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ABSTRACT

This study examines the performance of coupling the deterministic four-dimensional variational assimi-
lation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for
data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent un-
certainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR
analysis produces posterior maximum likelihood solutions through minimization of a cost function about
which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated
forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and
effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations.
It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect-
and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the
ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.
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1. Introduction

Data assimilation is the blending of two indepen-
dent estimates of the state of a system, typically in
the form of observational information and a short-
term model forecast, in a manner consistent with their
respective uncertainties (Talagrand, 1997). Ensemble
Kalman filters (EnKF) (Evensen, 1994) and the four-
dimensional variational assimilation system (4DVAR)
(Lewis and Derber, 1985; Courtier et al., 1994) are
two of the most advanced and state-of-the-art data
assimilation techniques. The 4DVAR produces poste-
rior maximum likelihood solutions through minimiza-
tion of a cost function while the EnKF seeks an anal-
ysis that minimizes the posterior variance or analysis
uncertainties (Kalnay, 2003).

The potential of the EnKF for numerical weather
prediction models in comparison with 4DVAR can
be seen in Lorenc (2003), which also discussed ap-
proaches of combining the two techniques. More re-

cently, Caya et al. (2005) directly compared these
two approaches for storm-scale data assimilation and
clearly demonstrated the strengths and weaknesses
of each technique. In a perfect-model setting, they
found that 4DVAR was able to generate good, dynam-
ically consistent analyses almost immediately, likely
due to its temporal smoothness constraint. It took
longer for the EnKF to spin up, but ultimately the
state-dependent uncertainty information utilized by
the EnKF enabled it to outperform 4DVAR (in terms
of root-mean square error or RMSE), which used very
simplistic first guess information. The current study
seeks to advance the state-of-the-science in data as-
similation by coupling 4DVAR with EnKF aiming at
maximally exploiting the strengths of the two forms of
data assimilation while simultaneously offsetting their
respective weaknesses. Past studies have noted the
benefits of including flow-dependent background er-
ror covariance in 4DVAR (Rabier et al., 1998; Navon
et al., 2005) and limitations of evolving background
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uncertainties implicitly through model constrains in
the presence of strong nonlinearity and discontinu-
ity (Zou, 1997; Sun and Crook, 1997). On the other
hand, some practical attempts, extending EnKF from
fixed-in-time to four-dimensions, were suggested by
Evensen and van Leeuwen (2000) (refers to Ensem-
ble Kalman Smoother), about which the asynchronous
observations could be constructed as linear combina-
tions based on the ensemble perturbations (refers to
4D-LETKF; Hunt et al., 2004; Fertig et al., 2007).
Meanwhile, the Maximum Likelihood Ensemble Filter
(Zupanski, 2005) was presented to improve the treat-
ment of nonlinear observation operators for standard
EnKF.

The hybrid form of the ensemble-based methods
using three-dimensional variational data assimilation
(3DVAR) has been previously used in Hamill and Sny-
der (2000) and more recently Wang et al. (2007). To
a broader extent, the Houtekamer and Mitchell (2001)
concept of additively combining ensemble-based co-
variance estimates with those from a 3DVAR back-
ground error covariance can be regarded as a special
form of a hybrid approach. Most recently, Liu et al.
(2008) implemented an ensemble-based method that
uses the 4DVAR optimization to produce balanced
analysis but without using the tangent linear and ad-
joint models. The current work of coupling 4DVAR
and EnKF can be viewed as an extension to previously
published hybrid methods but with the advantages of
using both ensemble-based covariance and an adjoint
trajectory.

2. EnKF, 4DVAR and E4DVAR

2.1 EnKF

The EnKF approximates the extended Kalman fil-
ter through Monte-Carlo sampling using ensembles
to define the uncertainty information associated with
the prior state estimate. Define x̄f ∈ �n to be the
prior minimum error variance estimate of the state,
and P f to be the covariance matrix that defines the
uncertainty associated with the prior. An estimate
of P f is obtained by considering ensemble members,

xf
i , i = 1, k, such that x̄f =

1
k

k∑

i=1

xf
i , and

P f ∼= 1
k − 1

(Xf − X̄
f )(Xf − X̄

f )T , (1)

where Xf is an n by k matrix where each column is
an ensemble member, xf

i , and X̄
f is an n by k matrix

where each column is the ensemble mean, x̄f . Given
this prior information, and assuming observations y,
and their error covariance R, are available, the poste-

rior minimum error variance estimate of the state (the
analysis) x̄a

i is given by

x̄a
i = x̄f

i +P fHT(HP fHT+R)−1(y−Hx̄f
i ) , (2)

where H is an observation operator that maps from
model space to observation space. Also, the expected
posterior uncertainty is given by

