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ABSTRACT

This study examines the performance of a hybrid ensemble-variational data assimilation system (E3DVar)

that couples an ensemble Kalman filter (EnKF) with the three-dimensional variational data assimilation

(3DVar) system for theWeather Research and Forecasting (WRF)Model. The performance of E3DVar and

the component EnKF and 3DVar systems are compared over the eastern United States for June 2003.

Conventional sounding and surface observations as well as data from wind profilers, aircraft and ships, and

cloud-tracked winds from satellites, are assimilated every 6 h during the experiments, and forecasts are

verified using standard sounding observations. Forecasts with 12- to 72-h lead times are found to have no-

ticeably smaller root-mean-square errors when initialized with the E3DVar system, as opposed to the EnKF,

especially for the 12-h wind andmoisture fields. The E3DVar system demonstrates similar performance as an

EnKF, while using less than half the number of ensemble members, and is less sensitive to the use of

a multiphysics ensemble to account for model errors. The E3DVar system is also compared with a similar

hybrid method that replaces the 3DVar component with the WRF four-dimensional variational data as-

similation (4DVar) method (denoted E4DVar). The E4DVar method demonstrated considerable improve-

ments over E3DVar for nearly all model levels and variables at the shorter forecast lead times (12–48 h), but

the forecast accuracies of all three ensemble-based methods (EnKF, E3DVar, and E4DVar) converge to

similar results at longer lead times (60–72 h). Nevertheless, all methods that used ensemble information

produced considerably better forecasts than the two methods that relied solely on static background error

covariance (i.e., 3DVar and 4DVar).

1. Introduction

Variational data assimilation approaches have been

implemented at many operational centers and research

communities for improving numerical weather prediction

in recent decades, either in the three-dimensional form

[three-dimensional variational data assimilation (3DVar;

Parrish and Derber 1992; Courtier et al. 1994; Gauthier

et al. 1999; Lorenc et al. 2000; Barker et al. 2005)] or its

four-dimensional extension [four-dimensional variational

data assimilation (4DVar; Rabier et al. 2000; Honda

et al. 2005; Zupanski et al. 2005; Gauthier et al. 2007;

Huang et al. 2009)]. The background error covariance for

variational methods is usually derived from assumptions

of spatial and temporal homogeneity and isotropy;

therefore, flow-dependent uncertainties (often referred

to as the ‘‘errors of the day’’) go unaccounted for during

the data assimilation. Even though the 4DVar method is

capable of resolving time-evolving background error

covariance through the use of tangent linear and adjoint

models (Lorenc 2003), the limitations of using a static

background covariance for a series of 4DVar cycles are

still significant (Navon et al. 2005; Buehner et al.

2010a,b), since the static covariance estimate is used at

the beginning of each 4DVar window. The presence of

strong nonlinearity and discontinuity in the forecast

model may also be problematic for the adjoint during

minimization (Zou et al. 1997; Sun and Crook 1997).

Ensemble-based data assimilation, in various forms of

ensemble Kalman filters (EnKF), has become a popular

alternative to the variational approaches. Evensen

(1994) introduced the first EnKF, and Houtekamer and

Mitchell (1998) were the first to apply the technique to

the atmosphere. Unlike the deterministic analyses that

result from a variational data assimilation cycle, the

EnKF provides an explicit estimation of the analysis

probability density function, sampled by an ensemble of
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members that can be used to initialize ensemble fore-

casts. EnKFs have been adopted for a variety of weather

applications over the past decade, ranging from con-

vective to global scales for both ideal and realistic model

experiments (e.g., Anderson 2001; Whitaker and Hamill

2002; Snyder and Zhang 2003; Tong and Xue 2005;

Zhang et al. 2006; Torn and Hakim 2008; Meng and

Zhang 2007; Whitaker et al. 2008; Zhang et al. 2009a).

The EnKF has demonstrated convincing advantages

over 3DVar for both limited-area and global models,

because of its use of flow-dependent background error

covariance (Houtekamer et al. 2005; Whitaker et al.

2008; Meng and Zhang 2008a,b). Theoretical compari-

sons have been made between the EnKF and 4DVar

systems, along with modeling studies that consider the

head-to-head performance of each system (Lorenc 2003;

Caya et al. 2005; Kalnay et al. 2007; Buehner et al.

2010a,b; Miyoshi et al. 2010; Zhang et al. 2011). In

summary, the two methods are equivalent when used

with a perfect linear model, and result in comparable

performance for realistic settings in the presence of

model error and nonlinear dynamics. Modeling studies

have shown that the EnKF may provide better long-

term forecast performance after multiple assimilation

cycles have been completed, and the 4DVar method

tends to fit observations better at the analysis time and

requires fewer assimilation cycles to provide optimal

performance. Many formulations of the EnKF require

the sequential assimilation of observations to avoid large

matrix inversions during each update cycle, so the com-

putational expense of the Kalman filter update equations

scales linearly with the amount of data. In contrast, the

variational cost-function approach can efficiently as-

similate large numbers of observations.

A hybrid data assimilation method that couples

ensemble-based and variational data assimilation systems

has emerged as an alternative approach (Lorenc 2003;

Buehner 2005). The new system incorporates flow-

dependent forecast uncertainties into the cost function

during variational data assimilation, thus taking advan-

tage of the relative strengths of the stand-alone methods.

The hybrid system can easily be adapted from the existing

variational framework, while providing more flexibility

than conventional ensemble-based schemes in account-

ing for sampling error andmodel error (Wang et al. 2009).

