
E4DVar: Coupling an Ensemble Kalman Filter with Four-Dimensional Variational
Data Assimilation in a Limited-Area Weather Prediction Model

MENG ZHANG AND FUQING ZHANG

Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

(Manuscript received 26 January 2011, in final form 26 July 2011)

ABSTRACT

A hybrid data assimilation approach that couples the ensemble Kalman filter (EnKF) and four-dimensional

variational (4DVar) methods is implemented for the first time in a limited-area weather prediction model. In

this coupled system, denoted E4DVar, the EnKF and 4DVar systems run in parallel while feeding into each

other. The multivariate, flow-dependent background error covariance estimated from the EnKF ensemble is

used in the 4DVar minimization and the ensemble mean in the EnKF analysis is replaced by the 4DVar

analysis, while updating the analysis perturbations for the next cycle of ensemble forecasts with the EnKF.

Therefore, the E4DVar can obtain flow-dependent information from both the explicit covariance matrix

derived from ensemble forecasts, as well as implicitly from the 4DVar trajectory. The performance of an

E4DVar system is compared with the uncoupled 4DVar and EnKF for a limited-area model by assimilating

various conventional observations over the contiguous United States for June 2003. After verifying the

forecasts from each analysis against standard sounding observations, it is found that the E4DVar substantially

outperforms both the EnKF and 4DVar during this active summer month, which featured several episodes of

severe convective weather. On average, the forecasts produced from E4DVar analyses have considerably

smaller errors than both of the stand-alone EnKF and 4DVar systems for forecast lead times up to 60 h.

1. Introduction

Along with the dramatic increase of computing power

in recent years, numerical weather prediction (NWP)

has become more sophisticated, complementing the

deterministic forecast with an ensemble that provides

uncertainty estimations of the ‘‘errors of the day.’’ Such

ensembles also provide a practical way of representing

the probability distribution function of forecast uncer-

tainties (also called background errors) that usually

propagate in time at multiple scales. In addition, the

flow-dependent background error covariance estimated

from the ensembles can be used to design better data

assimilation approaches, which can also lead to improved

forecast skills (Lorenc 2003a). One such approach is the

ensemble Kalman filter (EnKF) technique first proposed

by Evensen (1994). Meanwhile, three- or four-dimensional

variational data assimilation approaches (3D/4DVar)

solve the same optimization problem as EnKF and have

been widely used in most operational centers for daily

forecasts (Parrish and Derber 1992; Courtier et al. 1994).

Similar to the EnKF, the estimation of time-evolving

error structures has a crucial importance for the success

of 4DVar, with the exception of being implicitly de-

scribed by a linearized model and its adjoint within a

short time window (Lorenc 2003b).

In the last decade, the advantages of EnKF and 4DVar

data assimilation methods have been demonstrated

through various simulated and realistic observation stud-

ies, ranging from convective to global scales with different

NWP models: (i) for local storms, the EnKF was widely

used by Snyder and Zhang (2003), Zhang et al. (2004),

Dowell et al. (2004), and Tong and Xue (2005), while Sun

and Crook (1997), Guo et al. (2000), and Zupanski et al.

(2002) employed 4DVar; (ii) for midlatitude weather

systems, the EnKF performed well in Zhang et al. (2006),

Torn et al. (2006), Fujita et al. (2007), and Meng and

Zhang (2007, 2008a,b), as did 4DVar in Thépaut et al.

(1996), Zou and Kuo (1996), Zupanski et al. (2005), and

Huang et al. (2002, 2009). Moreover, data assimilation

systems employed for real-time or operational global

forecasts with either the 4DVar or the EnKF are also

promising [e.g., the operational 4DVar at the European
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Centre for Medium-Range Weather Forecasts (ECMWF;

Rabier et al. 2000), Japan (Honda et al. 2005), Canada

(Gauthier et al. 2007), and the Naval Research Labo-

ratory (NRL; Xu et al. 2005), and several operational or

quasi-operational EnKFs in the National Oceanic and

Atmospheric Administration (NOAA), Canada, and

Japan (Whitaker et al. 2008; Houtekamer et al. 2009;

Miyoshi et al. 2010)].

Both of the above data assimilation methods aim to

obtain better initial conditions that are more represen-

tative of multiscale processes in NWP models. The

strengths and weaknesses of EnKF and 4DVar are also

very significant (Zhang et al. 2009): EnKF has the ad-

vantages of explicit estimation of time-evolving back-

ground errors and probabilistic forecasts, but is more

vulnerable to sampling errors and also likely to model

errors; 4DVar is more flexible for multiscale optimiza-

tion under linear constraints and has better balance in

background error covariance, but such covariance derived

from climatological statistics [i.e., the so-called National

Meteorological Center (NMC; now known as National

Centers for Environmental Prediction) method; Parrish

and Derber 1992] is usually static and isotropic and its

analysis is only deterministic. Past studies have noted both

the benefits of including flow-dependent background er-

ror covariance in 4DVar (Rabier et al. 1998; Navon et al.