P a = P f − P fHT(HP fHT + R)−1HP f . (3)

There are several variations to the original ensem-
ble Kalman filter (EnKF) first proposed by Evensen
(1994) and later in Houtekamer and Mitchell (1998) in-
cluding the use of the ensemble square root filter (En-
SRF, Whitaker and Hamill, 2002; Snyder and Zhang,
2003; Zhang et al., 2006), the ensemble adjustment
filter (EAF, Anderson, 2001), and the ensemble trans-
form Kalman filter (ETKF, Bishop et al., 2001). In
this work the EnSRF-version of the EnKF is used.

2.2 4DVAR

Data assimilation via 4DVAR seeks posterior max-
imum likelihood analysis through the minimization of
a cost function containing observations that are dis-
tributed in time and a background estimate. The tra-
ditional 4DVAR cost function can be written as

J(x0) =
1
2
(xb − x0)TB−1(xb − x0)+

1
2

N∑

i=0

(yt − Htxt)TR−1
t (yt − Htxt) , (4)

where xb is the first guess for the system state (the
equivalent of x̄f in the ensemble filter discussion
above), B is the background error covariance defin-
ing the uncertainty associated with the first guess
(the equivalent of P f in the ensemble filter discussion
above), yt is an observation at time t, Ht and Rt are
the associated observation operator and error covari-
ance, and the xt are the model estimates of the system
state through the assimilation window. Data assimila-
tion proceeds by adjusting the initial condition x0 to
xa

0 , so that when the deterministic 4DVAR analysis xa
t

(equivalent to x̄a in EnKF at each observation time t)
propagates forward in time, it gets as close as possi-
ble to the observations yt in the assimilation window
N , conditional upon xa

0 not getting too far from the
first guess value, xb. Here “close” and “too far” are
defined by the background and observation covariance
matrices, B and Rt.

As with the ensemble-based filters, there are nu-
merous approaches to estimating the minimum of the
cost function in Eq. (4). In this work we employ a
limited-memory quasi-Newton method (L-BFGS) (Liu
and Nocedal, 1989) for the minimization in all 4DVAR
approaches. The L-BFGS method is found to have



NO. 1 ZHANG ET AL. 3

superb performance in nonlinear minimization prob-
lems and has a relatively low computing cost and low
storage requirement. To examine the direct impacts
of model nonlinearity, the cost function is calculated
from a full nonlinear model rather than the use of an
“outer loop” in an incremental method.

2.3 E4DVAR: Coupling the EnKF and
4DVAR

Conceptually, the coupled approach, hereafter
termed as “E4DVAR”, aims to link the distributed
in time, maximum likelihood approach of 4DVAR and
sequential in time, minimum variance approach of the
EnKF. However, while the ensemble-based filters ben-
efit from their use of state-dependent uncertainty in-
formation and from the explicit and consistent pro-
duction of analysis ensembles for forecasting, limited
ensemble sizes, along with nonlinearity and error in
the forecast model, one would render that the sample
covariances rank deficient and inaccurate, which would
result in bad ensemble analyses and filter divergence.
Rather ad hoc fixes such as localization (Gaspari and
Cohn, 1999) and relaxation (Zhang et al., 2004) are
applied. The 4DVAR analysis, on the other hand,
benefits from the temporal smoothness constraint of
finding a model trajectory that gets as close as possi-
ble to a trajectory of observations distributed in time.
This also enables it to partially overcome the limita-
tions in using uninformative, static background error
covariance information. Even though the 4DVAR sys-
tem may implicitly develop some flow-dependent back-
ground uncertainty during the minimization, it is often
difficult to derive the posterior analysis uncertainty
that is essential to generate internally consistent en-
semble perturbations. The proposed E4DVAR data
assimilation scheme uses the respective strengths of
the two constituent schemes to off-set the weaknesses
of each: the state-dependent uncertainty information
and ensemble construction capability of the ensemble-
based filter compensates for the inherent weaknesses of
4DVAR, while the ability of 4DVAR to overcome inac-
curacies in the background error covariance compen-
sates for an inherent weakness of the ensemble-based
filter. Under an assumption of linearity there is no in-
consistency between the maximum likelihood solution
of 4DVAR and the minimum error variance solution of
the EnKF. Nonlinearity in the forecast model and ob-
servation operators will render the linearity assump-
tion invalid, but no ill effects due to the mismatch
between the maximum likelihood and minimum error
variance solutions were observed in this work.