Hamill and Snyder (2000) proposed the first hybrid

data assimilation method by using a linear combination

of ensemble-based and time-invariant covariance in

a 3DVar cost function. Lorenc (2003) proposed a more

sophisticated form of hybrid by introducing ensemble

perturbations into the cost function as additional control

variables; the method was first implemented in Buehner

(2005). The control variables for the ensemble information

are preconditioned for covariance localization to reduce

sampling errors, much like what is done for the stand-

alone EnKF (Houtekamer and Mitchell 2001). Wang

et al. (2007, 2009) noted the equivalence of the two hy-

brid schemes, and tested the latter for a global two-layer

primitive equation model under perfect- and imperfect-

model scenarios. Liu et al. (2008, 2009) introduced a

hybrid method that performs four-dimensional variational

minimization of a cost function, using time-dependent

error covariance estimated from an ensemble to replace

the role of the tangent linear and adjoint model in the

standard 4DVar system. Wang et al. (2008a,b) and

Buehner (2010a,b) conducted data assimilation experi-

ments in which these two hybrid methods were used to

assimilate real observations for a limited-area and global

model, respectively.

Zhang et al. (2009b) applied a four-dimensional data

assimilation system for the Lorenz-96 model (Lorenz

1996) that directly couples the EnKF with 4DVar

methods using a linear combination of ensemble and

climatological background error covariance. Unlike the

four-dimensional hybrid in Liu et al. (2008, 2009), this

system introduces the ensemble perturbations at the

beginning of the 4DVar observation window and uses

the tangent linear and adjoint models to fit the obser-

vations. The component systems run in parallel, with

ensemble perturbations being updated by the EnKF and

the ensemble mean replaced by the 4DVar analysis.

Zhang and Zhang (2012) further showed that such

a 4DVar-based hybrid (denoted as E4DVar) can out-

perform the stand-alone EnKF and 4DVar in real data

experiments, since it benefits from flow-dependent in-

formation provided from the two component systems.

Another potential benefit of the hybrid approach is the

treatment of sampling and model errors, since a careful

weighting between climatological and ensemble-based

background statistics are used (Wang et al. 2009; Zhang

et al. 2009a).

As a follow-up of previous studies (Zhang and Zhang

2012;Wang et al. 2008a,b), a hybrid ensemble-variational

data assimilation system (E3DVar) based on the WRF

model is applied for a regional modeling study. The data

assimilation system tested in this study is similar to the

method presented in Wang et al. (2008a,b), except that

1) a square root EnKF is used instead of an ensemble

transform Kalman filter, 2) the EnKF and 3DVAR are

two-way coupled and running in parallel, and 3) a direct

comparison is made to the EnKF, 4DVar, and E4DVar

systems using the same forecast model. The perfor-

mance of the coupled system is examined over the

eastern part of the United States for the month of June

2003 by assimilating most available conventional ob-

servations, and comparing results from cases in which

MARCH 2013 ZHANG ET AL . 901



the stand-alone EnKF and 3DVar systems are applied.

Sensitivity tests are performed for background error

covariance weighting, ensemble size, multiphysics and

single-physics ensembles, and additive inflation for

a comprehensive investigation on the treatment of

sampling and model errors. The data assimilation sys-

tems are described in section 2, followed by experiment

design in section 3. A comparison of E3DVar and the

stand-alone data assimilationmethods is given in section

4. The sensitivity of E3DVar experiments to configura-

tions of 3DVar and EnKF are presented in sections 5

and 6, respectively. E3DVar is compared with E4DVar

in section 7, and concluding remarks are presented in

section 8.

2. Hybrid algorithm

a. Variational method

The variational approach seeks a balanced state

analysis that is subject to both dynamical and statistical

constraints by minimizing a cost function J:

J5
1
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dxT0B

21dx0

1
1

2
�
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k50

(HkMkdx02 dk)
TR21(HkMkdx0 2 dk)1 Jc .

(1)

The three right-hand-side terms in Eq. (1) are the

background (Jb,), observational (Jo), and penalty (Jc)

cost functions, respectively, and the subscript k denotes

an observation time during the assimilation window of

length K. In Jb, dx0 is the analysis increment from the

first guess at the initial time, and B is the background

error covariance. In Jo,Mk and Hk are the tangent linear

versions of the forecastmodel and observation operator,R

is the observational error covariance, and dk 5 yok 2Hkxk
is the innovation vector at time k. For 3DVar, k5 K5 0,

meaning the analysis occurs for a fixed time. It differs

fundamentally from 4DVar, which performs the mini-

mization over a time window using linear and adjoint

models that are linearized about a trajectory (Huang

et al. 2009). The additional penalty term Jc enforces a set

of balanced constraints for the analysis, but it is not used

in the current study (Jc 5 0). In practice, the WRF

variational data assimilation package uses an incremental

formulation of Eq. (1) to reduce computational cost.

b. EnKF

The update equations for the standard ensemble

Kalman filter (Evensen 1994) are given by

xa5 xf 1K(y2Hxf ) , (2)

Pf ’ x0f (x0f )T 5
1

N2 1
�
N

i51

(x
f
i 2 xf )(x

f
i 2 xf )T , (3)

Kk5P
f
kH

T
k (HkP

f
kH

T
k 1O)21 , (4)

where xf and xa represent the prior and posterior esti-

mate (or first guess and analysis) at the analysis time,

and i denotes ensemble members (i 5 [1, N]). The K is

the Kalman gain matrix, and Pf represents the back-

ground error covariance, which is referred to as B in the

variational algorithm. A flow-dependent Pf is estimated

from an ensemble of short-range forecasts by Eq. (3),

and observations are assimilated sequentially under the

assumptions of independent observation errors. This

study uses the same EnKF as Meng and Zhang

(2008a,b); see Snyder and Zhang (2003) for a detailed

description of the algorithm.

c. Coupled system

3DVar and EnKF run separately in E3DVar, with

two-way variable exchanges during each assimilation

cycle. Figure 1 outlines the three major variable ex-

changes that are described in the following steps: (i) the

ensemble-based background error covariance Pf is in-

troduced into the 3DVar cost function; (ii) the prior

ensemble mean xf is used as the first guess for each

3DVar cycle; and (iii) the posterior ensemble mean is

replaced by the 3DVar analysis, xa0, for the next en-

semble forecast.