2005) and the limitations of evolving background uncer-

tainties implicitly through linear models in the presence of

strong nonlinearity and discontinuity (Zou 1997; Sun and

Crook 1997). Hence, a hybrid approach that combines

ensemble-based and variational data assimilation methods

may be attractive to most NWP systems (Lorenc 2003a).

A hybrid approach of combining ensemble-based back-

ground uncertainties with climatologically derived ones in

3DVar has been previously demonstrated in a quasigeo-

strophic model by Hamill and Snyder (2000) without

covariance localization. Lorenc (2003a) proposed the

use of an alpha-control variable transform that enables

preconditioning of variational minimization based on

ensemble perturbations with localized flow-dependent

information. This method was adopted by Buehner (2005)

and Wang et al. (2007) for constructing 3DVar–EnKF

hybrid systems based on global models. More recently,

Wang et al. (2008a,b) successfully used the alpha-control

variable transform in a regional-scale NWP model [i.e.,

the Weather Research and Forecasting model (WRF;

Skamarock et al. 2005)] with a simple recursive filter

(Hayden and Purser 1995) for modeling ensemble cor-

relations rather than truncated spectral expansion as

in Buehner (2005). With the incorporation of flow-

dependent background error covariance from an en-

semble transform Kalman filter (ETKF; Bishop et al.

2001), the hybrid method (ETKF–3DVar) of Wang et al.

performed better than 3DVar in real-data cases though

with a relatively coarse grid resolution. More recently,

Liu et al. (2008, 2009) implemented an ensemble-based

data assimilation (DA) method that uses 4DVar opti-

mization to produce a balanced analysis without tangent-

linear and adjoint models, which is essentially another form

of linear approximation for time-evolving error structures

with ensemble forecasts. Buehner et al. (2010a,b) inves-

tigated various ensemble-based and variational methods

in a quasi-operational scenario for the Canadian global

model, but the ensemble members were fully updated by

EnKF (one-way coupled) without replacing the mean with

a variational analysis, as proposed in Lorenc (2003a). It is

important to note that the aforementioned hybrid ap-

proaches depend largely on the quality of ensembles, so

typical issues associated with the EnKF, such as sampling

and model errors and/or filter divergence, still exist.

Two-way coupling of the 4DVar with EnKF (i.e.,

E4DVar) can be viewed as an extension to previously

published hybrid methods, but with the advantages of

using ensemble-based flow-dependent covariance and

model-constrained trajectory analysis. Preliminary results

of this method were shown in Zhang et al. (2009) for

a simple Lorenz-96 model in both perfect- and imperfect-

model scenarios, where the E4DVar approach was shown

to be more effective than traditional 4DVar and EnKF

methods at reducing root-mean-square error (RMSE),

even with an ensemble size as small as 10. In this study, the

E4DVar is adapted to a nonhydrostatic regional-scale

NWP model (WRF), whose EnKF and 4DVar modules

were proven to be fully functional and robust in previous

studies (Meng and Zhang 2008a,b; Huang et al. 2009;

Zhang et al. 2011). Several one-month analysis/forecast

experiments with different DA methods are conducted,

where most if not all available conventional observations

other than satellite radiances are assimilated over a do-

main that spans much of North America. The hybrid for-

mulations are shown in section 2, followed by experiment

design in section 3. The experiments results are discussed

in section 4 and conclusions are summarized in section 5.

2. Hybrid algorithm

a. Incremental 4DVar

Mathematically, the variational method is aimed at

obtaining a balanced state analysis subject to both dy-

namical and statistical constraints by minimizing a cost

function J:

J 5
1

2
dxT

0 B21dx0 1
1

2
�
K

k50
(HkMkdx0 2 dk)T

3 R21(HkMkdx0 2 dk) 1 Jc , (1)
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where the three right-hand-side terms are the back-

ground Jb, observational Jo, and penalty Jc cost func-

tions, respectively, and the subscript k denotes an

observational time during the assimilation window. In

the background term Jb, dx0 is the analysis increments at

the initial time from first guess and B is the background

error covariance. In the observational term Jo, Mk and

Hk are the tangent linear versions of the forecast model

and observation operator, R is the observational error

covariance, and dxk and d
k

5 yo
k 2 H

k
x

k
are the pertur-

bation and innovation vectors distributed at time k

during the assimilation window of length K. In Jc, a

digital filter (Gauthier and Thépaut 2001) is introduced

to remove high-frequency waves in the analysis state.

For the incremental approach (Courtier et al. 1994;

Gauthier et al. 2007), an outer loop is used to calculate the

innovations dk, and the iterative minimization is performed

only on linearized models. The preconditioning of the

background term in the cost function (Courtier et al. 1994;

Courtier 1997; Andersson et al. 2000) is conducted with a

control variable y (Lorenc et al. 2000; Barker et al. 2004):

dx0 5 Uy, (2)

where the preconditioning matrix U is defined as B 5 UUT.