There are many possible implementations of
E4DVAR but for the purpose of clarity we choose to
concentrate on a representative formulation. The me-

chanics of this representative scheme couples 4DVAR
with an EnKF where the state and perturbation up-
dates have been separated. An illustration of the
E4DVAR coupling procedure used in the current study
is depicted in the schematic flowchart of Fig. 1: a
prior ensemble forecast produced by the EnKF that is
valid at time t is used to estimate P f for the subse-
quent 4DVAR assimilation cycle (t = j, j + 1), while
the 4DVAR analysis from the previous assimilation cy-
cle (t = j − 1, j) is used to replace the EnKF analysis
mean for subsequent ensemble forecasts. More gener-
ally, if there are observations between t = (j, j + 1),
the standard EnKF will be used to assimilate those
observations (that will be within the dotted box of
labeled with “Ensemble forecast” in Fig. 1). An al-
ternative stronger coupling is to replace the posterior
ensemble mean with the 4DVAR trajectory after each
EnKF analysis.

3. Experimental design

This proof-of-concept study will be carried out us-
ing the model of Lorenz (1996):

dxi

dt
=−xi−2xi−1+xi−1xi+1 − xi+F , i = 1, n (5)

with cyclic boundary conditions. Although not de-
rived from any known fluids equations, the dynamics
of Eq. (5) are “atmosphere-like” in that they consist of
nonlinear advection-like terms, a damping term, and
an external forcing; they can be thought of as some
atmospheric quantity distributed on a latitude circle.
One can choose any dimension, n, greater than 4 and
obtain chaotic behavior for suitable values of F . The
base-line configuration was n = 80 and F = 8, which is
computationally stable with a time step of 0.05 units,
or 6 h in equivalent (Lorenz 1996), where a fourth-
order Runge-Kutta scheme is used for temporal inte-
gration.

The performance of two coupled approaches of
E4DVAR is examined in comparison to the standard
non-coupled methods (EnKF and 4DVAR). E4DVAR1
completely replaces the static Bs in standard 4DVAR
with ensemble-estimated flow-dependent background
error covariance while E4DVAR2 mixes the static Bs,
and the ensemble-estimated P f (Hamill and Snyder,
2000) through

B = βP f + (1 − β)Bs , (6)

where the mixing coefficient β is the weight given to
the ensemble covariance estimate. E4DVAR2 is same
as the standard 4DVAR (E4DVAR1) for β =0 (β =1).

Ensemble sizes ranging between k=10 and k=500
were considered in the experiments utilizing ensemble
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Fig. 1. Schematics of the coupling between EnKF and 4DVAR that constitutes the E4DVAR used
in this work.

techniques, but most results were shown for k = 40
and k = 0. The default number of observations is
m = 20 (equally spaced at every observation time; a
quarter of the state dimension). Observations were
taken every 2 steps, or 12 h (as for standard sound-
ings), and specified observational error of 0.2 that is
approximately 3% the radius of the attractor. For
4DVAR, we considered the assimilation window length
of both N = 4 (standard 24-h daily assimilation cy-
cle) and N = 10 (near optimum window of 60 h for
this dynamic system studied). The standard 4DVAR
uses a diagonal background error covariance Bs, whose
values (all equal to 0.04) were determined through
long-term statistics of EnKF spread and related to
the attractor of the Lorenz-96 model. We have also
explored the commonly used “NMC method” to de-
rive non-diagonal background error covariance using
a Gaussian-shape distance correlation function. The
non-diagonal B overall would not significantly improve
the 4DVAR performance but sometimes may even de-
grade the 4DVAR performance (not shown). While
more sophisticated techniques to derive an effective
non-diagonal solution may be possible, we use the di-
agonal B for this proof-of-concept study for simplicity.

Covariance inflation for the ensembles is achieved
through the covariance relaxation method of Zhang et
al. (2004)

(x′
i)new = α(x′

i)
f + (1 − α)(x′

i)
a (7)

where α is the relaxation coefficient and (x′
i)new is

the final perturbation of the analysis ensemble used
for the next forecast cycle. The covariance localiza-
tion based on Gaspari and Cohn (1999) will be used
for all ensemble-based experiments. Other methods of
boosting and covariance localization radius were also
assessed but did not yield a better performance (not
shown). All experiments were carried out over 10 years
and assessment took place through the comparison of

ensemble mean analysis errors in the full model space.

