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ABSTRACT

An ensemble Kalman filter (EnKF) has been adopted and implemented at the Naval Research Laboratory

(NRL) for mesoscale and storm-scale data assimilation to study the impact of ensemble assimilation of high-

resolution observations, including those fromDoppler radars, on stormprediction. The systemhas been improved

during its implementation at NRL to further enhance its capability of assimilating various types of meteorological

data. A parallel algorithmwas also developed to increase the system’s computational efficiency onmultiprocessor

computers. The EnKF has been integrated into the NRL mesoscale data assimilation system and extensively

tested to ensure that the systemworks appropriately with new observational data stream and forecast systems. An

innovative procedurewas developed to evaluate the impact of assimilated observations on ensemble analyseswith

no need to exclude any observations for independent validation (as required by the conventional evaluation based

on data-denying experiments). The procedurewas employed in this study to examine the impacts of ensemble size

and localization on data assimilation and the results reveal a very interesting relationship between the ensemble

size and the localization length scale.All the tests conducted in this study demonstrate the capabilities of theEnKF

as a research tool for mesoscale and storm-scale data assimilation with potential operational applications.

1. Introduction

An ensemble Kalman filter (EnKF; Evensen 1994)

was recently developed at the Naval Research Labora-

tory (NRL) for use as an advanced high-resolution data

assimilation system for theU.S. Navy’s CoupledOcean–

Atmosphere Mesoscale Prediction System (COAMPS;1

Hodur 1997). The objectives of the EnKF development

at NRL are twofold: (i) to investigate the impact of flow-

dependent background error covariance on mesoscale

and storm-scale data assimilation, especially when ap-

plied to high-resolution nonconventional sensor data, in

the presence of rapid and/or complex changes in storm

structure and intensity, and (ii) to provide a useful tool

for research and system development for assimilat-

ing meteorological observations from nonconventional

sensors such as Doppler radars into numerical weather

prediction (NWP) models to improve forecasts of high-

impact weather events over oceans and in remote areas.

The parameters observed by these nonconventional

sensors are often nonlinear functions of the state vari-

ables. In dynamically and statistically estimating the

Corresponding author address:Dr. Qingyun Zhao, Naval Research

Laboratory, 7GraceHopperAve.,Mail Stop II,Monterey, CA93943.

E-mail: allen.zhao@nrlmry.navy.mil

1 COAMPS is a registered trademark of the Naval Research

Laboratory.

1322 WEATHER AND FORECAST ING VOLUME 28

DOI: 10.1175/WAF-D-13-00015.1

� 2013 American Meteorological Society

mailto:allen.zhao@nrlmry.navy.mil


error correlations between such observed parameters

and the model state variables, the EnKF provides a rel-

atively straightforward and simple procedure with which

to estimate these parameters (Aksoy et al. 2009; Tong

and Xue 2005, 2008).

The COAMPS-based ensemble square root filter

(EnSRF; Whitaker and Hamill 2002) developed and

tested in this study has its origins in a research version of

the EnKF (Zhang et al. 2006, 2009; Meng and Zhang

2007, 2008a,b) originally developed for the fifth-generation

Pennsylvania State University–National Center for At-

mospheric Research (Penn State–NCAR) Mesoscale

Model (MM5; Grell et al. 1994) and the Weather Re-

search and Forecasting (WRF) model (Skamarock et al.

2005). This predecessor regional-scale EnKF had been

extensively tested with both simulated and real-data ob-

servations that exhibited skill over a three-dimensional

variational data assimilation (3DVAR) system for the

WRF model (Zhang et al. 2006, 2009; Meng and Zhang

2007, 2008a,b).

Several major changes and improvements have been

made to the EnKF to make it more suitable for COAMPS

applied both in an operational environment and for

scientific research at NRL. First, interfaces have been

developed to connect the EnKF to COAMPS ensemble

forecasts. The EnKF was enhanced to have the same

capabilities as COAMPS in its grid nesting, dynamical

grid configuration, and global relocatability. Second,

Navy Operational Global Atmospheric Prediction Sys-

tem (NOGAPS; Hogan and Rosmond 1991) ensemble

forecasts are used as boundary conditions for COAMPS

ensemble forecasts and first guesses for cold starts of the

EnKF ensemble analyses. This setup avoids the need to

randomly generate the initial and lateral boundary

perturbations for COAMPS ensemble members and,

most importantly, enables the global ensemble to trans-

mit flow-dependent boundary condition uncertainty in-

formation to the regional ensemble. This approach is

useful for operational centers where global ensemble

forecasts are available. Details of the ensemble trans-

form (ET) method used to create the global NOGAPS

ensemble are given in McLay et al. (2008, 2010). For the

experiments reported in this paper a special 128-member

NOGAPSET ensemble was run. Third, the EnKF shares

the same observational data, data processing and quality

control algorithms, and observational forward operators

with the NRL Atmospheric Variational Data Assimi-

lation System (NAVDAS) 3D- and 4DVAR systems,

except for radar observations. This setup makes it easy

to compare the ensemble-based data assimilation algo-

rithm (when radar observations are not assimilated)

with variational approaches. More importantly, this

provides a stepping stone to a future hybrid system that

couples the ensemble-based and variational data as-

similation methods at NRL. The most significant change

to the EnKF is in the development of a parallelization

algorithm to convert the EnKF from a single-processor

version to a parallelized version using the message-

passing interface (MPI) technique to improve the sys-

tem’s computational efficiency on a massive central

processing unit (CPU) computer. The most important

change to the EnKF is the addition of NRL radar data

processing, quality control, and assimilation algorithms

to further enhance the system with the capability of as-

similating high-resolution Doppler radar observations.

