipitation forecast uncer-
tainty at 24 h (Fig. 3–4), the 300-hPa wind and tempera-
ture differences between the first member and the en-
semble mean of EF-BGV at the 24-h forecast time
(Figs. 2b,d,f) are also much larger, both in scale and in
magnitude than the differences at the initial time (Figs.
2a,c,e). This suggests that the largely unbalanced,
smaller-scale initial perturbations in EF-BGV evolved
into quasi-balanced, larger-scale systematic differences
over the 24-h forecast period. A similar transition also
occurred in EF-RDM initialized with purely random
perturbations (not shown). Figures 2–4 indicate that, by
24–36 h, all three ensemble experiments have devel-
oped a reasonable spread and therefore have been sat-
isfactorily initialized. The upscale error growth in these
ensemble forecasts is consistent with findings from vari-
ous sensitivity experiments examined for this case in
ZSR03. The scale change of growing errors for larger-
scale flows has also been discussed previously (e.g., Far-
rell 1990; Buizza 1994; Barkmeijer et al.1998; Tribbia
and Baumhefner 2004).

The evolution of the balanced dynamics in the en-
semble forecasts is further examined through the diag-
nosis of potential vorticity (PV). The evolution of the
300-hPa mean PV and its standard deviation (as a mea-
sure of spread) from EF-BGV are plotted in Fig. 5.
Consistent with largely unbalanced wind and tempera-
ture perturbations from member 1 (Figs. 2a,c,e), large
initial PV uncertainties at 300 hPa spread out all over
the domain with incoherent structures (Fig. 5a). Nev-
ertheless, after the short breeding cycle, there are nu-
merous localized maxima along the strong gradients of
the background (ensemble mean) PV, albeit still small
in scale. After 12 h (Fig. 5b), the mean PV associated

with the upper-level, shortwave trough, which eventu-
ally leads to the explosive cyclogenesis, is maximized
over the Appalachian Mountains and stretches to the
south, collapsing into a filament as well as penetrating
into the middle to lower troposphere (not shown). In
the meantime, the PV variations gain coherent struc-
ture and are maximized on the edge of the mean PV
filament. At the 24-h forecast time (Fig. 5c), the maxi-
mum mean PV is over southern Georgia. There are two
PV filaments in the display domain at this time: the
filament, which extends southward to the Gulf of
Mexico, links the PV maximum to the subtropical jet
and the filament, which extends northward toward the
Atlantic coast, and links the PV maximum to the polar
jet. Again, the largest PV spread at this level is approxi-
mately collocated with the strongest mean PV gradient
associated with the shortwave trough (Fig. 5c). A sec-
ondary region of large PV spread is located above the

FIG. 6. The mean PV (solid, every 1.0 PVU) and its std dev
(dashed, every 0.25 PVU starting from 0.5 PVU; greater than 1.0
PVU shaded) at the 24-h simulation time of EF-BGV (a) at 600
hPa and (b) along cross section AB.
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surface cyclone (Fig. 5c), where there is active moist
convection. The tropopause folding associated with the
upper-level shortwave trough has penetrated well be-
low 600 hPa (Fig. 6b). Meanwhile, at the 600-hPa level,

the PV spread above the convective region has a stron-
ger maximum than that of the PV spread due directly to
the intruding PV trough (Fig. 6a). The mean PV and its
standard deviation in a west–east cross section are plot-

FIG. 7. Same as in Fig. 5c but for (a) EF-BAL, (b) EF-RDM,
and (c) EF-DRY.

FIG. 8. Same as in Fig. 6b but for (a) EF-BAL, (b) EF-RDM,
and (c) EF-DRY.
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ted in Fig. 6b. Consistent with the horizontal plots, Fig.
6b shows that the upper-level, shortwave trough, along
with the enhancement of lower-tropospheric diabatic
PV generation (refer to ZSR02), contributes directly to
the surface cyclogenesis. Also, the strongest PV varia-
tion is again seen along the PV gradient and above the
region of moist convection (cf. to Fig. 5c). At the ma-
ture stage of the cyclogenesis (24–36 h), the mean up-
per-level PV maximum closely collocates with the sur-
face cyclone. Consequently, the two maximum spreads,
one due to the upper PV gradient and the other due to
diabatic contribution, become inseparable at this time
(Fig. 6b), corresponding well to the lower predictability
in this region (ZSR02 and ZSR03).