The ensemble-based background error covariance is

introduced in the cost function by separating the Jb in

Eq. (1) into two parts:

Jb5 Jb11 Jb25
1

2
dxT0 [(12b)B1bP

f
0+C]

21dx0 , (5)

where Jb1 is the traditional background term as in Eq. (1)

and Jb2 is the cost assigned to the ensemble-based terms.

FIG. 1. Schematic of E3DVar, which couples the EnKF with

3DVar.
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The P
f
0 is the prior ensemble covariance valid at the

analysis time; b is the weighting coefficient for the two

covariance estimates; C is a correlation matrix used to

localize the ensemble covariance; and+ is an elementwise

multiplication or Schur product. The hybrid formulation

approaches the standard 3DVar as b approaches 0.

When the alpha-control variable transform is applied,

the hybrid incremental analysis can be calculated as

a function of two control variables. These variables are

the traditional control variable n associated with the

(National Meteorological Center) NMC-based covariance

(Barker et al. 2005), and an additional control variable a

associated with the ensemble-based covariance (Lorenc

2003):

dx05 dxnmc 1 dxens5Un1Xfa . (6)

The U in Eq. (6) transforms the control variable n into

the background covariancematrix and is preconditioned

such that UUT is approximately equal toB. Likewise, Xf,

is a matrix holding the ensemble perturbations, and the

control variable a is preconditioned to ensure that dxens
spans the space of the localized ensemble perturbations.

Using Eqs. (5) and (6), the cost function in Eq. (1) can

then be rewritten as
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for E4DVar, where k 5 0 for the E3DVar system. Our

hybrid formulation follows closely Wang et al. (2008a,b)

though an alternative approach is to include the beta term

in Eq. (6), rather than in the cost function in Eq. (7), as is

done in other studies [e.g., Eq. (7) of Buehner (2005)].

3. Experimental design

a. Forecast model

This study applies the above-mentioned data assimi-

lation systems for version 3.1.1 of the Advanced Re-

searchWeather Research and Forecasting (ARW-WRF)

Model (Skamarock et al. 2005), using the same config-

uration as Zhang et al. (2011) and Zhang and Zhang

(2012). All experiments are conducted over a single

domain, which covers the continental United States and

surrounding areas (Fig. 2) with a 71 3 51 horizontal

mesh grid using 90-km spacing and 27 vertical levels up

to 50 hPa. The Grell–Devenyi cumulus scheme (Grell

and Devenyi 2002), WRF single-moment 6-class mi-

crophysics scheme (WSM6; Hong et al. 2004), and the

Yonsei State University (YSU) planetary boundary

layer (PBL) scheme (Noh et al. 2003) are used for all

deterministic forecasts. For ensemble forecasts, we use

different arrangements of physics parameterization

schemes for each ensemble member to create a multi-

physics ensemble; the combinations of schemes used in

this study are identical to those used inMeng and Zhang

(2008a,b). The first forecast cycle of this month-long

experiment is initialized at 0000 UTC 1 June 2003, using

the National Centers for Environmental Prediction

(NCEP) global final analysis (FNL) data to create the

initial and lateral boundary conditions (ICs and LBCs).

In the following cycles, LBCs are interpolated from the

FNL analyses, while ICs are provided by analyses pro-

duced by the tested data assimilation schemes.

b. Data assimilation systems

This study uses the 3DVar and 4DVar systems that

are available in version 3.1 of the WRF variational data

assimilation package (WRFDA). The static background

error covariance for the variational experiments is esti-

mated from the NMC method (Parrish and Derber

1992), which uses differences between 24- and 12-h

forecasts valid at the same time (i.e., every 0000 and

1200 UTC) over the preceding month. The covariance

matrix is formulated using option 5 (CV5; Barker et al.

2005) in WRFDA for a set of control variables that in-

clude streamfunction, unbalanced temperature, surface

pressure and velocity potential, and relative humidity.

The variance-scale parameter is carefully tuned to op-

timize the performance of 3DVar (refer to section 5a).

FIG. 2. Model domain configuration. The empty circles denote

the locations of the radiosonde observations used for assimilation

and verification. The dashed box shows the subset of the domain

selected for verification statistics. The solid circle marks the loca-

tion of the single observation experiment.
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The EnKF uses a multiphysics ensemble of 40 mem-

bers, with a relaxation coefficient of 0.8 [see Eq. (5) of

Zhang et al. (2004)], and prespecified correlation func-

tions for covariance localization (Gaspari andCohn 1999)

that use a radius of influence of 1800 km for radiosondes

and profilers, and 600 km for all other observations. A

vertical covariance localization of 15 vertical grid points

is applied to discrete, single-level observations such as

surface data and satellite winds. These EnKF settings

are based on past experiences and limited tuning sensi-

tivity tests, which may not be optimal.