This paper focuses on COAMPS EnKF development

and testing at NRL. In this paper, we will present and

discuss some interesting results from our experiments

that show how the system performs with different en-

semble sizes and localizations. We will also compare the

COAMPS EnKF with the current operational NAVDAS

3DVAR system to better understand the advantages and

issues that the current EnKF data assimilation system

has. The overall goal of this study is to ensure that the

COAMPS EnKF is a mature system for mesoscale and

storm-scale data assimilation study. Section 2 gives a

general description of the current EnKFwith a focus on

the improvements to the EnKF after the system was

adopted at NRL. Details of the independent validation

procedure to examine the impact of EnKF data assimi-

lation are also given in this section. In section 3, results

from experiments are presented along with discussions

about the ensemble size, covariance localization, en-

semble spread, and their impacts on ensemble analyses.

In section 4, evaluations of the COAMPS ensemble

forecasts initialized by the EnKF are given. The impacts

of ensemble size and localization length scale on en-

semble forecasts are also discussed. Comparison between

the EnKF and the NAVDAS 3DVAR for a period of

about a week is examined in section 5 to demonstrate the

capability and performance of the ensemble data assim-

ilation system. Section 6 summarizes the study and dis-

cusses future work.

2. System description

The EnKF implemented for the COAMPSmodel and

tested in this study is an EnSRF serial analysis algorithm

(Whitaker and Hamill 2002; Tippett et al. 2003). The

analysis equations for the EnSRF are given by

xa5 xf 1K(yo 2Hxf ) and (1)

Pa5 (I2KH)Pf , (2)

where
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K5PfHT(HPfHT 1R)21 , (3)

xf is the mean state vector from the ensemble forecasts

with sample covariance Pf, yo is the observation vector,

R the observational error covariance, and H the obser-

vation forward operator. The superscripts a and f denote

analysis and forecast, respectively. The readers are re-

ferred toWhitaker andHamill (2002) for the description

and explanation of the EnSRF serial algorithm. The

algorithms and procedures for ensemble localization

and for updating the ensemble mean and perturbations

in the EnKF remain unchanged during the implemen-

tation for COAMPS. Further refinements to the algo-

rithm applications can be found in Snyder and Zhang

(2003), Zhang et al. (2004, 2006, 2009), and Meng and

Zhang (2008a,b).

Although the EnKF was developed primarily for ra-

dar data assimilation at NRL, it has the capability to

assimilate all conventional observations (including those

from rawinsondes and pilot balloons, land surface stations,

ships and buoys, and commercial aircraft) and satellite

products (most satellite winds and derived temperature

profiles) that the operational NAVDAS 3DVAR as-

similates into COAMPS. In this study, we will test the

EnKF with conventional data and satellite products,

instead of using radar observations, based on two con-

siderations: (i) the conventional and satellite data are

appropriately quality controlled and well-studied and

(ii) this makes it possible to directly compare the results

from the EnKFwith those from theNAVDAS 3DVAR.

The EnKF has the capability to update all model state

variables. In all the data assimilation experiments we

conducted in this study, however, the EnKF only up-

dates the model fields of potential temperature (u),

horizontal winds (u, y), and water vapor mixing ratio

(qy). Vertical wind speed (w) is not updated because the

observations we assimilated in this study cannot observe

storm structures while w is basically storm related. The

pressure field in a nonhydrostatic model is partially re-

lated to upward motion. We found in our current storm-

scale radar data assimilation study that better results are

achieved by updating the pressure and w fields concur-

rently than when just updating the pressure alone (the

results will be published separately).

a. Development of a parallel technique for the EnKF

When an EnSRF serial analysis algorithm is applied

to real data assimilation problems with a reasonable

number of observations over the analysis domain of a

reasonable size (such as the contiguous United States or

CONUS, for example), the computational efficiency of

the EnKF becomes a concern, especially for operational

applications. To address this issue, a parallel algorithm

has been developed for the EnKF at NRL to increase the

computational efficiency by using the MPI technique

running on a computer with multiple CPUs.

The parallel algorithm consists of two parts: the input/

output (I/O) part and the analysis part. The I/O part

takes care of the input and output of the ensemble

forecasts and analyses from and to each member of the

COAMPS ensemble. This part was efficiently designed

so that the algorithm makes assignment of the ensemble

members to each of the selected CPUs as even as pos-

sible. For example, when the EnKF reads in COAMPS

ensemble forecasts from 16 members with 4 CPUs, each

CPU is assigned with 4 COAMPS members. When 6

CPUs are selected, however, the first 2 CPUs are assigned

with 2 COAMPS members each while the last 4 CPUs

are assigned with 3 members each. If 32 CPUs are se-

lected, the last 16CPUs have towait until the first 16CPUs

finish reading in the COAMPS forecasts. This algorithm is

also applied to the calculation of the prior ensemble per-

turbations at observation locations from the forecasts of

each ensemble member during the assimilation.