4. Results

4.1 Perfect-model experiments

Figure 2 compares the performance of the coupled
approach (two E4DVAR implementations with β = 0
and 0.5, respectively) with the standard EnKF and
4DVAR under the perfect-model assumption (F = 8
for all truth, forecast and assimilation runs) and for
the assimilation window length 10 and an ensemble
size of 40 and 10, respectively. A radius of influence
of 8 and a relaxation coefficient of α = 0.5 are used
for all ensemble experiments. It is clear from Fig. 2
that without model error and given typical ensem-
ble size (k = 40), all methods will give satisfactory
performance in terms of overall RMS error, in which
all methods with ensemble-based flow-dependent back-
ground error covariances are slightly better than stan-
dard 4DVAR with static B (Fig. 2a). Remarkably,
with a reduced ensemble size of k = 0, degradation in
the performance of the coupled approaches is rather
insignificant while the standard EnKF fails quickly be-
cause of filter divergence (Fig. 2b).

However, an acceptable performance of the stan-
dard EnKF with k = 0 may still be achieved with a
smaller radius of influence (R = 4) and a relaxation
of the error covariance more to the prior α = 0.7.
Some small improvement can also be achieved for other
ensemble-based experiments through using different
localization radius, relaxation and mixing coefficients
(Tables 1 and 2). Noticeably, under a perfect model
scenario, when a large ensemble size is used, the en-
semble methods will benefit more from using a larger
radius of influence, smaller relaxation coefficient and
a larger mixing coefficient, which is consistent with a
smaller sampling error in the ensemble-based covari-
ance estimate. Tuning the static Bs through varying
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Fig. 2. Time evolution of the monthly averaged root-
mean square (rms) error for different data assimilation
experiments with default parameter setups listed in Ta-
ble 1 for an assimilation window of 60 h (N = 10) and an
ensemble size m = 40 (top) and m = 10 (bottom) with
a perfect forecast model (F = 8.0). Some experiments
may fail to converge to a solution and thus will not be
plotted.

the covariance magnitude does not yield improvement
for the standard 4DVAR but it is very sensitive to the
assimilation window length. Significant degradation
in 4DVAR performance is observed if a standard 24-h
(shorter) assimilation window is used (Table 2), partly
due to the frequent encountering of local minima in its
minimization (not shown), much more than those in
Fig. 2 (e.g., a RMSE spike during year 4–5). Strong
nonlinearity in such situations would result in a larger
mismatch between the cost function and its gradient.
Also, the advantage of the coupled approach may be
more (less) pronounced if less (more) observations are
assimilated (Hamill and Snyder, 2000).

4.2 Experiments with moderate model error

In these experiments, the forecast model in all
assimilation methods used a different (incorrectly-
specified) forcing coefficient (F = 8.5) from that used
in the truth simulation (F = 8.0). The truth run
is used for verification and for generating observa-
tions. The ensemble-mean derivation (with model
error, F = 8.5) from the perfect-model ensembles
(F = 8.0) over 24 h (starting from the same initial
perturbations every 24 h and averaged over 10 years)
is approximately 20% and 30% of the forecast ensem-
ble spread of 40 and 10 members, respectively.

Figure 3 shows the performance of the EnKF,

4DVAR and the coupled approaches with an imper-
fect forecast model (F = 8.5) for different ensemble
sizes. The experiment configurations are exactly the
same as those for the perfect model (Fig. 2) except
that a radius of influence of 4 (vs. 8) and a relax-
ation coefficient of α = 0.6 (vs. 0.5) are used for all
associated experiments. The use of a smaller radius of
influence and a larger relaxation coefficient are a direct
consequence of degradation of the ensemble-based er-
ror covariance estimate in the presence of model error.
With moderate model error and an ensemble size of
k = 40, all methods will still give satisfactory perfor-
mance (values below 1.0 or 20%–25% of the climatolog-
ical uncertainty), though each of them will have signif-
icantly larger overall RMS error than the correspond-
ing perfect-model experiments (Fig. 3 vs. Fig. 2;
Tables 1 and 2). Noticeably, in the presence of moder-
ate model error, the standard 4DVAR performs signif-
icantly better than EnKF for an assimilation window
of 60 h (N = 10) (Fig. 3, Table 1) and the advantage
of using the standard EnKF over the standard 4DVAR
becomes much smaller for an assimilation window of 24
h (N = 4) (Table 2), both of which are inferior to the
two coupled approaches. Even with an ensemble size of
10, both coupled approaches can perform considerably
better than 4DVAR, but in this case, significantly bet-
ter performance is achieved through mixing the flow-
dependent and static error covariance (Tables 1 and
2), which reduced both the appropriate and inappro-
priate correlations and prevented the underestimation
of background error variance.