The initial ensemble perturbations are randomly

generated at 0000 UTC 1 June 2003 using the CV5

background error covariance option of the WRFDA

system (Barker et al. 2005), which are dynamically bal-

anced by the same set of control variables used for the

variational cost function. The perturbations are then

added to the FNL analysis to form an initial ensemble,

which is integrated for 12 h to evolve a flow-dependent

background error covariance matrix before the first as-

similation cycle at 1200 UTC 1 June 2003. The LBCs for

the ensemble forecasts are perturbed from the FNL

analyses at each analysis time in the same manner as the

initial perturbations.

The EnKF and 3DVar are coupled in E3Dvar through

an additional control variable transformation (Lorenc

2003) that was adapted for WRFDA by Wang et al.

(2008a,b). Unlike the Wang et al. (2008a,b) imple-

mentation, the coupled system developed for this study

runs the 3DVar and EnKF components in parallel of

one another, with information exchanged between the

two systems via additional steps that are completely

separate from the original WRF-3DVar and EnKF

(Fig. 1). The coefficient for weighting the NMC- and

ensemble-based background error covariance estimates

is set to 0.8 and 0.5 in this study as inWang et al. (2008b).

Additional experiments are performed to evaluate the

sensitivity of E3DVar to different weighting coefficients

paired with various ensemble sizes (Table 1).

c. Observations

The data assimilation experiments make use of various

types of meteorological observations, including wind,

temperature, and moisture from radiosondes, ships, and

surface stations; wind from profilers; wind and tempera-

ture from aircrafts; and cloud-tracked wind from satel-

lites. Data sorting, quality control, and observational

error assignment for all cases are performed through the

observation preprocessing module of WRFDA (Barker

et al. 2005). The first analysis time is 1200 UTC 1 June

2003, and each data assimilation system continuously

cycles through a 6-h analysis–forecast cycle (every 0000,

0600, 1200, and 1800 UTC) until the end of the month.

4. Control experiments of 3DVar, EnKF, and
E3DVar

In this section, we evaluate the performance of each

approach over the month-long period. Each data as-

similation experiment presented here is referred to as

a control case, since the default configurations are used.

The root-mean-square error (RMSE) of horizontal

winds (U,V), temperature (T), andmixing ratio of water

vapor (Q) are calculated between model forecasts and

TABLE 1. Summary of the control and sensitivity data assimilation experiments.

Name Description

FNL Operational NCEP global 3DVar with much larger data volume

3DVar Control 3DVar with variance-scale coefficient at 3.0

EnKF Control EnKF with ensemble size at 40, relaxation coefficient at 0.8, influence radius

at 1800 km, and multiphysics

E3DVar Control E3DVar with ensemble size at 40, weighting coefficient at 0.8, influence radius

at 1800 km, and multiphysics scheme

3DVar-Var1.0 Sensitivity 3DVar with variance-scale coefficient at 1.0 (default value in WRF-3DVar)

EnKF-Size80 Sensitivity EnKF with ensemble size at 80

EnKF-S Sensitivity EnKF with single-physics scheme

EnKF-Addi0.2 Sensitivity EnKF with additive inflation coefficient at 0.2

E3DVar-Beta0.5 Sensitivity E3DVar with weighting coefficient at 0.5

E3DVar-Beta1.0 Sensitivity E3DVar with weighting coefficient at 1.0

E3DVar-Size10 Sensitivity E3DVar with ensemble size at 10

E3DVar-Size10- Beta0.5 Sensitivity E3DVar with ensemble size at 10 and weighting coefficient at 0.5

E3DVar-Size10- Beta0.5-L900 Sensitivity E3DVar with ensemble size at 10, weighting coefficient at 0.5, and influence

radius at 900 km

E3DVar-Size20 Sensitivity E3DVar with ensemble size at 20

E3DVar- Addi0.2 Sensitivity E3DVar with additive inflation coefficient at 0.2

E3DVar-S Sensitivity E3DVar with single-physics scheme
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radiosonde observations over a subset of the model do-

main (dashed box in Fig. 2). The verification statistics use

a total of fifty-nine 72-h deterministic forecasts, which are

initialized from the 0000 and 1200UTC analyses each day

for each of the data assimilation experiments. We also

compare these results with 72-h forecasts that are initial-

ized twice a day from the FNL analyses. The operational

FNL analysis is available on a 18 by 18 latitudinal–

longitudinal grid that is based on a 3DVar-type assimi-

lation approach, called gridpoint statistical interpolation

(GSI), which assimilates many more observations than

what is used for the experiments presented herein, in-

cluding satellite radiances.

We first examine the vertical distribution of the

month-long mean RMSE for 12-h forecasts of U, V, T,

andQ (Fig. 3). The largest RMSEofU,V, andT for each

control experiment is near the tropopause at 200 hPa,

while the largest error of Q is in the mid- to lower tro-

posphere, collocated with a secondary error maxima for

T. The control E3DVar performs as well as the control

EnKF for the temperature field, but has noticeably

smaller RMSE than EnKF for horizontal winds and

moisture in the mid- to lower troposphere. Both the

E3DVar and EnKF have substantially smaller RMSEs

than the control 3DVar throughout the troposphere. In

comparison to the 12-h WRF forecasts initialized with

the FNL analysis (denoted FNL-WRF), both of the

control ensemble methods (E3DVar and EnKF) have

slightly larger RMSEs than FNL-WRF in the horizontal

wind fields, but smaller errors in the temperature and

moisture fields (Fig. 3). All three control experiments

have a 12-h forecast bias in the lower andmidtroposphere

that is nearly negligible for winds (less than 5% of the

RMSE), and slightly negative for temperature (Fig. 4).