Then the incremental formulation of the cost function (1)

is adapted as

J 5
1

2
yTy

1
1

2
�
K

k50
(HkMkUky 2 dk)TR21(HkMkUky 2 dk) 1 Jc.

(3)

b. EnKF

For the standard ensemble Kalman filter, the update

equations can be formulated as

xa 5 x f 1 K(y 2 Hx f ), (4)

Xa 5 Xf 1 K(y 2 HXf ), (5)

Pf ’ x9f (x9f )T
5

1

N 2 1
�
N

i51
(x

f
i 2 x f )(x

f
i 2 x f )T, (6)

K 5 Pf HT(HPf HT 1 R)21, (7)

where xf (Xf ) and xa (Xa) represent the prior and pos-

terior mean vector (perturbation matrix) (or first guess

and analysis) at the analysis time, respectively; i denotes

the order of an ensemble member; and N is the ensemble

size. Here K is the so-called Kalman gain matrix, where

Pf represents the background error covariance, which is

referred to as B in 4DVar. A flow-dependent Pf is es-

timated through an ensemble of short-range forecasts by

(6). Observations are assimilated sequentially with the

assumption of independent observational errors (i.e.,

refers to the square root EnKF in Snyder and Zhang

2003).

c. E4DVar

In the E4DVar, 4DVar and EnKF run separately in

parallel but also with two-way exchanges. There is a

‘‘coupler’’ between them that contains three major variable

exchanges (Fig. 1): (i) introduce ensemble-based back-

ground error covariance Pf into the 4DVar cost function,

(ii) use prior ensemble mean xf as the first guess for each

4DVar cycle,1 and (iii) replace posterior ensemble mean by

the 4DVar analysis xa
0 for next ensemble forecast (Zhang

et al. 2009).

The ensemble-based background error covariance is

introduced in the cost function by separating Jb in (1)

into two parts:

Jb 5 Jb1 1 Jb2 5
1

2
dxT

0 [(1 2 b)B 1 bP
f
0 + C]21dx0,

(8)

where P
f
0 is the prior ensemble covariance valid at the

analysis time (i.e., the beginning of the assimilation

window), C is a block-diagonal matrix representing the

ensemble covariance localization (Lorenc 2003a; Wang

et al. 2007, 2009), ‘‘+’’ represents a Schur product, and

Jb1 represents the traditional background term as in (1),

which can be weighted with the ensemble-based term Jb2

FIG. 1. Schematic of E4DVar that couples 4DVar and EnKF.

1 The alternative is to use the previous 4DVar forecast as the first

guess as suggested by one of the reviewers to avoid potential issues

of flow imbalance by using an ensemble mean. However, our lim-

ited sensitivity experiments with this alternative give slightly in-

ferior performances. On the other hand, there were no apparent

flow imbalance problems by using the ensemble mean in the cur-

rent study, which may not always be true in higher resolutions.
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using the weighting coefficient b. The hybrid formulation

approaches the standard 4DVar when b / 0, while the

ensemble 4DVar (i.e., En4DVar; see Liu et al. 2008, 2009;

Buehner et al. 2010a,b) emerges for b / 1. When the

alpha-control variable transform is applied, the hybrid

incremental analysis can be calculated as the traditional

control variable y (associated with the NMC-based

covariance; Barker et al. 2004) supplemented by the ad-

ditional control variable a (associated with the ensemble-

based covariance; Lorenc 2003a):

dx0 5 dxnmc 1 dxens 5 Uy 1 Xf a. (9)

The cost function (1) can be rewritten as

J 5
1

1 2 b

1

2
yTy

� �
1

1

b

2
641

2
aT

C 0

. . .

0 C

0
B@

1
CAa

3
75

1
1

2
�
K

k50
(HkMkdx0 2 dk)TR21(HkMkdx0 2 dk) 1 Jc.

(10)

3. Experiment design

a. Forecast model

In this study, the Advanced Research WRF model

(ARW-WRF; Skamarock et al. 2005) is employed as the

platform to investigate all DA approaches. The WRF

configuration is exactly the same as in Zhang et al.

(2011). All experiments are conducted over a single

domain covering the contiguous United States and sur-

rounding areas (Fig. 2) that has a 71 3 51 horizontal

mesh grid with 90-km spacing and 27 vertical levels up to

50 hPa. The Grell–Devenyi cumulus scheme (Grell and

Devenyi 2002), the WRF single-moment six-class grau-

pel microphysics scheme (Hong et al. 2004), and the

Yonsei State University (YSU) planetary boundary layer

(PBL) scheme (Noh et al. 2003) are used for all deter-

ministic forecasts. In the ensemble forecast, we used

different combinations of different physics parameter-

ization schemes in different ensemble members (multi-

physics ensemble) configured exactly the same as in

Meng and Zhang (2008a,b). The first forecast cycle of

this month-long experiment is initialized at 0000 UTC

1 June 2003, using the National Centers for Environ-

mental Prediction (NCEP) global final analysis (FNL)

data to create the initial and lateral boundary condi-

tions (ICs and LBCs). In the following cycles, LBCs

are interpolated from the FNL analyses, while ICs

are provided by analyses produced by the tested DA

schemes.