With an ensemble size of 10, the EnKF may barely

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

Tim e (year)

M
o
n
th
ly
 a
ve
ra
g
e
d
 a
n
a
ly
si
s 
rm
s 
e
rr
o
r

4DVAR EnKF E4DVAR1 E4DVAR2

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

Tim e (year)

M
o
n
th
ly
 a
ve
ra
g
e
d
 a
n
a
ly
si
s 
rm
s 
e
rr
o
r

4DVAR EnKF E4DVAR1 E4DVAR2

Fig. 3. As in Fig. 2 except for with moderate model
error (F = 8.5).
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Table 1. The 10-year-avearged root-mean square analysis error and the associated default or tuned parameter values
used in different data assimilation experiments for an assimilation window of 60 h (N = 10) where R is the covariance
localization radius, α is the covariance relaxation coefficient as in Eq. (7) and β is the mixing coefficient as in Eq. (6).
“NA” stands for not applicable and “Failed” means no converged final analysis by that particular scheme.

Ensemble size m=40, Ensemble size m=40, Ensemble size m=10, Ensemble size m=10,
default parameter setup tuned parameter setup default parameter setup tuned parameter setup

Analysis Default Analysis Tuned Analysis Default Analysis Tuned
error R, α, β error R, α, β error R, α, β error R, α, β

Perfect 4DVAR 0.19 NA 0.19 NA 0.19 NA 0.19 NA
model EnKF 0.14 8, 0.5, NA 0.12 12, 0.3, NA Failed 8, 0.5, NA 0.84 4, 0.7, NA

F = 8.0 E4DVAR1 0.13 8, 0.5, 1.0 0.11 12, 0.3, 1.0 0.13 8, 0.5, 1.0 0.13 8, 0.5, 1.0
E4DVAR2 0.17 8, 0.5, 0.5 0.11 12, 0.3, 1.0 0.16 8, 0.5, 0.5 0.13 8, 0.5, 1.0

Moderate 4DVAR 0.45 NA 0.45 NA 0.45 NA 0.45 NA
model EnKF 0.68 4, 0.6, NA 0.64 3, 0.6, NA Failed 4, 0.6, NA 1.48 3, 0.7, NA
error E4DVAR1 0.40 4, 0.6, 1.0 0.38 3, 0.6, 1.0 0.45 4, 0.6, 1.0 0.38 4, 0.7, 1.0

F = 8.5 E4DVAR2 0.36 4, 0.6, 0.5 0.35 3, 0.6, 0.4 0.40 4, 0.6, 0.5 0.36 4, 0.7, 0.3

Severe 4DVAR 1.12 NA 1.12 NA 1.12 NA 1.12 NA
model EnKF Failed 4, 0.6, NA 1.24 3, 0.6, NA Failed 4, 0.6, NA 1.76 2, 0.6, NA
error E4DVAR1 0.81 4, 0.6, 1.0 0.70 3, 0.6, 1.0 1.10 4, 0.6, 1.0 0.70 3, 0.7, 1.0

F = 9.0 E4DVAR2 0.80 4, 0.6, 0.5 0.66 3, 0.6, 0.4 0.88 4, 0.6, 0.5 0.68 4, 0.7, 0.3

Table 2. As in Table 1 but for an assimilation window of 24 h (N = 4).