Forecasts fromall threeWRF-based assimilation schemes

have smaller biases than the 12-h forecasts from the FNL

analysis, despite using fewer observations. The control

EnKF also outperforms 3DVar, which is consistent with

Meng and Zhang (2008b).

Figure 5 displays the vertical profiles of RMS differ-

ences between the analysis of each assimilation scheme

and the sounding observations at the analysis times.

These differences measure the extent to which the anal-

yses fit observations that have been assimilated at each

verifying time. In contrast to the 12-h forecast errors

(Fig. 3), Fig. 5 shows the 3DVar scheme fitting the ob-

servations the closest, followed by E3DVar, while the

EnKF analyses yield the largest differences between the

radiosonde observations throughout the vertical domain.

The control 3DVar case has an inflated background

variance factor that applies a larger weight to the obser-

vations than would otherwise be assigned by a default

configuration. It is generally undesirable to closely fit

observations during data assimilation, since it may cause

valuable information provided by the forecast model to

be disregarded. Overweighting observations may also

overfit observation noise, rather than the signals. Nev-

ertheless, the 3DVar configuration used for the control

case provided the most optimal results and is therefore

compared with the ensemble approaches in this section.

Figure 6 shows the vertical distribution of mean

RMSE from the 72-h WRF forecasts. There is virtually

FIG. 3. Vertical profiles of the month-averaged 12-h forecast RMSE of (a) U (m s21),

(b) V (m s21), (c) T (K), and (d) Q (g kg21) for various DA methods.
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no difference inRMSEbetween theEnKFandE3DVAR

at longer lead times; the ensemble-based methods

clearly produce better forecasts than the control 3DVar

and FNL-WRF configuration for all fields, especially in

the lower and midtroposphere. Figure 7 shows the time

evolution of the domain-averaged1 72-h RMSE for all

three control experiments. There are large fluctuations

in the 72-h RMSE for each experiment, with the perfor-

mance of E3DVar and EnKF being similar throughout

the month. Larger performance gains for the EnKF and

E3DVar experiments occur for active weather pat-

terns, since the ensemble provides a better error co-

variance estimate when the background flow deviates

from climatology. The advantage of the two ensemble

methods over the control 3DVar is most evident for

a few episodes between 8–13 June that feature the

passage of several strong mesoscale convective systems

(Davis et al. 2004; Hawblitzel et al. 2007). Figure 8

summarizes the domain-averaged RMSEs of each case

by further averaging all 72-h forecasts throughout the

month. Consistent with what is shown in Figs. 3 and 5–7,

the E3DVar produces slightly better forecasts than

the EnKF for all fields except temperature. Both of the

ensemble-based methods substantially outperform the

standard 3DVar and FNL for all variables and forecast

lead times, though the control 3DVar fits the observa-

tions the closest at the analysis time. The ensemble-based

methods show significant decreases in forecast error over

3DVar, thus demonstrating the benefit of incorporating

flow-dependent background error covariance into the

state estimation. The ensemble forecasts also provide a

means of estimating multivariate correlations between

moisture variables, which are nonexistent in the static

covariance matrix used for the 3DVar tested in this study

(Fig. 9).

Single-observation tests are used here to show the

structure of the background error covariance used to

assimilate an observation at one time. Figure 9 shows

increments of temperature, horizontal winds, and mois-

ture that are calculated in response to a 1-K warmer

temperature difference at 500 hPa on 0000 UTC 8 June

2003. The hypothetical observation is in the vicinity of

an upper-level short-wave trough, where static back-

ground errors often fail to capture the true forecast

errors. The analysis increments from 3DVar (Fig. 9c)

have an isotropic structure that is centered on the ob-

servation location and completely independent of the

background flow. As mentioned above, the NMC-

based background error covariance used for this study

contains no correlations between moisture and other

variables; therefore, no updates are made to the

moisture field in the 3DVar case. In contrast, the in-

crements produced from the EnKF and E3DVar (Figs.

9a,d) contain significant adjustments to moisture near

the observation location. Corrections to the wind field

FIG. 4. As in Fig. 3, but for 12-h forecast biases. The dots on the x axis are the domain averages

of the corresponding methods (with the same color as the curves).

1 In the domain average here, a simple vertical mean of the

RMSE at different verification levels is used, which does not ac-

count for the difference in sample density of verifying observations

and the difference in the air density, though these two effects tend

to compensate each other.
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and thermodynamic variables are maximized westward

of the observation, spanning an elongated region ahead

of the wave for the EnKF case. By combining the

NMC- and ensemble-based background covariance,

the E3DVar analysis will be adjusted toward the larger-

scale flow field as depicted by the background ensemble

mean and covariance, while producing significant

updates to the subsynoptic-scale flow field near the

observation.

5. Sensitivity to variational configurations

a. Sensitivity to variance scale

We tested 3DVar for a reasonable range of parameter

values, and found an inflation value of 3.0 to give the

best performance. The larger inflation factor causes the

analysis to fit the observations more closely than the de-

fault setting. Though the forecast differences between

sensitivity experiments are small, the higher inflation

factor gave consistently better performance than

3DVAR-Var1.0 at both 12- and 72-h lead forecast

times when averaged over the entire month (Fig. 10).

The reason why 3DVar performs better for the larger

variance factor is beyond the scope of the current study.