b. Data assimilation systems

The data assimilation systems described here in this

section are based on the WRF variational data assimi-

lation system (WRF-Var) version 3 (Barker et al. 2004;

Huang et al. 2009) and the WRF EnKF of Meng and

Zhang (2008a,b). The newly released 4DVar component

(Huang et al. 2009) of WRF-Var was developed as an

extension of the previous WRF 3DVar system (Barker

et al. 2004). The background error covariance in the

4DVar experiment is static and prescribed by the NMC

method (Parrish and Derber 1992), which assumes ho-

mogeneous and isotropic correlations for a set of in-

dependent control variables (using the ‘‘cv5’’ option in

WRF-Var), including streamfunction, velocity poten-

tial, unbalanced pressure, and relative humidity. The

NMC-based background error covariance is derived

from the differences between 24- and 12-h forecasts

valid at the same time (i.e., every 0000 and 1200 UTC)

during the preceding month (May 2003) before the ex-

periment period. As for the variance and length scale

parameters of the derived background error covariance,

only the nondimensional variance values of 1.0 (default

value) and 3.0 are examined in the 4DVar experiments.

The larger value means less confidence is given to the

background state (i.e., first guess), which leads to the

4DVar analysis fitting the observations more closely.

The stand-alone EnKF experiment is the same as in

Zhang et al. (2011), which adopts similar settings from

Meng and Zhang (2008a,b), that is, an ensemble size of

40, with different physical parameterization schemes

that differ between members, a relaxation coefficient of

0.8 [Eq. (5) of Zhang et al. (2004)], and prespecified

FIG. 2. Model domain configuration. The open circles denote the

locations of the radiosonde observations used for assimilation and

verification. The dashed box shows the sublet of the domain se-

lected for verification statistics. The solid circle marks the location

of the single-observation experiment.
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covariance localizations (Gaspari and Cohn 1999) with

a radius of influence of 1800 km for radiosondes and

profilers and 600 km for all other observations. Vertical

covariance localization of 15 vertical grid points is ap-

plied to discrete, single-level observations such as sur-

face data and satellite winds. The initial ensemble

perturbations are randomly generated at 0000 UTC

1 June 2003 through the cv5 background error covari-

ance option of the WRF-Var system, which are dy-

namically balanced by the same set of control variables

as in the NMC method (Barker et al. 2004). The per-

turbations are then added to the FNL analysis to form an

initial ensemble, which is then integrated for 12 h to

evolve a flow-dependent background error covariance

matrix before the first assimilation cycle at 1200 UTC

1 June 2003. The LBCs for the ensemble forecasts are

perturbed from the FNL analyses at every analysis time,

in the same manner as the initial perturbations.

For the coupling of the 4DVar with EnKF, an alpha-

control variable transform (Lorenc 2003a) adapted to

WRF-Var (Wang et al. 2008a,b) is applied for all E4DVar

experiments. In addition, the information exchanged

between the 4DVar and EnKF in the hybrid E4DVar

system is controlled by a coupler that is completely sep-

arate from the original WRF-Var and EnKF codes, as

illustrated by the algorithm in Fig. 1. To reduce the im-

pacts of sampling errors, the same radius of influence (i.e.,

1800 km) for horizontal covariance localization is applied

in the E4DVar through a simple recursive filter (Hayden

and Purser 1995) available in WRF-Var. Moreover, the

coefficient for weighting the NMC- and ensemble-based

background error covariance estimates is set to 0.8 and

0.5 in this study as suggested in Wang et al. (2008b).

Sensitivity experiments performed by the authors suggest

that the E4DVar is not very sensitive to this empirical

factor (not shown), unlike the 3DVar and ETKF hybrid

as in Wang et al. (2009).

c. Observations

Various types of meteorological observations are as-

similated by each system, including wind, temperature,

and moisture from radiosondes, ships, and surface sta-

tions, wind from profilers, wind and temperature from

aircrafts, and cloud-tracked wind from satellites. The

observation preprocessing modular (OBSPROC) of

WRF-Var (Barker et al. 2004) is implemented for data

sorting, quality control and observational error assign-

ment for all DA experiments. The first analysis time is at

1200 UTC 1 June 2003, and each DA system continu-

ously cycles through a 6-h analysis/forecast cycle (every

0000, 0600, 1200, and 1800 UTC) until the end of the

month. Note, the assimilation window of 4DVar covers

the period from 23 to 13 h of each analysis time;

therefore, all available observations distributed over a

6-h window can be assimilated, so as in the EnKF except

for those locations that have more than one obser-

vation over the 6-h window in which case only the one

closest to the synoptic time is assimilated. In E4DVar

(Fig. 1), the ensemble-based background error covari-

ance Pf and prior ensemble mean xf are introduced at the

beginning of the 4DVar assimilation window (i.e., 3 h

before the analysis time), which are computed from the

short-term ensemble forecasts of the previous cycle (i.e.,

3-h ensemble forecasts). In return, the 4DVar analysis

at 23 h is integrated from the beginning of the assimi-

lation window to the analysis time (i.e., 3-h deterministic

forecast) to replace the posterior ensemble mean for the

next set of ensemble forecasts. Therefore, the same ob-

servations are assimilated for each DA system during

their analysis/forecast cycles.