The major challenge in parallelizing the system is in

the analysis. In a serial analysis algorithm, the ensemble

state vector is updated immediately after the assimila-

tion of the current observation and then is used to

compute the prior ensemble perturbations for the next

observation (see Fig. 1 in Anderson and Collins 2007).

This makes it very inconvenient and difficult to paral-

lelize the algorithm (by assigning different groups of

observations to different CPUs that run in parallel),

especially if we want to guarantee that the analyses from

the same ensemble forecasts and observations but using

different numbers of CPUs are identical. While an in-

novative algorithm for the EnSRF serial analysis algo-

rithm that parallelizes the observations while requiring

that the analyses are completely independent of the

number of CPUs used for the data assimilation is still

under development at NRL, the current parallel algo-

rithm for the analysis part in this study is relatively

straightforward (we can call this an intermediate step

of parallelizing the serial analysis algorithm). In the

EnSRF serial analysis algorithm, the analysis produced

by each observation is masked by a monotonic function

decaying with distance of separation localized within

an ellipsoid contained within a three-dimensional (3D)

cube. The parallel algorithm developed in this paper

divides the 3D cube, as evenly as possible (in the same

way as in the I/O part), into 3D small boxes of (NX 3
NY3 NZ), where NX, NY, and NZ are the numbers of

CPUs selected in the x, y, and z directions, respectively.

Figure 1 gives an example of the divided 3D cube with

NX5 3, NY5 3, and NZ 5 3, with the total number of
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selected CPUs being 27. In this case, the 3D cube is di-

vided into 27 small boxes. Each of the 27 CPUs cal-

culates the correlations between the prior ensemble

approximation at the current observation location and

the ensemble values at each of the grid points within the

small box and then updates the ensemble mean and

perturbations at these grid points based on the correla-

tions and the innovation at the observation location.

These CPUs do the calculations separately and simul-

taneously and, then, communicate to each other once

the assimilation of the observation is done. Next, they

prepare for next observation assimilation, and so on.

Preliminary tests show that the current parallel algo-

rithm works well with a reasonable ensemble size and

CPU number. Analyses from experiments with the same

observations and same ensemble size but different CPU

numbers yield exactly the same results. Table 1 gives an

example of wall-clock times (normalized by setting the

wall-clock time for one CPU to 1.0) from a test with an

ensemble size of 32 and the numbers of CPUs being 1,

16, and 32, respectively. Results show that the algorithm

is reasonably scalable. The real wall-clock time for the

EnKF to finish one analysis depends on individual com-

puter speed, the number of observations, the length scale

of localization, the model domain size and grid resolu-

tion, and the number of CPUs used. Our recent results

from experiments show that for an analysis domain that

covers the CONUS and parts of the Atlantic and Pacific

Oceans with three nested grids with grid resolutions of

45, 15, and 5km and grid numbers of 160 3 160, 160 3
192, and 192 3 192, respectively, the EnKF assimilates

about 53 104 observations within about 1 h of wall-clock

time with 32 CPUs for an ensemble size of 32.

The main advantage of the EnKF parallel algorithm is

its complete independence of the parallel setup of the

NWP model. Thus, the EnKF can be run separately

from the model, at a different time, or even on a differ-

ent machine. Another major advantage of the algorithm

is the independence of the analyses on the number of

CPUs used in the data assimilation. The algorithm,

however, also has some weaknesses. One of the weak-

nesses is the use of the serial algorithm. In cases with the

observation number reaching 106–108, the wall-clock

time required for the EnKF could become a concern for

most research and operational applications. We also

found that when the ensemble size and the number of

CPUs are greater than 100, the scaling of the algorithm

degrades because of the heavy overhead charge caused

by the intercommunications among the processors.

b. A procedure for data assimilation impact
evaluation

Usually it is not easy or may even be impossible to

directly evaluate the impact of data assimilation on the

final analysis (without making the subsequent forecasts

and evaluating them with future observations), espe-

cially if all available observations are assimilated and

thus no observation can be used for an independent

verification. In a serial algorithm, however, observations

are assimilated one after another. The model fields are

updated immediately after the assimilation of one ob-

servation and then the updated model fields are used as

a first guess for the next observation assimilation. This

procedure makes it possible to use any of these obser-

vations (except the first one) to independently evaluate

the impact of those previously assimilated observations

whose influence areas cover the current observation

right before the current observation is assimilated. Be-

low is a procedure developed at NRL for the EnKF to

study the data assimilation impact.

Let dbi denote the innovation computed from the ith

observation yi by subtracting its associated original

FIG. 1. Illustration of the EnKF analysis parallelization. The

three-dimensional cube that contains the EnKF localization ellip-

soid for one observation (located at the center of the cube) is di-

vided into NX 3 NY 3 NZ subdomains. Each subdomain is for

one CPU.