One possibility is due to the use of 12- and 24-h forecast

differences in generating the background error co-

variance in the current study, instead of the 24- and 48-h

differences that are often used in global models (Parrish

and Derber 1992). The NMC-based background error

covariance also fails to account for model error, which

partially explains why an inflated variance provides

slightly improved results.

b. Sensitivity to weighting coefficient

In this section, we examine the sensitivity of the

E3DVar system to the weighting coefficient value [b in

Eq. (7)] that controls the respective weights of NMC-

and ensemble-based error covariance. The coefficient

is set to 0.8 in the control E3DVar, which means 80%

of the covariance comes from the ensemble and 20%

comes from the static estimate. A value of 1.0 gives all

weight entirely to the ensemble-estimated error covari-

ance (as in experiment E3DVar-Beta1.0),2 which is es-

sentially the same as the control EnKF experiment

except that the 3DVar cost function minimization is used

to arrive at the analysis instead of the Kalman update

equation.

One key difference between the variational andKalman

filtering algorithm is the treatment of covariance lo-

calization. A recursive filter is used in E3DVar to

precondition the alpha control variables for localization,

while the Gaspari and Cohn (1999) fifth-order correla-

tion function is used in the EnKF. We made every effort

to configure and tune the correlation length scale in the

recursive filter to give a similar influence radius as what

is used for the EnKF. The similarity between analysis

increments for the two cases can be seen in the single-

observation experiments (Figs. 9a,e). The overall per-

formance of the EnKF and E3DVar-Beta1.0 is indeed

similar for forecasts with lead times ranging from 24 to

72 h, but the control EnKF analysis fits the observations

FIG. 5. As in Fig. 3, but for the month-averaged analysis RMSE (fitting to observations).

2 The hybrid cost function [Eq. (7)], does not allow a weighting

coefficient of 1, so the value is actually set to 0.99.
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closer and produces slightly smaller 12-h forecast errors

(Fig. 11).

Figure 11 shows the performance of E3DVar with

a b value of 0.5 (experiment E3DVar-Beta0.5).

E3DVar-Beta0.5 has a slightly closer fit to observa-

tions than the control, b5 0.8, E3DVar at the analysis

time because the combined covariance tends toward

the NMC-based structures near the observation point

(Fig. 9e). Nevertheless, the control E3DVar has a

slightly lower forecast RMSE than E3DVar-Beta0.5

and E3DVar-Beta1.0 for all variables and forecast

times. A choice of b smaller than 0.5 would make the

solution closer to 3DVar and further degrade the

forecast performance (not shown). We, therefore,

conclude that the E3DVar system is not highly sensi-

tivity to the value of the weighting coefficient but it is

FIG. 6. As in Fig. 3, but for month-averaged 72-h forecast RMSE.

FIG. 7. Time evolution of the domain-averaged 72-h forecast RMSE of (a) U (m s21),

(b) V (m s21), (c) T (K), and (d) Q (g kg21) for various DA methods.
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more desirable to place a higher weight on the ensemble-

estimated covariance.

6. Sensitivity to the ensemble configurations

a. Sensitivity to ensemble size

Wang et al. (2008a,b) andZhang et al. (2009b) showed

that a hybrid ensemble-variational approach may lessen

the computational demand of ensemble data assimila-

tion by requiring a smaller ensemble size than what is

typically required for the EnKF. Here we examine the

sensitivity of E3DVar to ensemble size over the same

month-long period. Experiments E3DVar-SIZE10 and

E3DVar-Size20 are identically configured to the control

E3DVar except for using ensemble sizes of 10 and 20,

respectively. Given the large number of sensitivity ex-

periments presented here, we compare the ensemble

spread versus analysis–forecast error in terms of root-

mean-difference total energy (RM-DTE), which sum-

marize the RMSE of several forecast variables (u, y, and

T). As in Zhang et al. (2002), DTE 5 0.5(u0u0 1 y0y0 1
kT 0T 0) where the primes denote a difference between

the observations and verified fields, and k5Cp/Tr (Cp5
1004.7 J kg21 K21 and the reference temperature, Tr 5
290 K). Figure 12 shows that reducing the ensemble size

in the control E3DVar to 10 members increases forecast

errors at all lead times. Given the severity of the sam-

pling error with only 10 ensemble members (cf. Fig. 9g),

we performed two additional sensitivity experiments

denoted E3DVar-Size10-Beta0.5 and E3DVar-Size10-

Beta0.5-L900. Both experiments use a weighting co-

efficient of 0.5, which gives an equal amount of weight to

the two background covariance estimates, and the latter

experiment uses a radius of influence that has been re-

duced from 1800 km in the control to 900 km (cf. Fig.

9h). Both changes improve the performance of E3DVar

when only 10 members are used, reducing the error to

a level that is comparable to what resulted from the

standard 3DVar.

The ensemble size is increased from 10 to 20 members

in E3DVar-Size20, leading to relatively smaller sam-

pling errors (cf. Fig. 9i). This E3DVar configuration is

able to outperform the standard 3DVar at all forecast

lead times, yielding forecast errors that are close to the

40-member control EnKF. The result is consistent with

what was found for simulated data experiments inWang

et al. (2008a,b).We further increase the ensemble size of

the EnKF experiment to 100 (denoted EnKF-Size100)

to compare with the E3DVar experiments. A larger

ensemble size improves the estimate of the background

covariance and therefore improves the performance of

the EnKF (cf. Fig. 9f). Nevertheless, the performance of

the EnKF-Size100 configuration is similar to that of the

control E3DVar, again suggesting that the hybrid sys-

temmay achieve a level of performance that is similar to

an EnKF, while using less than half the number of en-

semble members.