The distribution of the mean and standard deviation
of PV in EF-BAL and EF-RDM at 300 hPa (Figs. 7a,b)
and along cross section AB (Figs. 8a,b) is qualitatively
similar to that of EF-BGV (Figs. 5c and 6b), suggesting
the balanced error growth dynamics is not an artifact of

ensemble initiation but rather determined by the back-
ground dynamics. For example, in both ensemble sets,
the maximum PV variations collocate with the maxi-
mum PV gradient along both sides of the PV filament
and a secondary region of maximum variations collo-
cate with areas of moist processes. The magnitude
of the PV variation at 300 hPa in EF-BAL is compa-
rable to EF-BGV as well, but is slightly smaller in
EF-RDM.

In EF-DRY, in which no latent heating/cooling is
included in the ensemble forecast, the spread of the
short-term forecast is greatly reduced. The intensity,
structure, and location of the surface cyclones in all
ensemble members (not shown) are very similar to the
unperturbed reference simulation discussed in ZSR02
(their Fig. 8b). The maximum location and intensity
differences of the primary surface cyclone among all 20
members are 60 km and 2 hPa, respectively. Smaller
ensemble spread is also found in ensemble forecasts

FIG. 9. The 24-h EF-BGV forecast estimated error covariance between (a) U and V, (b) V and T, and (c) U and
T at 300 hPa. (d) The correlations between U and T at 300 hPa. Positive values are in solid contours and negative
in dashed contour with intervals of 10 m2 s�2, 2 K m s�1, 2 K m s�1, and 0.2, respectively. Contours with correlations
smaller than 0.5 but greater than �0.5 are omitted in (d). Mean PV (gray, every 1.0 PVU) is also plotted as a
reference of the background balanced dynamics. Line AB and points C and D will be referred to in subsequent
figures.
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similar to EF-DRY, but with the same balance initial
perturbations as in EF-BAL (not shown). All these re-
sults are consistent with the findings from ZSR03 that
moist convection strongly impacts the error growth dy-
namics of this event, even though the initial spreads
(errors) are considerably larger in the current ensemble
runs than those used by ZSR03. There are similarities
in the basic features of the upper-level PV trough and
the location of maximum PV variations between EF-
DRY and EF-BGV (cf. Figs. 7c and 5c) at the 24-h
forecast time. Nevertheless, significant differences exist
between these two sets of ensemble runs as well. In
EF-DRY, the upper PV trough moves too quickly to
the east with less anticyclonic curvature (Fig. 7c). The
PV filamentation (tropopause folding), which was di-
rectly linked to the rapid cyclogenesis in EF-BGV,
barely reaches the 600-hPa level (Fig. 8c) and is no
longer directly phase locked with the surface cyclone in
EF-DRY. As a result, the surface cyclones in EF-DRY
are all significantly weaker (10–15 hPa) than those in
EF-BGV (not shown), consistent with the sensitivities
between two unperturbed reference simulations found
previously in ZSR02 (their Figs. 5d and 8b).

Moist processes not only modified the mean dynam-
ics of the baroclinic system, they also changed the mag-
nitude and distributions of the forecast uncertainty. In
the upper troposphere, variations of the PV in EF-
DRY are narrowly focused along the upper-level front
(Figs. 7c and 8c), but they have similar magnitude to the
PV variations of EF-BGV. Moreover, the significant
mid–lower-tropospheric maxima above the surface cy-
clone and coastal front in EF-BGV (Figs. 5c and 6) are
nearly absent in EF-DRY (Fig. 8c).