4. Flow-dependent error covariances determined
from single-observation experiments

Single-observation experiments were conducted to de-

monstrate the capability of each DA method on resolving

the structure of flow-dependent background error co-

variance. Similar to the method described in Huang et al.

(2009), the impact of assimilating a temperature obser-

vation at 500 hPa over Illinois (the location of which is

marked in Fig. 2) with a 11-K innovation is examined at

the end of a 6-h window for all experiments at 0000 UTC

8 June 2003 in 4DVar, but alternatively at the analysis

time for the 3DVar and EnKF. The resulting analysis in-

crements of temperature, horizontal winds, and moisture

from various DA experiments are illustrated in Fig. 3,

including the outcomes from the 4DVar, EnKF, and

E4DVar experiments with 40 and 10 members (referred to

as EnKF-40m, EnKF-10m, E4DVar-40m, and E4DVar-

10m, respectively). We also show the analysis increments

for 3DVar here to illustrate the structure of static isotro-

pic background error covariance for comparison. The 40-

member ensemble perturbations valid at 0000 UTC 8 June

2003 were directly extracted from the month-long EnKF

experiment with a covariance localization radius of

1800 km (more in the next section). The same 10 en-

semble perturbations for both EnKF-10m and E4DVar-

10m are randomly chosen from the 40 members, which

will have large sampling errors.

In the 3DVar (Fig. 3a), the computed analysis in-

crements have an isotropic structure, centered at the

observation location and completely independent of the

background flow, because the NMC-based background

error covariance in 3DVar is obtained using averaged

error statistics (over the previous month in this case),

which assumes homogenous and isotropic correlations.
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In contrast, flow-dependent forecast uncertainty and

correlations are taken into account during the 4DVar

assimilation (Fig. 3b), with the largest temperature

increments shifted upstream and the wind increments

located southwest along the background geopotential

height contours. There are virtually no moisture in-

crements in the 3DVar analysis as no multivariate corre-

lations exist between moisture and other variables in the

NMC-based background error covariance of the current

WRF-Var, though such correlations could play an im-

portant role in severe weather systems. A similar situation

is shown in the 4DVar experiment, but with some weak

increments to moisture variables that were gained through

the linear model iterations. However, with only very

simple physics included in the linearization process of

4DVar (Huang et al. 2009), the moisture increments were

an order of magnitude smaller than those from EnKF and

thus were not plotted in Fig. 3b. Compared to the 4DVar,

even stronger flow-dependent analysis increments result

from the EnKF with 40 ensemble members (Fig. 3c), in-

cluding stronger temperature increments and northeast-

erly wind increments. For a perfect linear system with

Gaussian error statistics, the 4DVar and Kalman filter

may generate equivalent solutions of the time-evolving

error covariance, which can be implicitly modeled through

a finite-time window or explicitly estimated by a group

of ensemble members (Lorenc 2003b). One major ad-

vantage of using ensemble-based background error co-

variance in the EnKF is the estimation of multivariate

correlations between humidity and other state variables

as shown in Figs. 3c–f. Note that the representation of

cross covariances between temperature and moisture

could be highly impacted by the physical parameteriza-

tions (Berre 2000), as accounted for by the model errors.

However, if only a small ensemble size is used, sampling

errors may contaminate the background uncertainty

FIG. 3. The DA analysis increments of temperature (shaded, units in K), winds (vectors), and moisture (thick contours, units in g kg21,

solid for positive and dashed for negative) for 1-K innovation at 500 hPa over Illinois (black dot) for (a) 3DVar, (b) 4DVar, (c) EnKF with

40 members, (d) EnKF with 10 members, (e) E4DVar with 40 members, and (f) E4DVar with 10 members. Thin contours are background

geopotential height (unit in m).
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estimate, even after applying a tighter localization (e.g.,

Fig. 3d). This would result in a less reliable estimate of

forecast covariance, followed by inappropriate analysis

increments.

