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ABSTRACT

This study proposes a variational approach to adaptively determine the optimum radius of influence for

ensemble covariance localization when uncorrelated observations are assimilated sequentially. The co-

variance localization is commonly used by various ensemble Kalman filters to limit the impact of covariance

sampling errors when the ensemble size is small relative to the dimension of the state. The probabilistic

approach is based on the premise of finding an optimum localization radius that minimizes the distance

between the Kalman update using the localized sampling covariance versus using the true covariance, when

the sequential ensemble Kalman square root filter method is used. The authors first examine the effectiveness

of the proposed method for the cases when the true covariance is known or can be approximated by a suffi-

ciently large ensemble size. Not surprisingly, it is found that the smaller the true covariance distance or the

smaller the ensemble, the smaller the localization radius that is needed. The authors further generalize the

method to the more usual scenario that the true covariance is unknown but can be represented or estimated

probabilistically based on the ensemble sampling covariance. The mathematical formula for this probabilistic

and adaptive approach with the use of the Jeffreys prior is derived. Promising results and limitations of this

new method are discussed through experiments using the Lorenz-96 system.

1. Introduction

The Kalman filter was first proposed by Kalman (1960)

under the assumption of linear dynamics, knowledge of

certain covariance information, and Gaussian random

variables. Evensen (1994) first introduced the ensemble

Kalman filter (EnKF) into this context. EnKF takes

advantage of a short-term ensemble to estimate flow-

dependent background error covariance, the computa-

tional cost of which is much more affordable than the

original Kalman filter for large dimensional computa-

tion. As variations of EnKF, several ensemble square

root filters (EnSRF) have been developed [for a sum-

mary see Tippett et al. (2003)] in order to maintain

consistency between the ensemble and the covariance

(see Houtekamer and Mitchell 2001; Anderson 2001;

Bishop et al. 2001; Whitaker and Hamill 2002; Snyder

and Zhang 2003). Ott et al. (2004) designed the local

ensemble transform Kalman filter so the state variables

can be updated completely in parallel. Meanwhile peo-

ple are devoting efforts to combining EnKF with three-

and four-dimensional variational data assimilation

(3D/4D-Var; e.g., Hamill and Snyder 2000; Lorenc 2003;

Wang et al. 2008a,b; Zhang et al. 2009, 2013). In the

ensemble Kalman filters, sampling error is one of the

common problems.

Since the ensemble size is usually far less than the

state dimension in geoscience applications, it is impos-

sible for the sample covariance calculated by the en-

semble members to capture all the main properties of

the true covariance. Some of the sampling errors can be

eliminated when the physical correlation radius is small

compared to the spatial dimension of the state, which is

usually the case in numerical weather prediction.

Houtekamer and Mitchell (2001) and Hamill et al.
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(2001) used localization to remove spurious correla-

tions between distant variables. The localization

method can be used in all ensemble-based filters and it

has been shown to be a powerful tool for limiting sam-

pling error due to a small ensemble size. The Gaspari–

Cohn (GC) localization function (Gaspari and Cohn

1999) is symmetric positive definite and widely used for

a wide range of applications. Alternative methods in-

clude Jun et al. (2011) who considered estimating the

background covariance by smoothing the sample co-

variance using a kernel function. The GC function is

effective for spatial localization, but the localization

radius in most applications until recently is chosen em-

pirically. Anderson (2012) sheds some new light on this

problem by making use of a probabilistic approach.

Anderson and Lei (2013) further extended the proba-

bilistic approach to determining the localization radius

based on observation impact. Lei and Anderson (2014)

chose the localization radius to be the one that mini-

mizes the difference between sample covariance and

localized sample covariance computed from different

samples. Meanwhile Bishop and Hodyss (2007) and

Bishop et al. (2011) proposed the use of entry by entry

powers of sample correlation together with a non-

adaptive empirical localization function. The method

proposed in the current study is based on a sequential

ensemble square root filter. For covariance inflation we

utilize the relaxation method from Zhang et al. (2004).

To clarify, we present the algorithm in detail in Table 1.

Moreover we would like to mention that the method

under discussion in this manuscript only applies to

the case when observations are uncorrelated. Further

generalizations of this approach to correlated observa-

tion errors will be the subject of future research.