TABLE 1. An example of normalized wall-clock time (by setting

the wall-clock time for one CPU to 1.0) as a function of CPU

number from the EnKF analysis parallelization algorithm. The

ensemble size is 32.

No. of CPUs Normalized wall-clock time

1 1.0

16 0.1638

32 0.1034
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background value (not updated by any observations for

the current assimilation cycle):

dbi 5 [ yi2Hi(Xb)] , (4)

where Hi is the forward operator for the ith observation

and Xb is the state vector from the ensemble forecasts

without assimilating any observations for the current

assimilation cycle. The overbar indicates the ensemble

mean. Similarly, the innovation computed from the

same ith observation by subtracting its associated up-

dated background value (after the previous i–1 observa-

tions, y1, y2, . . . , yi21, are assimilated) can be expressed as

dai 5 [ yi 2Hi(Xa)] , (5)

where Xa is the state vector after the previous i 2 1 ob-

servations, y1, y2, . . . , yi21, are assimilated. Then, the

innovation reduction evaluated at the ith observation due

to the assimilation of the observations (y1, y2, . . . , yi21)

can be defined as

Di 5 jdai j-jdbi j . (6)

By definition, a negative value of Di means a positive

impact of the previously assimilated data. This verifi-

cation procedure is henceforth referred as the innova-

tion reduction procedure.

3. Testing of the EnKF system

The predecessor of the current EnKF implemented in

the MM5 and WRF models has been tested extensively

with both simulated and real-data observations with

promising results (Zhang et al. 2006, 2009; Meng and

Zhang 2007, 2008a,b). The current study presents some

exemplary results from extensive testing of the EnKF

implemented in COAMPS. Such testing and reevalua-

tion are necessary to ensure that the filter has been in-

tegrated properly with a new forecast model given

changes in the model state variables, observational data

feed, observation forward operators, and the source for

the initial and boundary perturbations for the ensemble.

A procedure has been designed to test the EnKF, in

which the NOGAPS ensemble is used at the very begin-

ning as the initial conditions to cold start the COAMPS

ensemble (no spinup is needed since the NOGAPS en-

semble has been cycled for a period of several days). The

12-h COAMPS ensemble forecast is then used as the

background for the EnKF data assimilation. After that,

COAMPS ensemble forecast is warm started using

the EnKF ensemble analyses as initial conditions. The

cycled EnKF data assimilation–COAMPS ensemble

forecast continues until the end of the test period.

During the test, NOGAPS ensemble forecasts are also used

as boundary conditions for the COAMPS ensemble. All the

results shown hereafter are from warm starts.

One of the major advantages of EnKF is its capability

of dynamically estimating the background error co-

variance from ensemble forecasts. To ensure that the

adopted EnKF has the capability to appropriately esti-

mate the background error covariance and also to study

the impact of ensemble size on the covariance estima-

tion, experiments were performed in which correlations

of the perturbation state variables between the obser-

vation location and the model grid points from forecasts

of different ensemble sizes are examined. Figure 2 gives

examples of perturbation temperature autocorrelations

at the Z 5 5800m model level with respect to a tem-

perature observation point at 500 hPa at Salt Lake City,

Utah (near the center of the domain in Fig. 2), computed

with the ensemble sizes set to 16, 32, 64, and 128, re-

spectively. The model horizontal grid spacing in these

examples is 45 km. There are two important features in

Fig. 2. First, the correlations computed from different

ensemble sizes look similar (Figs. 2b–d) except for the

one from the ensemble with 16 members, which has

apparent spuriously high ensemble correlations near the

Four Corners area of the U.S. southwest (Fig. 2a). An

ensemble size of 16 is apparently statistically insufficient

for accurate estimation for the background error co-

variance. It is also interesting to note that as the en-

semble size increases, the correlation becomes smoother

and the maximum value of the correlation decreases

slightly. Second, the correlations appear to have some

dependence on the horizontal winds at the same vertical

level. The possible dynamics underlying such a flow

dependence is still yet to be explored.

Cross correlations are also examined. Examples of

cross correlations of temperature perturbationT 0 (at the
same observation point as that in Fig. 2) to horizontal

wind perturbations (u0, y0) and water vapor mixing ratio

perturbation q0y (at the same model level as shown in

Fig. 2) are given in Fig. 3 for 64-member ensembles. The

cross correlation between T 0 and q0y shows some scat-

tered patterns in Fig. 3c that could plausibly reflect the

thermodynamic relationship between these two pertur-

bation variables over that localized area. Note that the

general patterns of the cross correlations between T 0

and (u0, y0) in Figs. 3a,b (at 5800m, which is above the

localized T 0) show some basic geostrophic relationship

between these two fields. This is an indication, as ex-

pected, that the estimated cross correlations are con-

strained by the approximate geostrophy and its associated

thermal–wind relationship over the synoptic and large

scales (on the 45-km grid).
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The impact of ensemble size on ensemble analyses has

also been studied. The innovation reduction procedure

described in section 2b is used here to examine how ef-

fectively the EnKF updates the ensemble analysis mean

with different ensemble sizes. For this purpose, a set of

about 30 900 real observational data points inside the

analysis domain from rawinsondes, pilot balloons, land

surface stations, ships and buoys, commercial aircrafts,

and satellite products (mostly satellite winds and derived

temperature profiles) were selected to test the system.