The evolution from small-scale uncorrelated random
noise to systematic larger-scale balanced perturbations
and the collocation of the maximum PV variation with
local maxima along the mean PV gradient is qualita-
tively similar to the previous findings from ensemble
forecasts with a dry quasigeostrophic model (Snyder et
al. 2003; Snyder and Hamill 2003). However, examina-
tion of the PV variation suggests that caution should be
taken in generalizing findings on ensemble generation
or data assimilation derived from lower-dimensional
dry models to more complex prediction systems simu-
lating a realistic atmosphere in which moist dynamics
have profound impacts on the error growth dynamics.

FIG. 10. Same as in Fig. 9 but along cross section AB. Points E at 300 mb and F at the surface will be referred
to in Figs. 12–13.
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4. Error covariance

Flow-dependent error growth dynamics examined in
the previous section motivate the examination of flow-
dependent background error covariance, the signifi-
cance of which has been pointed out by Cohn and Par-
rish (1991), Daley (1992), Evensen (1994), Cohn (1997),
and Talagrand (1997). Special attention is given to the
covariance estimated at the 24-h forecast time at which
random initial perturbations will have had sufficient
time to evolve into coherent structure. In practice,
shorter-term ensemble forecasts and thus shorter as-
similation cycles (6 or 12 h) may be used, though the
covariance estimated from EF-BGV and EF-RDM may
be noisier at earlier times due to the largely unbalanced
nature of the initial perturbations. In addition, due to
the large dimension of the error covariance matrix
(�1014), only a small subset of the covariance matrix
will be examined.

The error covariance between any two model-state

vectors estimated with the ensemble forecasts utilized
here is defined as

Cov	xi1j1k1
yi2j2k2


 �
1

N � 1 �
n�1

N

�xi1j1k1n � xi1j1k1
�

× �yi2 j2k2n � yi2 j2k2
�, �3�

where xi1 j1k1
and yi2 j2k2

represent two model-state vari-
ables located at model grid points (i1, j1, k1) and (i2, j2,
k2), respectively; n indexes each ensemble member; N is
the total number of ensemble members (N � 20); and
the overbar denotes the mean averaged over all en-
semble members. In addition to the variance of each
state vector, the covariance matrix contains three typi-
cal types of covariance, named conventionally as cross
covariance, spatial covariance, and cross-spatial covari-
ance. The cross covariance is defined as the covariance
between two different forecast variables at the same
grid point [x � y, (i1, j1, k1) � (i2, j2, k2)], the spatial

FIG. 11. The 24-h “EF-BGV” forecast estimated spatial and cross-spatial covariance between (a) U at point C
and any U, (b) U at point C and any T, (c) T at point C and any U, and (d) U at point D and any T, all at 300 hPa
valid at 0000 UTC 25 Jan 2000. Positive values are in solid contours and negative in dashed contours with intervals
of 10 m2 s�2, 2 K m s�1, 2 K m s�1, and 2 K m s�1, respectively. The mean PV (gray, every 1.0 PVU) is also plotted
as a reference of the background balanced dynamics. Points C and D are the locations with maximum and
minimum cross covariance between U and T denoted in Fig. 9c.
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(auto) covariance is defined as the covariance between
the same forecast variables at different grid points [x �
y, (i1, j1, k1) � (i2, j2, k2)], and the cross-spatial covari-
ance is defined as the covariance between different
forecast variables at different grid points [x � y, (i1, j1,
k1) � (i2, j2, k2)]. In terms of data assimilation, the cross
(and cross spatial) covariance determines the amount
of information propagated from one observed state
variable to the other variables, while the spatial (and
cross spatial) covariance determines the spread of ob-
servational information in space.