Ensemble size m=40, Ensemble size m=40, Ensemble size m=10, Ensemble size m=10,
default parameter setup tuned parameter setup default parameter setup tuned parameter setup

Analysis Default Analysis Tuned Analysis Default Analysis Tuned
error R, α, β error R, α, β error R, α, β error R, α, β

Perfect 4DVAR 0.39 NA 0.39 NA 0.39 NA 0.39 NA
model EnKF 0.14 8, 0.5, NA 0.12 12, 0.3, N Failed 8, 0.5, NA 0.84 4, 0.7, NA

F = 8.0 E4DVAR1 0.14 8, 0.5, 1.0 0.12 12, 0.3, 0.8 0.14 8, 0.5, 1.0 0.14 8, 0.5, 1.0
E4DVAR2 0.18 8, 0.5, 0.5 0.15 12, 0.3, 0.8 0.18 8, 0.5, 0.5 0.16 8, 0.5, 0.8

Moderate 4DVAR 0.77 NA 0.77 NA 0.77 NA 0.77 NA
model EnKF 0.68 4, 0.6, NA 0.64 3, 0.6, NA Failed 4, 0.6, NA 1.48 3, 0.7, NA
error E4DVAR1 0.46 4, 0.6, 1.0 0.46 4, 0.6, 1.0 0.60 4, 0.6, 1.0 0.52 3, 0.5, 1.0

F = 8.5 E4DVAR2 0.42 4, 0.6, 0.5 0.41 3, 0.5, 0.4 0.44 4, 0.6, 0.5 0.42 4, 0.6, 0.3

Severe 4DVAR 1.52 NA 1.52 NA 1.52 NA 1.52 NA
model EnKF Failed 4, 0.6, NA 1.23 3, 0.6, NA Failed 4, 0.6, NA 1.74 2, 0.6, NA
error E4DVAR1 1.00 4, 0.6, 1.0 1.00 4, 0.6, 1.0 1.41 4, 0.6, 1.0 1.39 4, 0.7, 1.0

F = 9.0 E4DVAR2 0.86 4, 0.6, 0.5 0.86 4, 0.6, 0.5 1.09 4, 0.6, 0.5 1.01 4, 0.6, 0.3

function without filter divergence (though performs
poorly) with an even smaller radius of influence (R =
3) and a stronger relaxation of the error covariance to
the prior with a mixing coefficient of α = 0.7 (Table
1). Again, some small improvement can be achieved
for other ensemble-based experiments through us-
ing different localization radii, relaxation and mix-
ing coefficients (Table 2). These additional sensitiv-
ity experiments demonstrate that when an imperfect
model is used, the ensemble methods will benefit more
from using a smaller radius of influence, a larger re-
laxation coefficient and a smaller mixing coefficient,
which is consistent with the degradation of the qual-
ity of the ensemble-based error covariance estimate
(Hansen, 2002; Meng and Zhang, 2007; Meng and

Zhang, 2008a,b).

4.3 Experiments with severe model error

In these experiments, the forecast model in all
assimilation methods used a different (incorrectly-
specified) forcing coefficient (F = 9.0) from that used
in the truth simulation (F =8.0). The ensemble-mean
deviation (with model error, F =9.0) from the perfect-
model ensembles (F = 8.0) over 24 h (starting from
the same initial perturbations every 24 h and aver-
aged over 10 years) is approximately 35% and 50% of
the forecast ensemble spread of 40 and 10 members,
respectively.

Figure 4 shows that the performance of data as-
similation methods will suffer greatly if the forecast



NO. 1 ZHANG ET AL. 7

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

Tim e (year)

M
o
n
th
ly
 a
ve
ra
g
e
d
 a
n
a
ly
si
s 
rm
s 
e
rr
o
r

4DVAR EnKF E4DVAR1 E4DVAR2

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

Tim e (year)

M
o
n
th
ly
 a
ve
ra
g
e
d
 a
n
a
ly
si
s 
rm
s 
e
rr
o
r

4DVAR EnKF E4DVAR1 E4DVAR2

Fig. 4. As in Fig. 2 except for with severe model error
(F = 9.0).

model is fundamentally flawed. In this case, the stan-
dard 4DVAR will have an unacceptable overall RMSE
of 1.12 for an assimilation window of 60 h or N = 10
and an unacceptable overall RMS error of 1.52 for a
shorter assimilation window of 24 h while the stan-
dard EnKF with a radius of influence (R = 4) will not
converge at all. However, an acceptable performance
can still be achieved with the coupled approaches, es-
pecially through mixing the flow-dependent and static
error covariance, even with an ensemble size of 10 (Fig.
4). With such severe model error, stronger sensitivity
is found for the ensemble methods and thus more del-
icate tuning is necessary (Tables 1 and 2).

Results from these imperfect-model experiments
imply that while model error imposes strong limita-
tions on all data assimilation approached, the use of a
temporal smoothness constraint distributed in time in
4DVAR makes it less vulnerable to model errors than
EnKF (Vukicevic and Posselt, personal communica-
tions).