FIG. 2. Perturbation temperature autocorrelations (colored areas) atZ5 5800mwith respect to a temperature observation point at 500hPa

at Salt Lake City and the ensemble mean of horizontal wind analyses (arrows) at the same level. The temperature observation was taken at

1200UTC28 Jun 2005. The contours are the ensemblemeanof sea level pressure (hPa). The ensemble sizes are (a) 16, (b) 32, (c) 64, and (d) 128.

FIG. 3. Cross correlations (colored areas) of T 0 (at the same temperature observation point as that in Fig. 2) to (a) u0, (b) y0, and (c) q0y
(at the samemodel level as shown in Fig. 2) for a 64-member ensemble. The arrows and contours are the same wind and sea level pressure

analyses as in Fig. 2.
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A horizontal localization length scale of 675 km was used

for the test. Equations (5) and (6) are used to compute the

innovation reduction at each observation location right

before the observation at this location is assimilated.

Then, the domain-averaged innovation reductions for the

same observation parameters are calculated using

D5
1

M
�
M

i51

Di , (7)

where M is the number of observations of the same ob-

servation parameter. Four experiments were conducted

with ensemble sizes of 16, 32, 64, and 128, respectively.

Figure 4 gives the domain-averaged innovation reduc-

tions for each of the four observation parameters (T, u, y,

and qy) as a function of ensemble size. It is evident in

Fig. 4 that the ensemble size affects the data assimilation

impact. For an ensemble size of 16, the data impact on

the model fields is the smallest. This could be due to the

undersampling issue caused by the insufficient ensemble

number. The largest increase in data assimilation impact

occurs when the ensemble size increases from 16 to 32.

When the ensemble size increases from 32 to 64, the

increase in data assimilation impact is notable but

smaller than that between 16 and 32. The increase in

the data assimilation impact from ensemble 64 to en-

semble 128 is the smallest. It is not clear though from

Fig. 4 whether there is a saturation point, after which

increasing ensemble size provides no help in improving

data assimilation impact. Unfortunately, we cannot run

ensembles of more than 128 members due to the lack of

a NOGAPS ensemble for COAMPS ensemble bound-

ary and initial conditions.

There is no doubt that the shape of the curves in

Fig. 4 is affected by the order of observations in the

serial algorithm simply because, as mentioned earlier,

FIG. 4. Domain-averaged innovation reductions plotted as functions of ensemble size for

(a) T (8) and qy (green curve, g kg21), and (b) u (blue curve, m s21) and y (black curve, m s21).

A horizontal localization length scale of 675 km is used in these experiments.
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the innovation reduction at the ith observation is a result

of the assimilations of previous observations whose

areas of influence cover the ith observation. The quali-

tative aspect of the relationship between the ensemble

size and the data assimilation impact, however, should

not be significantly impacted by the data assimilation

sequence. To verify this, experiments have been carried

out in which the observations and ensemble sizes are

exactly the same as those in Fig. 4 but the order of the

observations used in the serial algorithm is reversed.

The last observation is assimilated first and the first

observation is assimilated last. The resulting domain-

averaged innovation reductions are presented in Fig. 5.

Apparently, the relationship between the ensemble size

and the data assimilation impact is very similar to that in

Fig. 4. Although this is only one case, it suggests that the

innovation reduction procedure developed here can be

a useful measure for tuning the ensemble size and the

horizontal localization length as well. The results shown

in Figs. 4 and 5 can also be used to determine the min-

imum ensemble size for a given computational resource.

In the above example, an ensemble size of 16 is probably

too small.

Covariance localization has been used by many en-

semble filters as a means to reduce the spurious correla-

tion between an observation and model state variables

due to sampling errorwhen small ensembles are used. The

Schur-product-based localization algorithm (Gaspari and

Cohn 1999) is used by the EnKF, in which the localiza-

tion length scale (LLS, the radius in the Schur-product-

based localization) is empirically determined. Doubtlessly,

LLS is critical in the estimation of background error

covariance, and ensemble size is an important factor

in determining LLS values for effective data assimi-

lation. To quantify the relationship between LLS and

ensemble size, domain-averaged innovation reduc-

tions are computed (for the same set of observations

above) with LLS values of 225, 450, 675, 900, 1125, 1350,

FIG. 5. As in Fig. 4, except that the order of observations was reversed in the serial algorithm.
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1575, 1800, and 2025 km, respectively, and again with