The cross covariances between U and V, V and T,
and U and T at 300 hPa at the 24-h forecast time are
shown in Figs. 9a–c, respectively. Significant cross co-
variance is primarily found along the upper-level PV
fronts over the coast and above the mean surface cy-
clone. The distribution of the cross covariance is collo-
cated with the maximum mean PV or maximum PV
gradient and spread (Fig. 5c), indicating its strong de-
pendence on the background flow and the associated
error growth dynamics (“error of the day”; Kalnay
2003). In the study of planetary-scale dynamics, Bran-

stator (1995) proposed to explain the synoptic eddy
fluxes (essentially covariance) associated with the back-
ground general circulation by assuming random initial
disturbances are assumed to evolve linearly over a short
time interval on the background flow (similar to the
flux-gradient theory in explaining mean turbulent flux
transport; Holton 1992, chapter 5). For the present
study, the meso- to small-scale deviations (errors) in
the individual members may be treated as if they are
turbulent eddies with respect to the background synop-
tic-scale cyclones, which are assumed to evolve linearly
over a short time interval on the mean larger-scale flow.

Since the mean winds follow the upper-level PV
trough closely, a strong positive gradient of V exists
over the Carolinas and Georgia (Fig. 2d). Intuitively, if
there is negative deviation of U (i.e., U � 0), as is the
case of member 1 over Georgia, this deviation will bring
in higher V toward the west, which results in V � 0
(Figs. 2b,d). On the other hand, a positive U over
North Carolina will bring in lower V eastward (V � 0).
In either case, the flow pattern will result in a negative
covariance between U and V following the onshore

FIG. 12. Same as in Fig. 11 but the covariance of (a) U and (b) T with U at the fixed 300-hPa point E and of (c)
T and (d) U with T at point E. Contour intervals for (a)–(d) are 10 m2 s�2, 2 K m s�1, 0.5 K2, and 2 K m s�1,
respectively.
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flow along the Georgia and South Carolina border (Fig.
9a). Similar arguments can be made to explain the pre-
dominantly positive covariance between U and T to the
south of the PV trough (Fig. 9c). However, since the
flow is fully three dimensional, the gradient-transport
theory based purely on the horizontal gradient cannot
explain the covariance or correlations among all vari-
ables over the entire domain (Fig. 12, later). For the
same reason, parameterization of the error covariance
relying solely on the mean background gradient may be
hard to achieve, if not impossible.

The correlation between U and T at 300 hPa is ex-
amined as well (Fig. 9d). The cross covariance is equal
to the correlation between two variables multiplied by
the standard deviations of both variables. Consistent
with the covariance field, strong positive correlations
between U and T (with maximum correlations from 0.7
to 0.9) are evident along the Georgia and South Caro-
lina border, and are collocated with the local PV maxi-
mum as well as with the maximum variance. Negative
correlations persist for the northern offshore outflow
jet and inside the northern piece of the PV filament.

The cross covariance and correlation in the cross sec-
tions in Fig. 10 provide further evidence for the strong

dependence of the covariance structure on the balanced
dynamics and the associated error growth at all levels.
There are also interesting but intriguing vertical varia-
tions of the covariance, especially across the mean dy-
namic tropopause. For example, the covariance be-
tween U and T (Fig. 10c) is generally positive above the
tropopause (point E denotes the maximum in the
middle of the shortwave trough at 300 hPa), but is pre-
dominantly negative in the mid- to lower atmosphere
with a minimum above the surface frontal boundary
(point F denotes the minimum at the surface). Note
also that there are significant correlations between U
and T in other parts of the domain where covariance is
small (Figs. 9d and 10d). These strong correlations are
consistent with the mean balanced dynamics in those
regions. In terms of data assimilation, regions with large
correlation but small covariance are only of marginal
importance because of the small background uncertain-
ties in those regions.