5. Concluding remarks

We have found the coupled data assimilation ap-
proach (E4DVAR) to be effective in the context of an
idealized model; the coupled approach is able to pro-
duce analyses that are superior to those produced ei-
ther by the standard EnKF or 4DVAR under both
perfect and imperfect model scenarios. Extensive sen-
sitivity studies using the idealized model have helped
to elucidate when and why the coupled approaches are
effective. In this context, 4DVAR’s primary strength
is the use of temporal smoothness constraints to over-
come inaccurate background covariance, but its pri-

mary weaknesses are the poor initial uncertainty esti-
mates and the lack of posterior analysis uncertainty.
The primary strengths of the EnKF are the use of en-
sembles to provide a state-dependent estimate of first
guess uncertainty and the cycling of posterior analysis
uncertainty. Its primary weakness is an extreme sensi-
tivity to the quality of the state-dependent estimate of
uncertainty. The coupled schemes use the respective
strengths of the two constituent schemes to off-set the
weaknesses of each: the state-dependent uncertainty
information and ensemble construction capability of
the ensemble filter addresses the inherent weaknesses
of 4DVAR, while the ability of 4DVAR to overcome
inaccuracies in the background error covariance ad-
dresses an inherent weakness of the ensemble-based
filter.

One should never expect individual proof-of-
concept results from simplified models to have any
relevance for more complex models. However, one
should also not expect that issues elucidated in the
context of a simplified model to simply disappear when
more complex models are considered. We therefore an-
ticipate that the proposed coupled approach to data
assimilation will be fruitful for models of “real” sys-
tems in some regions of parameter space (assimilation
window length, observation distribution, observation
frequency, observation error level, ensemble size); we
cannot know a priori if those regions will correspond
to the area of parameter space defined by current op-
erational constraints and we cannot know a priori if
the improvement will balance the increase in compu-
tational cost. For the current study, the computational
cost of the coupled approach is slightly higher than the
sum of the standard EnKF and 4DVAR, partly due to
the trivial inexpensive inversion of a simple diagonal B
matrix for the standard 4DVAR. We envision in real-
data atmospheric applications, the difference of com-
putational costs between E4DVAR and the two stan-
dard approaches (4DVAR and EnKF) will be much less
since the coupled approach allows the use of a smaller
ensemble size while the use of flow-dependent B may
reduce the number of minimization iterations.

Acknowledgements. This research is sponsored

by the U.S. National Science Foundation (Grant No.

ATM0205599) and by the U.S. Office of Navy Research

under Grant N000140410471. Dr. James A. Hansen was

partially supported by US Office of Naval Research (Grant

No. N00014-06-1-0500).

REFERENCES

Anderson, J. L., 2001: An ensemble adjustment Kalman
filter for data assimilation. Mon. Wea. Rev., 129,
2284–2903.

Bishop, C. H., B. J. Etherton, and S. J. Majumdar,



8 COUPLING ENKF WITH 4DVAR VOL. 26

2001: Adaptive sampling with the ensemble trans-
form Kalman filter. Part I: Theoretical aspects. Mon.
Wea. Rev., 129, 420–436.

Caya, A., J. Sun, and C. Snyder, 2005: A comparison
between the 4Dvar and the ensemble Kalman filter
for radar data assimilation. Mon. Wea. Rev., 133,
3081–3094.

Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994:
A strategy for operational implementation of 4D-Var
using an incremental approach. Quart. J. Roy. Me-
teor. Soc., 120, 1367–1387.

Evensen, G., 1994: Sequential data assimilation with a
nonlinear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics. J. Geophys. Res.,
99, 10143–10162.

Evensen, G., and P. J. van Leeuwen, 2000: An ensem-
ble Kalman smoother for nonlinear dynamics. Mon.
Wea. Rev., 128, 1852–1867.

Fertig, E., J. Harlim, and B. Hunt, 2007. A comparative
study of 4DVar and 4D ensemble Kalman filter: Per-
fect model simulations with Lorenz-96. Tellus, 59,
96–101.

Gaspari, G., and S. Cohn, 1999: Construction of corre-
lation functions in two and three dimensions. Quart.
J. Roy. Meteor. Soc., 125, 723–757.

Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble
Kalman filter-3D variational analysis scheme. Mon.
Wea. Rev., 128, 2905–2919.

Hansen, J. A., 2002: Accounting for model error in
ensemble-based state estimation and forecasting.
Mon. Wea. Rev., 130, 2373–2391.