ensemble sizes of 16, 32, 64, and 128. The results are

given in Fig. 6. Several interesting issues can be identi-

fied from the results. First, as expected, LLS has a re-

markable impact on innovation reductions, especially

for small ensemble sizes. Small ensemble sizes favor

small length scales in localization. This is because a large

value of LLS cannot effectively eliminate spurious

background covariance–correlations (see Fig. 2a) due to

the insufficient ensemble members in the statistical

calculations. The issue here is that the small values of

LLS required by small ensemble sizes will limit the in-

fluences of observations on updating the model state

variables and, as a result, will limit the effectiveness of

the ensemble data assimilation system. But the good

news from Fig. 6 is that with an appropriate selection of

LLS, satisfactory data assimilation impacts can still be

achieved by small ensemble sizes when computational

resources are limited. Second, as the ensemble size in-

creases, the analyses become less sensitive to LLS. This

can also be seen in Fig. 2, where the background error

correlations become smoother and less noisy as the

ensemble size increases. This supports the theoretical

expectation that the necessity and importance of locali-

zation should diminish as the ensemble size increases

boundlessly. Finally, Fig. 6 suggests that wind and qy
observations favor slightly smaller LLSs than does the

observations of T. This raises a question as to whether

we should use different values of LLS for different ob-

servation parameters. More studies will be needed to

address this question.

We should also mention that vertical localization is

important, especially for observations inside storms

where the vertical mixing is dynamic and very different

from the large-scale environment. In this study, how-

ever, we used the same types of observations as those

used by the current operational NAVDAS 3DVAR

system. So we simply adopted the length scales of the

vertical background error correlations, which have been

well predefined and tested (Daley and Barker 2001),

from the 3DVAR as the vertical localization length

scales for the types of observations used in the test of

the EnKF.

4. Evaluation of the ensemble forecasts

The previous section examined the major features of

the EnKF and how the ensemble size and LLS impacted

the effectiveness of the EnKF in assimilating observa-

tions into the analyses. The other question that remains

FIG. 6. Domain-averaged innovation reductions at observation locations of (a) T (8), (b) qy (g kg
21), (c) u (m s21),

and (d) y (m s21), respectively, for different values of LLS and ensemble sizes. The black, red, blue, and green curves

are for ensemble sizes of 16, 32, 64, and 128, respectively.
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is how these factors affect the ensemble forecasts ini-

tialized by the EnKF analyses. To answer this question,

COAMPS ensemble forecasts are launched using the

ensemble analyses generated from the experiments in

the previous section.

The first issue to address is the impact of ensemble size

on the performance of COAMPS ensemble forecasts.

The case of a storm associated with a frontal system

along the east coast of the United States stretching from

New England all the way down to the Gulf of Mexico on

28 June 2005 is selected for this study since the large-

scale storm system lasted basically for the whole forecast

period of 72 h. Four ensemble forecasts are launched at

1200 UTC 28 June 2005 using the ensemble analyses

generated from the experiments in the previous section

with ensemble sizes of 16, 32, 64, and 128, respectively.

For this study, only one nested COAMPS grid is used,

with a horizontal grid resolution of 45 km and 30 vertical

levels. An LLS value of 675 km is used. These forecasts

are verified against radiosonde observations and their

root-mean-square (RMS) differences are computed as

a function of forecast hours. The computed RMS dif-

ference for each variable estimates the square root of

the sum of the true forecast and observation error vari-

ances at each forecast hour (except for 0h, since the ana-

lyzed initial field is not independent of the observations).

Since the observation error variance is estimated by

a constant value for each variable, the time or case

variation of the computed RMS difference reflects the

time or case variation of the forecast RMS error for each

variable (after 0 h). Figure 7 gives the results for model

state variables of T, u, y, and qy, respectively. As one can

see, the performance of these ensemble forecasts (in

terms of RMS errors) from 0 to 12 h basically follow the

same order of the ensemble sizes beginning with the best

results from the largest ensemble. This is not surprising

since the ensemble analyses that are used for initializing

these ensemble forecasts also show the same impact of

ensemble size (in terms of innovation reductions; see

Fig. 4). It is interesting, however, to note that the dif-

ferences in the RMS errors among the ensemble fore-

casts of ensemble sizes of 32, 64, and 128 decrease

quickly with forecast time and become barely notable at

about 24 forecast hours. After that, all the ensemble

forecasts basically have the same RMS errors except

for the one with 16 ensemble members whose RMS

errors remain larger than the others for essentially the

entire forecast period. This suggests again that the

ensemble size of 16 is too small (at least for this case) to

reliably estimate the forecast error statistics. Increasing

the ensemble size to 32 is still insufficient for the en-

semble analyses, as discussed earlier, but it appears to

FIG. 7. RMSEs of (a) T (8), (b) qy (g kg
21), (c) u (m s21), and (d) y (m s21) of the ensemble forecast mean verified

against radiosonde observations. The black, red, blue, and green curves are for ensemble sizes of 16, 32, 64, and 128,

respectively. LLS is equal to 675 km.
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be significant and marginally adequate for reducing the

forecast errors. The results in Fig. 7 also appear to in-

dicate that fewer ensemble members may be actually

needed for ensemble forecasts of longer than 24 h (in

this case), although a large number of ensemble mem-

bers is required for near-term forecasts (up to 12 h in this

case) to produce the background ensemble for sub-

sequent ensemble analyses. Please note that the above

discussions are based on only one case study. While the

results are encouraging, they could be limited to this par-

ticular case. More studies are still needed to further study

the general impact of ensemble size on ensemble forecast.