Next, we examine the structure of spatial and cross-
spatial covariance which determines how to spread the
observational information spatially to the same variable
or to different variables when observations are assimi-
lated. The maximum and minimum covariance between

FIG. 13. Same as in Fig. 12 except for at the fixed surface point F.
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U and T (points C and D in Fig. 9c), respectively, are
selected as the two hypothetical observational sites.
The spatial (auto) covariance between U at point C and
all other points at the 300-hPa level is plotted in Fig.
11a. It is obvious that the covariance is not isotropic.
The structure of the autocovariance is also evidently
constrained by the background mean (flow dependent)
dynamics. Similar conclusions can be drawn from the
flow-dependent cross-spatial covariance between U at
points C and D with T (Figs. 11b,d) and between T at
point C with U at other points (Fig. 11c). Significant
covariances exist between both U and T at points C
with different variables at locations all across the dis-
play domain, indicating the radius of influence of ob-
servations at point C is well above 1000 km. Moreover,
information from observations of U or T at 300 hPa
(point E of Fig. 10c) can influence state variables at
different vertical levels including the surface through
the vertical covariance structure revealed in Fig. 12.
Observation information at the surface (point F in Fig.
13c) can also be spread to the upper troposphere
through the covariance structure displayed in Fig. 13.
These covariance structures demonstrate the potential
for an ensemble-based data assimilation system to ef-
fectively cope with the apparent inhomogeneity of ob-
servations at different layers and at different locations
given the relative abundance of surface observations
compared to the sounding network. The value of sur-
face observations was demonstrated recently for the
convective scales by Zhang et al. (2004) and in global
EnKF experiments by Whitaker et al. (2004).

The representativeness of the error covariance struc-
ture discussed above is examined through the covari-
ance structure estimated from the other two indepen-
dent sets of ensemble forecasts (EF-BAL and EF-
RDM). To a first-order approximation, the structure of
the error covariance estimated from these two indepen-
dent ensemble forecasts (Figs. 14a,b and 15a,b) agrees
well with that estimated from EF-BGV discussed above
(Figs. 9c and 10c). The magnitude of the covariance
also maximizes near the PV front zones and above the
surface cyclogenesis. Even smaller differences in the
structure and magnitude of the error covariance are
found in ensemble forecasts the same as EF-BAL but
with a larger (doubled) ensemble size (Fig. 16 versus
Figs. 14a and 15a), consistent with Houtekamer and
Mitchell (1998, their Fig. 6). It is worth noting that the
covariance fields estimated from the 40-member en-
semble (Fig. 16) are noticeably smoother than those
from the 20-member ensemble (Figs. 14a and 15a).

Due to the complexity of model errors, especially in
the representation of moist physics, the sensitivity of
the error covariance to the imperfectness of the fore-

FIG. 14. Same as in Fig. 9c but for (a) EF-BAL, (b) EF-RDM,
and (c) EF-DRY. Contour intervals in (a)–(c) are 2, 2, and 1 K
m s�1, respectively.
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cast model is beyond the scope the current paper [refer
to Mitchell et al. (2002) for a discussion of this subject
in the context of the EnKF]. There are large differ-
ences, especially in magnitude, between the error co-
variance estimated from EF-BGV and EF-DRY with
and without the diabatic heating feedback (cf. Figs. 10c,
11c, 14c, and 15c), which is consistent with different
error growth dynamics associated with a different mean
estimate (Figs. 7c and 8c). Nevertheless, there are
strong similarities between covariance structures from
EF-BGV and EF-DRY, suggesting valuable informa-
tion can be extracted from the forecast error covariance
estimate associated with a biased mean forecast with an
imperfect model.

The flow-dependent, nonstationary, and anisotropic
nature of the background error covariance is further
seen in the difference of sign and magnitude, structure,
and dynamics of the covariance estimated from the

FIG. 16. (a) Same as in Fig. 14a except for using 40 ensemble
members. (b) Same as in Fig. 15a except for using 40 ensemble
members.