The E4DVar benefits from the relative strengths of

both the 4DVar and EnKF, by combining ensemble-

based and model-constrained flow-dependent informa-

tion for the analysis. In the E4DVar with 40 ensemble

members (Fig. 3e), the upstream temperature increments

are further enhanced by the ensemble-based background

error covariance. The ensemble-based covariance in-

troduced a similar northerly wind increment as the stand-

alone EnKF, while adding more detail to the entire wind

field. In the meantime, the moisture increments are also

introduced as in the EnKF. At the same time, through the

model-constrained evolution of the covariance matrix

[see Eq. (6) in Buehner et al. (2010a)], the analysis in-

crements of the E4DVar using only 10 ensemble mem-

bers (Fig. 3f) show similar flow-dependent structures as

in the 40-member E4DVar. Note that the weighting fac-

tor b can be used to control the relative weights of NMC-

and ensemble-based background error covariance in

the E4DVar system [(8)]. These single-observation ex-

periments are designed to show how flow-dependent

background error covariance evolves in different DA sys-

tems. It is beyond our capacity to verify whether all the

flow-dependent, anisotropic details in the resulting analysis

increments are profitable to the analysis. In the following

section, the benefits of the coupled system for assimilating

real-data observations will become more evident.

5. Intercomparison of E4DVar with EnKF and
4DVar in a one-month experiment

In this section, the E4DVar system is compared with

the EnKF and 4DVar systems over the full one-month

period to examine its performance relative to the

stand-alone methods. We will verify the analyses and

deterministic forecasts from the different DA systems

with standard sounding observations in which the RMSEs

of horizontal winds (U, V), temperature T, and the mixing

ratio of water vapor Q are calculated within the selected

region shown in Fig. 2; the same verifying domain is used

in Meng and Zhang (2008b) and Zhang et al. (2011).

Based on the comparisons of 12-h forecast error

profiles (Fig. 4), the E4DVar produces the overall

lowest RMSEs for both the wind and thermodynamic

variables throughout the troposphere. The EnKF and

FIG. 4. Vertical profiles of the month-averaged 12-h forecast RMSEs of (a) U (m s21), (b) V (m s21), (c) T (K), and

(d) Q (g kg21) for various DA methods.
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the 4DVar performed similarly, except that the EnKF

has substantially smaller errors in the moisture analysis

(as well as slightly lower errors in winds and tempera-

ture). The vertical variations of RMSEs demonstrate

that the maximum errors for U, V, and T are at or near

the tropopause level (around 200 hPa), while at lower

troposphere for moisture. The temporal variations of

12-h forecast RMSEs for different variables are pre-

sented in Fig. 5. In agreement with Fig. 4, the E4DVar,

in general, has consistently lower forecast errors at most

forecast times during the entire month. The relative

amplitudes in RMSE for the EnKF- and the 4DVar-

initialized forecasts fluctuate considerably and episodi-

cally, though the EnKF has smaller RMSEs most of the

time, especially in the moisture field.

Model error and biases, especially those arriving from

deficiencies in physical parameterization schemes, may

significantly degrade the performance of any DA

method (Whitaker et al. 2008). Figure 6 shows the ver-

tical distribution of the averaged 12-h forecast biases

initialized from different DA analyses. To our surprise,

the 12-h forecast biases in all forecast variables are 5–10

times smaller than the 12-h RMSEs. The difference in

forecast biases between different DA schemes appears

to be inconsequential to the difference in the perfor-

mance during this month.

Another key aspect of an ensemble-based DA system

is the consistency between the forecast (prior) ensemble

spread and error. For simplicity, we compare the en-

semble spread versus analysis/forecast error in terms of

root-mean-difference total energy (RM-DTE) in which

the DTE is calculated as in Zhang et al. (2002, 2006):

DTE 5 0.5(U9U9 1 V9V9 1 kT9T9), where the prime de-

notes the difference between the observations and veri-

fied fields, and k 5 Cp/Tr (Cp 5 1004.7 J kg21 K21 and

the reference temperature Tr is 290 K).

The averaged vertical profiles of ensemble spread

versus error in terms of RM-DTE for both the E4DVar

and the EnKF are shown in Fig. 7. Overall, the 12-h

forecast ensemble spreads for both the EnKF and

E4DVar are noticeably smaller than the RM-DTE,

although it can still be considered adequate if the ob-

servation errors are accounted for, which implies the RM-

DTE would be similar to the sum of background and

observation error variances [refer to discussion in Meng

and Zhang (2008b)]. Nevertheless, the E4DVar does

FIG. 5. Time evolution of the vertical-averaged 12-h forecast RMSE of (a) U (m s21), (b) V (m s21), (c) T (K),

and (d) Q (g kg21).
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have slightly but systematically larger ensemble spread

than the stand-alone EnKF through the vertical domain

(Fig. 7a) and throughout the month (not shown), which

is in contrast to a smaller forecast error for the E4DVar

(Fig. 7b). The larger ensemble spread in the E4DVar

may be a result of an improved estimate of the mean that

has enhanced flow uncertainties and a better treatment

of the model error (through including NMC-based back-

ground covariance) that provides more comprehensive

error growth modes in the ensemble, and/or due to

a small degree of filter divergence in the stand-alone

EnKF system with underestimated background error

uncertainties. Note that the inflation parameters have

been tuned to optimize the EnKF performance based on

several sensitivity tests (not shown), but the inflated

uncertainty estimate did not lead to lower forecast er-

rors in this case. On the other hand, the larger ensemble

spread in the E4DVar may in turn lead to a better

FIG. 6. Vertical profiles of the month-averaged 12-h forecast biases of (a) U (m s21), (b) V (m s21), (c) T (K), and (d)

Q (g kg21) for various DA methods.