The second issue is the impact of localization on

model forecasts. The same storm case above is selected

again for this investigation. As seen in Fig. 6, at en-

semble size of 32, the EnKF is sensitive to LLS. But with

an appropriate selection of the LLS value, the EnKF is

able to produce innovation reductions comparable to

those from large ensemble sizes. It is also seen in Fig. 7

that after about 24 h of model integration, the ensemble

forecast of 32 members has about the same RMS error

as those from the experiments with larger ensemble

sizes. Therefore, the ensemble size of 32 is selected to

study the impact of LLS on ensemble forecasts.

Figure 8 gives the RMS differences of the ensemble

forecasts of T, u, y, and qy with respect to radiosonde

observations as functions of forecast hours. A couple of

interesting features can be noted in Fig. 8. First, LLS

affects the ensemble forecasts (with an ensemble size

of 32) significantly. Therefore, the selection of the LLS

value is important for ensemble forecasts with small

ensemble sizes. Second, the differences among the EnKF

analyses from different LLS values again decrease

quickly with the forecast time during the first 12 h of

model integration. After that, they still remain notable.

Apparently for small ensemble sizes, weak localizations

with LLS values of 1025 and 2025 km lead to large

forecast errors basically throughout the forecast period.

The strongest localization with LLS5 225 km produces

the smallest forecast errors during about the first 12 h.

But after that, it has mixed impacts on the ensemble

forecasts compared to those from the experiment with

LLS 5 675 km. The latter overall is probably the best

choice for this particular ensemble size.

5. Comparison to NAVDAS 3DVAR

NAVDAS 3DVAR (Daley and Barker 2001) has been

the operational data assimilation system for COAMPS

since October 2006. Currently, it supports the operational

COAMPS On-Scene (OS), which is running at many lo-

cations around the world to support U.S. Navy operations,

FIG. 8. As in Fig. 7, but for different LLSs in theEnKFdata assimilation. The black, red, blue, and green curves are for

LLS values of 225, 675, 1125, and 2025 km, respectively. Ensemble size is 32.
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and the COAMPS Tropical-Cyclone (TC) model for TC

prediction with highly regarded performance. The best

way to demonstrate that the EnKF is a mature data as-

similation system for real storm prediction is to compare

the COAMPS ensemble forecasts from the EnKF with

the control run that is initialized by the NAVDAS

3DVAR with exactly the same observational data as-

similated. For this purpose, two experiments have been

conducted. One is the control run initialized by the

NAVDAS 3DVAR (the experiment is called CNTL-

3DVAR hereafter) and another is an ensemble ex-

periment with 32 members initialized by the EnKF

(Ens32-EnKF). The COAMPS model uses three nested

grids at 45-, 15-, and 5-km spacing. Figure 9 gives the

model domains for the three nested grids. Both the

CNTL-3DVAR and the Ens32-EnKFwere cold started

at 0000 UTC 22 June 2005 and initialized by a single

NOGAPS forecast and a 32-memberNOGAPSensemble,

respectively. After the cold start, both experiments were

warm startedwith a 12-h update cycle starting at 1200UTC

22 June 2005. Exactly the same observational data

available to the operational NAVDAS 3DVAR at that

time were assimilated at each update cycle into COAMPS

by both the 3DVAR and EnKF schemes (no radar data

were assimilated). After each update, 72-h COAMPS

forecasts were launched from both the CNTL-3DVAR

and the Ens32-EnKF. NOGAPS single and ensemble

forecasts were again used as boundary conditions for

COAMPS. After 10 continuous analysis–forecast up-

date cycles, the experiments ended at 1200 UTC 27 June

2005. Note that we decided to omit a spinup period for

the COAMPS ensemble because the NOGAPS en-

semble used as the COAMPS cold start had already

been running for more than 20 days.

The model forecasts of T, u, y, and qy from the CNTL-

3DVAR deterministic runs and the mean values of

those from the Ens32-EnKF ensemble runs during this

experiment period were verified against raob observa-

tions. RMS errors were computed for each of the three

nested grid domains. Figure 10 gives the averaged RMS

errors over the 3D domain for the experimental period

as a function of forecast lead time. To examine how the

EnKF performs compared to NAVDAS 3DVAR at

both large and storm scales, only the scores for the

45- and 5-km domains are displayed. Before 24h of fore-

cast lead time, both the CNTL-3DVAR and the Ens32-

EnKF simulation have basically similar performance

at both large and storm scales. After that, the Ens32-

EnKF gradually shows better forecasts than the CNTL-

3DVAR, especially for the 5-km domain. The forecast

FIG. 9. COAMPS domains of three nested grids with grid spacings of 45, 15, and 5 km.
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improvement by Ens32-EnKF reaches a maximum at

72 h. If we look at different state variables, we will find

that Ens32-EnKF has basically the same forecast per-

formance as CNTL-3DVAR for temperature, is slightly

better for winds, and is significantly better for the water

vapor mixing ratio. But overall, Ens32-EnKF outperforms

CNTL-3DVAR, which is consistent with recent studies

ofMeng and Zhang (2008a,b) based on theWRFmodel.