FIG. 8. Domain-averaged RMSE further averaged over all 59 WRF forecasts of the month for each control DA experiments at forecast

lead times from 0 to 72 h evaluated every 12 h for (a) U (m s21), (b) V (m s21), (c) T (K), and (d) Q (g kg21).
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b. Sensitivity to multiphysics scheme

As in Meng and Zhang (2008a,b), the control EnKF

and E3DVar experiments use different combinations of

subgrid-scale physics parameterization schemes for each

ensemble member to account for a portion of the model

error. Experiments EnKF-S and E3DVar-S are config-

ured to be identical to the control EnKF and E3DVar

except for using the same set of physics options for each

member. The choice of physics schemes is listed in sec-

tion 3a, and is the same as what is used for all de-

terministic forecasts in this study. Figure 13 compares

vertical profiles of the 12-h forecast RMSEs for all var-

iables in each of the four experiments, and Fig. 14 shows

the domain-averaged RMSEs for 0–72-h forecast lead

times. The control EnKF with a multiphysics ensemble

has a clear advantage over the single-physics scheme

ensemble for thermodynamic variables at earlier forecast

FIG. 9. TheDA analysis increments of temperature (shaded, K), horizontal wind vectors, andmoisture (thick contours, g kg21, solid for

positive and dashed for negative) for a 1-K innovation at 500 hPa over Illinois (black dot). Thin contours are background geopotential

height (dam).
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times, but the difference diminishes by 72 h, which is

consistent with Meng and Zhang (2008a). Nevertheless,

there is little or no difference in the performance be-

tween E3DVar and E3DVar-S. This result suggests that

mixing static background error covariance with the

ensemble-estimated values reduces the effectiveness of

a multiphysics ensemble. As suggested in Zhang et al.

(2009b), the hybrid data assimilation schememay be less

vulnerable to model error.

c. Sensitivity to additive inflation

Past studies using global models have demonstrated

that the performance of an EnKF can be improved by

adding to ensembleperturbations a random sampledrawn

FIG. 10. Sensitivity of 3DVAR to background error variance magnitude: vertical profiles of

the month-averaged analysis, 12-h and 72-h forecast RMSE from left to right, respectively, for

(a) U (m s21), (b) V (m s21), (c) T (K), and (d) Q (g kg21).

FIG. 11. Sensitivity to beta coefficient in E3DVAR: domain-averaged RMSE further averaged over all 59 WRF

forecasts of the month for each DA experiment at forecast lead times from 0 to 72 h evaluated every 12 h for

(a) U (m s21), (b) V (m s21), (c) T (K), and (d) Q (g kg21).
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from a static background error covariance to account for

sampling and model error (e.g., Hamill andWhitaker 2005;

Houtekamer et al. 2009). This technique is essentially an-

other approach of combining ensemble- and climate-based

covariance, but for a pure ensemble framework.With this in

mind, an experiment similar to the control EnKF, but with

a random error included in the ensemble perturbations is

performed (EnKF-Addi0.2). The additional perturbations

are randomly selected from the NMC-based background

error covarianceand scaledbya factor of 0.2. The relaxation

of posterior perturbations xa
0
back to the prior perturba-

tions xf
0
for EnKF (Zhang et al. 2004) is rewritten as

xa
0
new5axf

0
1 (12a)xa

0
1 gxg

0
, (8)

FIG. 12. Bar graphs of the month-averaged (a) 12-, (b) 36-, and (c) 72-h RM-DTE for sensitivity to

ensemble size, the beta coefficient, and localization length scale.
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where a is set to 0.8, and g is an additive inflation co-

efficient that is set to 0.2 for these experiments.

With additive error inflation, the EnKF-Addi0.2 con-

figuration produces lower domain-averaged RM-DTE

than the control EnKF and is comparable in perfor-

mance to the control E3DVar (Fig. 12). This result

suggests that it may be possible to achieve the same

performance of a hybrid system using an ensemble

framework.One caveat is that the EnKFmay be sensitive

to the magnitude of the additive error. More advanced

covariance inflation methods, such as the adaptive or

flow-dependent approaches proposed by Anderson

(2007, 2009), Miyoshi (2011), and Whitaker and Hamill

(2012), might allow the EnKF to achieve a performance

FIG. 13. Sensitivity to multiphysics ensemble: vertical profiles of the month-averaged 12-h

forecast RMSE of (a) U (m s21), (b) V (m s21), (c) T (K), and (d) Q (g kg21) for various DA

methods.

FIG. 14. Sensitivity to multiphysics ensemble: domain-averagedRMSE further averaged over all 60WRF forecasts

of the month for each DA experiment at forecast lead times from 0 to 72 h evaluated every 12 h for (a) U (m s21),

(b) V (m s21), (c) T (K), and (d) Q (g kg21).
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that is similar to a hybrid system. Nevertheless, a thor-

ough testing of these techniques is beyond the scope of

the current study. The E3DVar-Addi0.2 experiment

gives the best performance in this study, even for the

EnKF with a 100-member ensemble in this particular

case. A small ensemble size can lead to an un-

derestimation of background errors (Whitaker and

Hamill 2002), and so an inflated variance and/or ap-

plication of additive noise are needed to avoid filter

divergence.

FIG. 15. Vertical profiles of the month-averaged 12-h forecast RMSE of (a) U (m s21),

(b) V (m s21), (c) T (K), and (d) Q (g kg21) for various DA methods.