FIG. 7. The month-averaged vertical profiles of the RM-DTE (m s21) for (a) 12-h ensemble spread and

(b) 12-h forecast error.
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analysis. In essence, increasing the background uncer-

tainty (ensemble spread) in the E4DVAR (as well as in

4DVar and EnKF) can allow a better fit to observations

in the assimilation window thereby introducing more

dynamical information in the analysis. This at least par-

tially explains the better performance of the E4DVAR

over 4DVar (besides the use of flow-dependent error

covariance), although a better fit to observation does

not always mean a better analysis or lead to a better

forecast (refer to Zhang et al. 2011).

Figure 8 shows the vertical profiles of the RMS dif-

ferences between the DA analyses and the sounding

observations. Since all these soundings are assimilated

in the analysis, these RMS differences represent the

extent to which each DA approach fits the assimilated

observations (often termed as ‘‘analysis fit’’ or simply

‘‘fit’’) rather than providing an independent verification

of the analysis quality. In some applications such as for

air quality modeling, a better fit of meteorological var-

iables to observations is often desirable. However, the

EnKF analysis is often found to have a worse fit than

variational methods (e.g., Zhang et al. 2011), likely due

to the latter’s use of a cost function that minimizes it-

eratively the distance between the analysis and obser-

vations (the observational cost function Jo) with less

confidence on the first guess (i.e., larger variance in the

NMC-based background error covariance). With the

coupling between the EnKF and 4DVar, the E4DVar

has the closest fit to observations among all three

schemes throughout the vertical domain, by increasing

the total variance and allowing better fit with more flow-

dependent information on the background term. How-

ever, as demonstrated in Zhang et al. (2011), a better

analysis fit does not necessarily lead to a better forecast

without proper estimation of flow-dependent background

error covariance. In this case, the 4DVar with static NMC-

based covariance has a considerably closer fit to observa-

tions than the EnKF, but with larger forecast errors (Fig. 4).

The same forecast error statistics are computed at

different lead times for all DA experiments, from 0 (i.e.,

analysis) to 72 h (Fig. 9). Based on the results in Zhang

et al. (2011), the 4DVar and EnKF mostly outperform

3DVar, with the exception of moisture field corrections,

where the multivariate correlations are not included in

WRF-Var system for the 3DVar and 4DVar. The 4DVar

benefits obtained from a model-constrained trajectory

fitting also weaken after 60 h for the U, V, and T vari-

ables. The analysis RMSEs of the EnKF are relatively

high, but after 24 h the EnKF’s advantage of explicitly

introducing flow-dependent multivariate uncertainties

FIG. 8. As in Fig. 4, but for the analysis RMSs fit to observations.
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in the DA process provides dramatic improvements

over the variational methods, especially in the humidity

field. Among all the DA methods, the E4DVar algo-

rithm gives overall the best performance within a 72-h

range (except for a slightly larger error in T than the

EnKF after 60 h). For the hybrid system, more sources of

flow-dependent information are used (i.e., the evolution

of covariance is modeled by 4DVar within the assimila-

tion window and the EnKF evolves the covariance from

one window to the next; Lorenc 2003a). In addition, after

the NMC- and ensemble-based background error co-

variance estimates are mixed, and propagated through

tangent linear and adjoint models in the 4DVar, the im-

pact of sampling errors is reduced (as shown in single-

observation experiments), which makes the E4DVar

more flexible for operational applications.

6. Sensitivity experiments

Given that E4DVar requires the coupling of EnKF

and 4DVar methods, its performance is likely to depend

on the configurations and quality of each of the two com-

ponents. The number of empirical parameters used by both

systems makes it impossible for us to exhaust all possible

parameter configures, thus the control set of experiments

presented in the previous sections may not be optimal

(though they do represent our best effort). Nevertheless, in

this section we will present the performance sensitivity to

a couple of key configurations in the E4DVar system.

First, as mentioned in section 2 and discussed in

Zhang et al. (2011), one of the key tunable parameters in

the WRF-Var system is the variance magnitude of the

background error covariance derived from the NMC

method. A variance magnitude scale factor of 3.0 is used

in both the control 4DVar and E4DVar experiments

discussed above. The two left bars in Fig. 10 show that

the control 4DVar performs marginally better than a

configuration using the default value of 1.0 (much larger

improvements are also seen for 3DVar with a variance

factor of 3.0, not shown). The 12-h forecast of RM-DTE is

used in Fig. 10. This sensitivity experiment suggests that

the current E4DVAR may benefit from using a larger

total variance magnitude in 4DVAR, but the overall

improvement of the coupled system is likely due to its

hybrid with the flow-dependent background error co-

variance derived from the EnKF.