Houtekamer, P. L., and H. L. Mitchell, 1998: Data assim-
ilation using an ensemble Kalman filter technique.
Mon. Wea. Rev., 126, 796–811.

Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential
ensemble Kalman filter for atmospheric data assimi-
lation. Mon. Wea. Rev., 129, 123–137.

Hunt, B. R., and Coauthors, 2004: Four-dimensional en-
semble Kalman filtering. Tellus, 56A, 273–277.

Kalnay, E., 2003: Atmospheric Modeling, Data Assimila-
tion and Predictability. Cambridge University Press,
New York, 341pp.

Lewis, J. M., and J. C. Derber, 1985: The use of adjoint
equations to solve a variational adjustment problem
with advective constraints. Tellus, 37A, 309–322.

Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-
based four-dimensional variational data assimilation
scheme. Part I: Technical formulation and prelimi-
nary test. Mon. Wea. Rev., 136(9), 3367–3376.

Liu, D. C., and J. Nocedal, 1989: On the limited memory
BFGS method for large scale optimization. Mathe-
matical Programming, 45, 503–528.

Lorenc, A., 2003: The potential of the Ensemble Kalman
Filter for NWP: A comparison with 4DVar. Quart.
J. Roy. Meteor. Soc., 129, 3183–3203.

Lorenz, E. N., 1996: Predictability—A problem partly
solved. In “Predictability”, ECMWF, Seminar Pro-
ceedings, Shinfield Park, Reading, RG2 9AX, 1–18.

Meng, Z., and F. Zhang, 2007: Test of an ensemble
Kalman filter for mesoscale and regional-scale data
assimilation. Part II: Imperfect model experiments.
Mon. Wea. Rev., 135, 1403–1423.

Meng, Z., and F. Zhang, 2008a: Test of an ensemble-
Kalman filter for mesoscale and regional-scale data
assimilation. Part III: Comparison with 3Dvar in a
real-data case study. Mon. Wea. Rev., 136, 522–540.

Meng, Z., and F. Zhang, 2008b: Test of an ensemble-
Kalman filter for mesoscale and regional-scale data
assimilation. Part IV: Performance over a warm-
season month of June 2003. Mon. Wea. Rev., 136,
3671–3682.

Navon, I. M., D. N. Daescu, and Z. Liu, 2005: The impact
of background error on incomplete observations for
4D-Var data assimilation with the FSU GSM. Com-
putational Science-ICCS 2005, PT 2, 3515, 837–844.

Rabier, F., J. N. Thepaut, and P. Courtier, 1998: Ex-
tended assimilation and forecast experiments with
a four-dimensional variational assimilation system.
Quart. J. Roy. Meteor. Soc., 124, 1861–1887.

Snyder, C., and F. Zhang, 2003: Assimilation of simu-
lated Doppler radar observations with an ensemble
Kalman filter. Mon. Wea. Rev., 131, 1663–1677.

Sun, J., and N. A. Crook, 1997: Dynamical and micro-
physical retrieval from Doppler radar observations
using a cloud model and its adjoint. Part I: Model
development and simulated data experiments. J. At-
mos. Sci., 54, 1642–1661.

Talagrand, O., 1997: Assimilation of observations, an in-
troduction. J. Meteor. Soc. Japan, 75, 191–209.

Wang, X., C. Snyder, and T. M. Hamill, 2007: On the the-
oretical equivalence of differently proposed ensemble-
3DVAR hybrid analysis schemes. Mon. Wea. Rev.,
135, 222–227.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data
assimilation without perturbed observations. Mon.
Wea. Rev., 130, 1923.

Zhang, F., C. Snyder, and J. Sun, 2004: Tests of an en-
semble Kalman filter for convective-scale data assim-
ilation: Impact of initial estimate and observations.
Mon. Wea. Rev., 132, 1238–1253.

Zhang, F., Z. Meng, and A. Aksoy, 2006: Test of an
ensemble-Kalman filter for mesoscale and regional-
scale data assimilation. Part I: Perfect-model exper-
iments. Mon. Wea. Rev., 134, 722–736.

Zou, X., 1997: Tangent linear and adjoint of “on/off” pro-
cesses and their feasibility for use in 4-dimensional
variational data assimilation. Tellus, 49A, 3–31.

Zupanski, M., 2005: Maximum likelihood ensemble filter:
Theoretical aspects. Mon. Wea. Rev., 133, 1710–
1726.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /OK
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /CHS ()
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