The structure of this paper is as follows. In section 2

we propose a variational approach through minimizing

a cost function to find the optimum localization radius in

the case that the true covariance is known. In section 3

we generalize the method to the case where the true co-

variance is unknown but can be represented probabilis-

tically from the sample covariance. Numerical results

about the performance of this method are presented

through sections 2, 3, and 4. In particular, section 4 con-

tains the numerical results based on the Lorenz-96 sys-

tem. Section 5 provides a summary and discussion on the

proposed localization method.

2. Optimal localization with true covariance: A cost
function approach

As mentioned earlier, when the physical correlation

radius is small the sampling noise at far distances can be

largely reduced by localization. Nevertheless, the

benefits of this process can occur at the expense of re-

moving small but nonnegligible true covariance be-

yond the cutoff distance and lowering the true

covariance within the localization radius. Figure 1 is

a visual illustration of the effect of covariance locali-

zation. In this experiment, we use the GC correlation

function as the true covariance by setting the true ra-

dius of influence (ROI) equal to 5. We draw 61 sample

vectors from the Gaussian distribution N (0, Btrue) and

compute the sample covariance. Using a localization ra-

dius of 24, the localized sampling covariance is then

TABLE 1. Algorithm of sequential localized ensemble square root Kalman filter: Algorithm AK.

Input xf 2 R
n31 Mean of ensemble forecast

e f 2 R
n3N Perturbations of ensemble members

yo 2 R Scalar observation

a 2 [0, 1] Relaxation coefficient

R 2 R Observational variance

h 2 R
13n Observational operator

d 2 R
n31 Distance between state variables and the observation

ROI 2 N Localization radius (used in GC function)

Assimilation Step 1: Bs 5
1

N2 1
ef (e f )T, Bs 2 R

n3n

Step 2: r 5 GC(ROI, d), r 2 R
n31

Step 3: W5
1

11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

R1hBshT

r , rs 5
BshT

R1hBshT
, Dy5 yo 2hxf

Step 4: xa 5 xf 1 (rs � r)Dy, ea 5 [I 2 (r s � r)Wh]e f

Output xa 2 R
n31 Mean of ensemble analysis

ea 2 R
n3N Analysis perturbation

After having assimilated all observations, do the step of relaxation:

ea ) ae f 1 (1 2 a)ea
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comparedwith the raw sampling covariance and the true

covariance. We can clearly see that the localization

method effectively reduces the spurious correlation at

far distances.

Cost function F0

To gain further understanding of this problem we first

examine the solution in the case where the true co-

variance is known, but we acknowledge that this is im-

possible in practice. In later sections of this paper we

show how to remove this restriction and apply this

technique to real problems where the true covariance or

Kalman gain is not known. For this scenario we con-

struct a way of describing how ‘‘good’’ the localization

radius is for a given ensemble by associating it with the

value of a cost functionF0. Recall, when one observation

y is available, the updating formula of state variable xi
using the algorithm in section 1 is as follows:

Dxai 5 rsiriDy ,

whereDx a
i is themean update of the ith state variable,Dy

is the innovation, r s
i is the regression coefficient calcu-

lated from the sample, and ri is the value of localization

function for the ith state variable and observation y.

If we know the true covariance Btrue we can simply

substituteBtrue forBswithout doing localization. Hence,

the exact Kalman updating formula becomes

Dxa
i 5 rtiDy , (1)

where

rti 5
(BtruehT)i

R1 hBtruehT
(2)

is the true regression coefficient (perfect Kalman gain).

Here h is the observational operator and R is the ob-

servational covariance.

A natural way of comparing the difference between

using the true covariance and the localized sample co-

variance is represented by the following cost function:

F0(ROI)5 �
n

i51

(rsiri 2 rti)
2 . (3)

The optimal localization radius should be the ROI that

minimizes the cost functionF0.Now let us consider the case

when we have more than one observation available at the

same time. We can find the optimal ROI for each obser-

vation and then find the maximum likelihood estimate of

the ROI and choose it to be our overall optimal ROI.