We also examined the system’s sensitivity to the

coefficient b in (8), which selects the weights of the

FIG. 9. Domain-averaged RMSEs further averaged over all 59 WRF forecasts of the month for each DA experiment at forecast lead times

from 0 to 72 h evaluated every 12 h for (a) U (m s21), (b) V (m s21), (c) T (K), and (d) Q (g kg21).
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NMC- and ensemble-based covariance in the E4DVar.

A value of 0.8, which gives 80% of the weights to ensemble-

based covariance, is used for the control E4DVar experi-

ment though there is hardly much difference between

using a value of 0.5 as shown in the two middle bars in

Fig. 10.

The control EnKF and E4DVar experiments use

a combination of physics parameterization schemes that

differ between ensemble members as a means of treating

model error. This multiphysics approach was found to

have improved performance over identical configurations

that used the same combination of physical parameteri-

zation in all ensemble members in Meng and Zhang

(2008a,b). Likewise, a slightly better performance is ob-

served for the control EnKF with a multiphysics ensem-

ble over the cases that use a single-scheme ensemble (the

two right bars in Fig. 10).

In summary, the coupled E4DVar system presented

here is likely to be not quite sensitive to the few essential

empirical configurations in the current application. If it

can be generalized, that will be good news for its prac-

ticality in desiring more flexible operational systems.

7. Conclusions

This study explores the coupling of two state-of-the-

art data assimilation algorithms in the context of re-

gional WRF model configurations. To the best of our

knowledge, this is the first successful implementation of

a hybrid data assimilation approach that has two-way

coupling of the EnKF and 4DVar methods in a limited-

area weather prediction model, complementary to recent

studies with a global model as in Buehner et al. (2010a,b).

In this coupled DA system, denoted E4DVar, the EnKF

and 4DVar run in parallel while intermittently exchang-

ing information with each other. The multivariate, flow-

dependent background error covariance estimated from

the EnKF ensemble is used in the 4DVar minimization

and the ensemble mean in the EnKF analysis is replaced

by the 4DVar analysis, while the EnKF updates pertur-

bations for the next cycle of ensemble forecasts. There-

fore, the E4DVar can obtain flow-dependent information

both from the explicit covariance matrix derived from

ensemble forecasts as well as implicitly by the 4DVar

trajectory.

The E4DVar is compared with the uncoupled 4DVar

and EnKF over the contiguous United States for June

2003 to evaluate its performance in assimilating various

conventional observations. Also presented is the impor-

tance of multivariate flow-dependent background error

covariance exemplified by several single-observation ex-

periments under different DA configurations. Single-

observation experiments demonstrate that the E4DVar is

capable of utilizing the time-evolving covariance through

a combination of both explicit and implicit flow-

dependent estimations.

By verifying the forecast from each analysis with

standard sounding observations, it is found that the

E4DVar substantially outperforms both the EnKF and

4DVar during this active summer month that featured

several episodes of severe, convective weather. On av-

erage, the forecasts from the E4DVar analysis have

considerably smaller errors than both of the stand-alone

EnKF and 4DVar for up to 60-h lead forecast times.

Moreover, it appears that the E4DVar may be less sen-

sitive to DA configurations than both components of the

system as the preliminary results shown in a set of single-

observation experiments. The coupled system benefits

from more flow-dependent information, a larger immu-

nity to sampling error for a limited ensemble size, and

enhanced capability in dealing with asynchronous and

high-volume observations.

The computational cost of the E4DVar will be a con-

cern for its full applications, where the major costs are

from the iterative inner loops in the 4DVar and the se-

quential analysis in the EnKF. The 4DVar and EnKF

have roughly 45- and 5-min wall-clock time for each

analysis cycle, respectively, and such costs may increase

dramatically for high-resolution modeling, especially in

the 4DVar component. Several methods to minimize

these costs include: (i) improve the efficiency of parallel

computing of the related codes; (ii) use a coarse-resolution

inner loop for 4DVar and EnKF analysis, so-called

multi-incremental 4DVar (Courtier et al. 1994) and dual-

resolution EnKF (Gao and Xue 2008); (iii) introduce

a second outer loop in 4DVar with preconditioning from

FIG. 10. The absolute 12-h forecast errors of different experi-

ments in terms of RM-DTE (m s21). The black bars are the default

experiments used in this study. The gray bars are the sensitivity

experiments with different tunings: 1.0 variance scaling in 4DVar,

0.5 weighting parameter for E4DVar, and a single-physics scheme

for EnKF in sequence.
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the prestart, half-window analysis (refer to Fig. 1). These

cost saving schemes will be tested in future experiments

with higher resolution.

It is also worth noting that by no means can the current

E4DVAR system claim to be the optimal configuration,

partially due to the unaffordable high computational costs

of exhaustive tuning and diagnostics. On the other hand,

even if the E4DVAR system is likely not to be optimal as

presented, we have demonstrated the E4DVAR can

outperform both component systems of 4DVAR and

EnKF, which have been well tuned, suggesting that there

exists even greater space for the improvements for the

coupled system in the future.
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