FIG. 16. Domain-averaged RMSE further averaged over all 59 WRF forecasts of the month for each control DA

experiments at forecast lead times from 0 to 72 h evaluated every 12 h for (a)U (m s21), (b)V (m s21), (c)T (K), and

(d) Q (g kg21).
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7. Comparison of E3DVar with E4DVar

The control experiments in section 4 show clear ad-

vantages of E3DVar over the stand-alone 3DVar and

EnKF methods, while an E4DVar hybrid in Zhang

and Zhang (2012) shows clear advantages over 4DVar

and EnKF. Given the much higher computational cost

needed to runE4DVar overE3DVar, a question emerges

regarding whether the additional improvements in accu-

racy areworth the cost needed to apply anE4DVar system.

Figure 15 compares 12-h forecast RMSE for all con-

trol experiments, including simulations run from the two

coupled systems, E3DVar and E4DVar, and the un-

coupled component systems, 3DVar, 4DVar, and EnKF.

All forecasts are verified using sounding observations,

and errors are averaged over all 59 WRF forecasts for

the same month used in the previously discussed sensi-

tivity experiments. Figure 16 shows the corresponding

0- to 72-h time evolution of the domain-averagedRMSE

for each control experiment, evaluated every 12 h. The

configurations of the control 4DVar and E4DVar ex-

periments follow a similar setup as the 3DVar and

E3DVar cases, except the 4DVar option in theWRFDA

system (Huang et al. 2009) is used. As first observed in

Zhang et al. (2011), the WRF versions of the EnKF and

4DVar systems perform similarly, except that the EnKF

has a substantially smaller error in the moisture analysis

and a slightly lower error for winds and temperature.

The EnKF and 4DVar systems perform considerably

better than 3DVar, but are both less accurate than

E3DVar (Figs. 15 and 16).

E4DVar shows further improvements over E3DVar

by reducing 12-h forecast error at nearly all levels and

variables (Fig. 15). The benefits of E4DVar over

E3DVar persist for the 48-h forecast lead times, but the

two methods converge to a similar level of forecast ac-

curacy as the EnKF by 60–72 h (Fig. 16). It is also worth

noting that the error amplitudes of all three ensemble-

based data assimilation methods (EnKF, E3DVar, and

E4DVar) are quantitatively similar at the 72-h forecast

time, all of which are considerably smaller than those of

the two variational-based methods (3DVar and 4DVar)

that use static background error covariance (Fig. 16). As

suggested in section 4, ensemble forecasts provide in-

formation regarding the background flow field that goes

unresolved by the NMC-based covariance; therefore,

the variational data assimilation cases experience large

peaks in forecast error during days in which the un-

certainty in the flow field deviates from the climatolog-

ical statistics used to derive the static covariance matrix.

The probabilistic methods may also be benefiting from

an improved first-guess estimate at each data assimila-

tion cycle that is provided from an ensemble mean.

8. Conclusions

This study tests four state-of-the-art data assimilation

algorithms for limited-area WRF Model configura-

tions, covering variational, ensemble-based, and hybrid

methods: 3DVar, EnKF, and E3DVar. E3DVar is a

coupled data assimilation method adapted from Wang

et al. (2008a,b) that is based on theWRFDA framework.

It requires two variable exchanges between the EnKF

and 3DVar components; the ensemble-based background

error covariance is introduced into the 3DVar cost func-

tion, and themean of the EnKF analysis is replaced by the

3DVar analysis. The strengths and weaknesses of the set

of data assimilation schemes are investigated under a re-

alistic operational modeling scenario for a month-long

cycling data assimilation experiment during June 2003.

Observations were taken from atmospheric sounding

and surface datasets, wind profilers, ships and aircrafts,

and cloud-tracked winds from satellites every 6 h over

North America. Data assimilation approaches that use

flow-dependent, multivariate background error covari-

ance produced superior forecasts than methods that

solely rely on static covariance in a setting in which

conventional data were assimilated. Data assimilation

experiments using a 40-member multiple-physics en-

semble show reductions in 12–72-h forecast root-mean-

square error when simulations are initialized with the

E3DVar system as opposed to a similarly configured

EnKF. Additional sensitivity experiments show only

a small sensitivity of forecast errors from E3DVar to the

weighting coefficient that is used to balance the amount

of ensemble-based and static background covariance.

E3DVar may perform as well as a standard EnKF that

uses a much larger ensemble size, given that the system

is carefully tuned to account for sampling error. In ad-

dition, the hybrid system is less sensitive to the use of

multiphysics ensembles that are typically used to treat

model error in ensemble data assimilation systems. Our

results also show that additive inflation may lead to fur-

ther improvements in the ensemble-based approaches,

because ensemble forecasts typically underestimate the

true background uncertainty.

In the last part of this study, the E3DVar system is

compared with anE4DVar hybrid that couples the EnKF

with a four-dimensional variational system. E4DVar

leads to further forecast improvements at nearly all

model levels and variables for forecast lead times be-

tween 12 and 48 h, but converges to the same accuracy

as theother ensemble-basedmethods (EnKFandE3DVar)

for lead times between 60 and 72 h. Forecasts from the

three ensemble-based methods have considerably smaller

errors than forecasts initialized from the two variational

methods (3DVar and 4DVar) at later lead times, likely
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due to the use flow-dependent forecast uncertainty and

an ensemble mean first-guess field during cycling. Fu-

ture studies will be needed to evaluate the relative

performance of various data assimilation systems in

higher-resolution models and with the inclusion of sat-

ellite radiances.
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