Based on the above analysis, we propose the algo-

rithmA0 (Table 2) (while its results are shown in the left

part of Table 3) for evaluating the optimal ROI. In al-

gorithmA0, rji
s denotes the sample regression coefficient

for the jth observation and ith grid point. Similarly rji
t is

the regression coefficient computed by using the true

covariance for the jth observation and ith grid point; dji
is the distance (in number of grid points) between the jth

observation and ith grid point. In the left half of Table 3

and the left panel of Fig. 2, we show the value of ROI(0)

in terms of grid points for different true covariances and

ensemble sizes. Given true covariance of GC form with

correlation radiusROI5 2, 5, 10, or 20, we draw samples

of size N 5 11, 21, . . . , 121 from the distribution N (0,

Btrue) and compute the sample covariance Bs. We as-

sume observations exist at every grid point and have an

error variance of 0.04. Then we compute the ROI(0)

using algorithm A0 for each pair of ROI and N values.

FIG. 1. (top) Gaspari–Cohn covariance (blue line), which serves

as the true covariance with radius of influence equal to 5; ensemble

covariance (red line) with ensemble size N 5 61; and localized

sample covariance (black line) with localization radius 24. (bot-

tom) The difference between the true covariance and the sample/

localized sample covariance. This panel shows that localization can

significantly reduce sampling error when the true correlation radius

is far smaller than the dimension of the domain.

TABLE 2. Algorithm A0.

Input n, N, m, ROImax

rji
s, rji

t , dji for i 5 1, 2, . . . , n and j 5 1, 2, . . . , m

For j 5 1:m

For ROI 5 1:ROImax

Compute F0(ROI) for jth observation;

End

Find ROIj that minimizes F0(ROI) for the jth

observation;

End

Collect all ROIj for j 5 1, 2, . . . , m and estimate

the probability density of ROI;

ROI(0) 5 the maximum likelihood estimate of ROI;

Output ROI(0)

DECEMBER 2014 ZHEN AND ZHANG 4501



We do this test 1000 times for each pair of parameters

and estimate the probability density of ROI(0) and plot

the curves of (rescaled) probability density in Fig. 2. In

Table 3 (left half) we show the maximum likelihood

estimate of ROI(0) for each choice of ensemble size and

radius of influence of the true covariance.

For all choices of parameters in this experiment, the

resulting maximum likelihood estimate of ROI(0) is al-

ways larger than the true ROI. This is desirable since our

goal is to find a localization that can reduce the spurious

correlation at a far distance while also approximating the

true correlation at a near distance. Second, we can see

that for a larger ensemble size (or ROI) the resulting

ROI(0) also gets larger. We also find that as the true

ROI increases for a fixed ensemble size, the increment of

ROI(0) is almost linearly proportional to the increment

of ROI. That is likely due to the Gaussian assumption.

More discussions on Table 3 and Fig. 2 will be presented in

section 3.

3. A probabilistic method of localization

Inmore common and realistic cases the true covariance

is almost always unknown so the algorithm A0 is quite

limited for real-data implementations. Anderson (2012)

introduced a probabilistic method by assuming that the

true correlation between a scalar variable and a scalar

observation is a random variable based on the ensem-

ble. And in Lei and Anderson (2014) they choose the

localization value that minimizes the difference be-

tween the sample regression coefficient and the local-

ized sample regression coefficient from another pair of

the same type of variables from another ensemble

group of the hierarchical ensemble group filter. We

follow a similar approach to Anderson (2012) in this

study. More precisely speaking, we compute the opti-

mal localization radius whenever any observation is

available for data assimilation.We assume that the true

covariance between a scalar observation and all nearby

state variables follows a specified error distribution so

we can compute the average value of some cost func-

tion F(r t
i, r

s
i , di, ROI) over that distribution. Part of

the cost function we will present has some resemblance

to Eq. (1) in Lei and Anderson (2014). However, the

main technique we employ in this manuscript is con-

siderably different from that in Lei and Anderson

(2014), which does not assume any prior distribution of

the true covariance but instead compares the differ-

ence between the sample regression coefficient with

the localized sample regression coefficient of the same

type, under their definition, of pairs of observation

variables and state variables from a different ensemble

group. We use the Jeffreys prior and the Wishart dis-

tribution to calculate the conditional distribution of the

true covariance matrix rather than using the sample

covariance computed from another ensemble group

member as in Lei and Anderson (2014). It may also be

worth noting that the method in Lei and Anderson

(2014) finds the spatially homogeneous localization

while the scheme we propose in this manuscript can be

applied for any location that is spatially varying. In our

proposed method of this section r t
i 5 r t

i(B) is still the

true regression coefficient, but it is now a function of

the true covariance B represented by a random matrix.