Vertical profiles of the averaged RMS errors of the four

state variables over the experiment period at forecast

lead times of 72 h from both experiments are also cal-

culated and given in Fig. 11. As we can see, the im-

provement in the model forecasts by Ens32-EnKF at

this forecast hour is basically through the whole col-

umn of the atmosphere rather than at particular model

levels. This further demonstrates that the EnKF data

assimilation system developed at NRL has shown

strong potential to become a mature data assimilation

system comparable or possibly superior to the oper-

ational NAVDAS 3DVAR.

6. Summary

AnEnKF has been adopted and implemented at NRL

for COAMPS ensemble data assimilation and forecasts.

The implemented EnKF has gone through extensive

tests with real observational data to examine the key

features of the system to ensure that the system is

working appropriately in a new environment. The results

reported here show that the system has the capability of

usefully estimating background error covariance when

the ensemble reaches a certain size (it appears to be 32 in

Fig. 3). As the ensemble size increases, the covariance

looks smoother.As the flow-dependent error covariance is

estimated from the ensemble perturbations, the synoptic

and large-scale structures were found to be, as expected,

qualitatively consistent with the geostrophic relation-

ship between temperature and wind in the atmosphere.

A new serial ‘‘innovation reduction’’ method for as-

sessing the accuracy of the ensemble-based error co-

variance models has been introduced. The technique

provides a computationally inexpensive means of tuning

localization length scales and assessing the potential

benefit of increased ensemble size. Using this approach,

we demonstrated that the ability of the ensemble-based

error covariance model to reduce analysis errors in-

creases monotonically as the ensemble size increases

from 16 to 64, but the change becomes rather small as

the ensemble size further grows from 64 to 128. The

approach was also used to find the most effective lo-

calization length scales for various ensemble sizes. It was

found that for relatively small ensemble sizes of 16–32

FIG. 10. RMSEs of model forecasts of T (8), u (m s21), y (m s21), and qy (g kg
21) from CNTL-3DVAR (solid lines) and Ens32-EnKF

(dashed lines) as a function of forecast lead time for the (a)–(d) 45- and (e)–(h) 5-kmdomains, for the forecast period of 1200UTC 22 Jun–

1200 UTC 27 Jun 2005 verified against raob observations.
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members, relatively tight localization length scales of

200–600 km were required for effective performance

while for ensemble sizes of 64 and 128 a larger locali-

zation radius was more effective. The performance of

the EnKF was much less sensitive to the localization

radius at large ensemble sizes.

COAMPS ensemble forecasts initialized by the EnKF

analyses from the above experiments are also evaluated.

The impacts of ensemble size and LLS on ensemble

forecasts are examined by looking at the RMS errors of

the ensemble forecasts verified against radiosonde ob-

servations. It is found that both ensemble size and LLS

affect the forecasts. The effect of ensemble size, how-

ever, decreases rapidly with forecast time and becomes

barely visible at about 24 forecast hours for ensemble

sizes larger than a certain number (32 in this case study).

For a small ensemble size of 16, the large forecast errors

basically remain throughout the whole forecast period.

The impact of LLS also decreases quickly during the first

12 h of model integration for an ensemble size of 32, and

then remains small but notable during the subsequent

forecast period.

An extensive study has been performed to compare the

COAMPS EnKF with the current operational NAVDAS

3DVAR for COAMPS at NRL. It has been found from

a week-long test that the ensemble forecast from the

EnKF shows slightly faster error growth than the control

forecast initialized by the NAVDAS 3DVAR during

the first 12 h of model integration. After that, the error

growth in the ensemble forecast slows down and be-

comes significantly slower than that from the control

forecast. The EnKF outperforms the 3DVAR in the

moisture analyses and the subsequent forecasts at both

large and storm scales. For the temperature and wind

fields, however, the results are mixed for the first 36 h.

During this period, the 3DVAR seems to perform better

than the EnKF mainly at large scales. After the 36 h

of model integration, the EnKF steadily improves the

forecast all the way to 72h where the improvement rea-

ches a maximum. Vertical profiles of RMS errors from

the ensemble and control forecasts at 72h also show that

the improvement in the model forecasts by the EnKF is

basically across the whole depth of the atmosphere. This

further demonstrates that the COAMPS EnKF has the

potential to become amature data assimilation system for

mesoscale and storm-scale data assimilation. Doppler

radar data assimilation into the EnKF is currently be-

ing investigated. The preliminary results show further

FIG. 11. Vertical profiles of RMS errors of model forecasts of T (8), u (m s21), y (m s21), and qy (g kg
21) from CNTL-3DVAR (solid

lines) andEns32-EnKF (dashed lines) at the forecast lead time of 72 h for the (a)–(d) 45- and (e)–(h) 5-km domains, for the forecast period

of 1200 UTC 22 Jun–1200 UTC 27 Jun 2005 verified against raob observations.
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improvement of the ensemble analyses and forecasts

with radar observations. More studies will be performed

and the results will be presented in follow-up papers.
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