FIG. 15. Same as in Fig. 10c but for (a) EF-BAL, (b) EF-RDM,
and (c) EF-DRY. Contour intervals in (a)–(c) are 2, 2, and 1 K
m s�1, respectively.
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same set of ensemble forecast but verified at different
times. For example, the 300-hPa covariances between U
and T at 12 and 36 h (Figs. 17a,b) are completely dif-
ferent from the covariance estimated at 24 h (Fig. 9c).
The covariance structure is also consistent with back-
ground mean dynamics and the associated error growth
at the respective times (Figs. 5b,c,d). The covariance
between U at point C and T at any 300-hPa point valid
at 1200 UTC 24 January and 1200 UTC 25 January
(Figs. 17c,d) is much smaller than (and is often opposite
in sign to) that valid at 0000 UTC 25 January (Fig. 11b)
in addition to the larger difference in structure at dif-
ferent times.

5. Summary and conclusions

In this study, short-term ensemble forecasts gener-
ated with different sets of initial perturbations were
used to examine the dynamics and structure of meso-
scale error covariance of the 24–25 January 2000 sur-
prise snowstorm that occurred along the East Coast of
the United States, complementary to our previous pre-

dictability studies of the same event (ZSR02; ZSR03).
In the ensemble forecast initiated with rescaled, breed-
ing random perturbations (EF-BGV), initial errors
grow from smaller-scale, largely unbalanced uncorre-
lated perturbations to larger-scale, quasi-balanced dis-
turbances with coherent structures within 12–24 h.
Comparable ensemble spread is found in ensemble
forecasts initialized with balanced random perturba-
tions (EF-BAL) or with “gridpoint” random perturba-
tions (EF-RDM). In all ensemble forecasts, the error
growth is maximized in the vicinity of the strongest
mean PV gradient and/or over the area of active moist
convection, consistent with the lower predictability in
these regions (ZSR02; ZSR03). The scale change of
growing error and its dependence on the background
dynamics are also consistent with findings in previous
studies (Farrell 1990; Buizza 1994; Barkmeijer et
al.1998; ZSR03; Tribbia and Baumhefner 2004).

Consequently, the initially largely uncorrelated,
mostly random perturbations evolve into strong coher-
ent structures with spatial correlation not only among
the same variable (autocovariance) but also between

FIG. 17. (a), (b) Same as in Fig. 9c but for cross covariance between U and T valid at the (a) 12- and (b) 36-h
forecast time. (c), (d) Same as in Fig. 11b but for cross-spatial covariance between U at point C and any T valid
at (c) 12 and (d) 36 h.
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different forecast variables (cross covariance), espe-
cially over the region of strong cyclogenesis and along
the upper-level front. The error covariance is highly
anisotropic. Dramatic differences in magnitude, struc-
ture, and sign are found between covariance estimated
from the same set of ensemble forecasts but valid at
different times. The structure of the mesoscale error
covariance is ultimately determined by the underlying
governing dynamics and its associated error growth.
The spatial and cross covariance estimated from the
short-term ensemble forecast have the potential to
spread observational information nonuniformly to both
observed and unobserved variables at different vertical
layers (e.g., from the upper troposphere to the surface
and vice versa) with a horizontal radius of influence
potentially greater than 1000 km. The flow-dependent
nature of the error growth dynamics and covariance
structure further demonstrates the necessity to use
anisotropic and flow-dependent representations of
background error covariance for meso-/regional data
assimilation (e.g., Cohn and Parrish 1991). In addition,
the flow-dependent covariance information derived
from the ensemble forecast can be used to determine
where the optimum observations (i.e., “targeted obser-
vation”) should be taken by maximizing the Kalman
gain (e.g., Bishop et al. 2001; Hamill and Snyder
2002).

The dynamics and structure of the error covariance
estimated from ensemble forecasts generated with dif-
ferent sets of initial perturbations are qualitatively simi-
lar but differs in details. Sensitivity of the error covari-
ance to model error is not examined in the current work
but similarities between estimates from ensemble fore-
casts with and without diabatic feedback suggest that
even a biased ensemble forecast from an imperfect
model still contains useful information of the forecast
error covariance.

The significance and effectiveness of the error covari-
ance estimated from the above ensemble forecasts have
been tested in an EnKF data assimilation system based
on MM5 for this event. Results from these EnKF ex-
periments will be reported elsewhere.
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