Therefore, the regression coefficient rti is a random

number. The distribution of the true covariance for

a given sample comes directly from Bayes’s theorem:

p(B jBs)5
p(B,Bs)

p(Bs)
5

p(Bs jB)p(B)
p(Bs)

. (4)

In the above formula p(Bs) is a constant for a given

sample and p(Bs jB) is the well-known Wishart dis-

tribution. Since we assume the prior distribution is

TABLE 3. Comparison of F0 and F for given true covariance. We do 1000 tests for each experiment and estimate the probability density

of ROI(1) for each experiment. We plot the (rescaled) probability density function of ROI(1) in the right panels of Fig. 2 and list the

maximum likelihood estimates of ROI(1) in the right half of Table 5. ROImax is the maximal ROI allowed by algorithm A0 and algorithm

A1, respectively. At the first glance we see that for some set of parameters the difference between ROI(0) and ROI(1) is large. But we

cannot expect that algorithm A0 and algorithm A1 give close values in all situations because in algorithm A1 the information of true

covariance is completely unknown anyway. On the other hand, we think the value of ROI(1) in these cases are still acceptable and

sometimes it is close toROI(0).Moreoverwe see that when ensemble size is small ROI(1) is also small though the true covariance has larger

ROI. This is intuitively right since when ensemble size is smaller we put fewer trust on the ensemble covariance.We also see that for larger

ensemble size, both algorithms results in larger ROI.

ROI(0) computed by F0 using true covariance ROI(1) computed by F using Jeffreys prior

N 11 21 31 61 121 11 21 31 61 121

ROI 5 2 2.5 3.1 3.5 4.2 5 2.2 3.5 4.6 7 17

ROI 5 5 7 8.2 8.8 10.4 11.9 3.5 6 7.9 12.3 21.5

ROI 5 10 13.2 15.6 17.3 19.8 22.9 4 7.8 10.9 17.7 28.5

ROI 5 20 26.5 30.7 33.8 39 45.8 4 9 13 23.5 39.5

ROImax 130 130 130 130 130 4 9 14 29 59
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Gaussian, it has been mathematically proved that the

distribution of sample covariance is exactly the Wishart

distribution (see Muirhead 1982); p(B) is called the prior

distribution, the choice of which is not unique. Here we

use the Jeffreys prior, which is proportional to the square

root of the determinant of the Fisher information. We do

not claim that Jeffreys prior is the most appropriate dis-

tribution, but this is commonly used in the statistics

community (see Bernardo and Smith 1994).

The average of the cost function F over all true (ran-

dom) covariance is

ð
�
n

i51

F(rti , r
s
i ,di, ROI)

p(Bs jB)p(B)
p(Bs)

dB . (5)

One limitation is that the Wishart distribution is valid

only when the sample size is larger than the dimension of

the state variable, which cannot be satisfied inmost of the

applications. If the sample covariance is not of full rank,

then the space of Bs is not an open subset of the space of

all symmetric positive definite (SPD) matrices. In this

case, the space of singular semipositive definite matrix is

a surface of the full space of SPD matrix. And the prob-

ability distribution lies on this surface. But the true co-

variance is usually of full rank, hence, it does not lie in this

subspace. Though people have studied the analog of the

Wishart distribution in the case that Bs is of deficient

rank, we do not use it for the following two reasons:

1) the true covariance may not lie in this subspace and

the subspace is not flat;

2) mathematically it is harder to simplify the cost

function to a computable form.

Therefore, we consider computing the truncated aver-

age of the cost function instead of the overall average.

Specifically speaking, we consider

FIG. 2. The (rescaled) probability density estimate of ROI(0) and ROI(1) for experiments using known true co-

variance with ROI5 2, 5, 10, or 20. Here we normalize the curves so the maximum of each curve is always equal to 1.

(left) ROI(0) and (right) ROI(1). Blue curves are for ROI 5 2. Red curves are for ROI 5 5. Magenta curves are for

ROI5 10. Black curves are for ROI5 20. The maximum likelihood estimate of each curve is listed in Table 3. The

MLEof the curves in (left) is listed in the left half of Table 3. Note that there is no black andmagenta curve in the (top

right) panel; please refer to the text for a discussion of this.
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ð
�

d
i
,ROI

F(rti, r
s
i , di, ROI)

p(Bs
Loc jBLoc)p(BLoc)

p(Bs
Loc)

dBLoc ,

(6)

where Bs
Loc (or BLoc) is the sample (or true) covariance of

the state variables that are within distance ROI from the

observation.ROI can only be chosen among those that the

amount of state variables within the distanceROI from an

observation is strictly less than the ensemble size N. In-

tuitively this truncated average only takes into account the

influence of the observation on the state variables that lie

in the ‘‘radius of influence .’’ This restriction also causes

the resulting ROI to be extremely small if we directly

apply thismethod to 3DGCMs.This aspectwill be studied

further in the future.

a. How to choose the cost function

If we use exactly the same cost function F0 for the

truncated average as in section 2, where the true co-

variance is known, we find that the variational method

often leads to a trivial solution (ROI5 0, not shown).We

believe part of the reason is that the truncation ignores all

information outside of the radius of influence. In other

words, the localization radius resulted by using the

function F0 in Eqs. (5) and (6) might be much different if

we instead use a truncated version of F0. To limit the loss

of information, we consider a modified cost function:

F11(r
s
i , r

t
i,di, ROI)5 �

d
i
,ROI

[(rir
s
i 2 rti)

22 (rti)
2] . (7)

The advantages of the function F11 are the following:

1) The truncated F11 and the full F11 have the same value:

�
n

i51

[(rir
s
i 2 rti)

22 (rti)
2]5 �

d
i
,ROI

[(rir
s
i 2 rti)

2 2 (rti)
2] .

(8)

2) In the case the true covariance is known, F0 and F11

only differ by a constant. More precisely speaking,

�
n

i51

[(rir
s
i 2 rti)

22 (rti)
2]5C1 �

n

i51

(rir
s
i 2 rti)

2 , (9)

where this constant C has no impact on where the

cost function’s minimum is taken in this case. There-

fore, the constant C has no impact on determining

the localization radius.

Combining the above properties we can see that for

a given true covariance, substituting F11 for F0 in

algorithm A0 is mathematically equivalent. More im-

portantly, in the case that the true covariance is unknown,

the truncated average when use Jeffreys prior can be

simplified explicitly so the integration of thousands of

variables can be avoided. However, because of the use of

the uninformative Jeffreys prior as the true covariance

probability distribution function, we find that an addi-

tional penalty is necessary to be included in the cost

function to avoid a trivial solution where the resulting

ROI is simply the largest possible radius of influence al-

lowed by the algorithm. Therefore, we define

F10(r
s
i , r

t
i, di, ROI)5 �

d
i
,ROI

[(rir
s
i 2 rti)

22 (rti)
2]

1 �
d
i
,ROI

r2i (r
s
i 2 rti)

2 , (10)

where the second term is a penalty term that can be

interpreted as the sampling noise or stability term

that accounts for the difference between the true

covariance and sampling covariance scaled by the

localization coefficient.

Now we present the complete form of the cost func-

tion that we designed for the case when true covariance

is unknown:

F(ROI)5

ð(
�

d
i
,ROI

[(rir
s
i 2 rti)

22 (rti)
2]1 �

d
i
,ROI

r2i (r
s
i 2 r ti)

2

)
p(Bs

Loc jBLoc)p(BLoc)

p(Bs
Loc)

dBLoc , (11)

TABLE 4. Algorithm A1.

Assumption:

Each row of observational operator is of the

form (0, 0, . . . , 0, 1, 0, . . . , 0)

Input ef 2 R
n3N

n 2 N

N 2 N

R 2 R

(i1, . . . , im)2 N
m

d 2 R
n31

For j 5 1: m

ROImax 5min[floor(n/2)1 1, (N2 3)/2];

For ROI 5 1: ROImax

Compute nLoc;

Compute ri for di , ROI;

Compute ri
s for di , ROI;

Compute E1 and E2;

Compute F1(ROI) using Eq. (4);

Compute F2(ROI) using Eq. (5);

Compute F(ROI) 5 F1(ROI) 1 F2(ROI);

End

Find ROIj that minimizes function F;

End

Collect all of ROIj and estimate the probability

density function for ROI;

Find the maximum likelihood estimate ROI(1);

Output ROI(1)
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where ri 5 GC(ROI, di).

For the exact mathematical expression/definition of

p(Bs
Loc jBLoc), p(BLoc), p(B

s
Loc), and dBLoc, please re-

fer to the appendix. Note that this integral is taken

over thousands of variables so it cannot be directly

computed numerically. Mathematical simplifications

to Eq. (11) can be made under certain assumptions. A

computable form of this expression is derived in the

appendix.

THEOREM 3.1

Suppose there is a scalar observation available at

this time and the observational variance is R.

The observational operator h5 (0, 0, . . . , 0, 1, 0, . . . , 0).

Let k be the state variable that the observation is

taken for. Let nLoc be the number of state variables

that are within distance ROI from the observation. Let

ei 2 R
13N be the forecast perturbation of the ith com-

ponent of the state variable.

Let

Dii 5
jeij2
jekj2

2
hek, eii
jekj2

.

Let

E1 5EG[(N2n
Loc

)/2,1]

(
(N2 1)R1 jekj2

2Rx1 jekj2
)
,

E25EG[(N2n
Loc

)/2,1]

(
(N2 1)R1 jekj2

2Rx1 jekj2
)2

,

F1(ROI)5

ð
�

d
i
,ROI

[(rir
s
i 2 rti)

22 (rti)
2]
p(Bs

Loc jBLoc)p(BLoc)

p(Bs
Loc)

dBLoc, and

F2(ROI)5

ð
�

d
i
,ROI

r2i (r
s
i 2 rti)

2 p(B
s
Loc jBLoc)p(BLoc)

p(Bs
Loc)

dBLoc .

Then

F1(ROI)5 �
d
i
,ROI

f(rsi )2(r2i 2 2riE1)g and (12)

F2(ROI)5 �
d
i
,ROI

r2i

(
(rsi )

2(12 2E11E2)1
Diijekj2

(N2nLoc2 1)[(N2 1)R1 jekj2]
E2

)
, (13)

where EG(N2nLoc/2,1)ff (x)g denotes the expectation of

f(x) when x follows the distribution G(N2 nLoc/2, 1).

Based on the above theorem we propose algorithm

A1 (Table 4) to adaptively determine the localization

radius. The computational cost of this algorithm is O

(N2m).

b. Comparison of ROI(0) and ROI(1) for a given true
covariance

We present the experimental results in Table 3 and

Fig. 2 for a comparison of ROI using the algorithm A0

presented in section 2 [ROI(0)] versus the newprobabilistic

algorithm A1 [ROI(1)]. The experiment for ROI(0) is still

the same as that presented in section 2, where the true

covariance is known. In addition, we add columns 7–11,

which are values of ROI(1) computed by algorithm A1 for

the same true covariance and sample covariance that are

used in columns 2–6, though the information of true

covariance is completely unknown in algorithm A1.

Again we do 1000 tests for each experiment and esti-

mate the probability density of ROI(1) for each ex-

periment. We plot the (rescaled) probability density

function of ROI(1) on the right panels of Fig. 2 and list

the maximum likelihood estimates (MLE) of ROI(1) in

the right panel of Table 3. Note that the last row of

Table 3 is the maximum value of ROI(0) and ROI(1)

allowed by algorithm A0 and A1 respectively. The

upper bound for ROI(0) can be modified arbitrarily

with the larger upper bound translating into a larger

range of possible solutions. ROImax 5 130 is found to

be a large enough searching range for our application.

The upper bound for ROI(1) is not as flexible as in the

ROI(0) case. In this experiment and the experiments in

the next section, the maximum of ROI(1) is chosen to
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be (N2 3)/2. Therefore, when the ensemble size is

small and if the ROI(1) tends to be large, the ROI(1) of

the 1000 independent tests would simply concentrate

at themaximum value allowed by the algorithm. This is

why we see some peculiar shape of the black curves in

the right panels of Fig. 2 when the ensemble size is

small.

When the true ROI 5 2, ROI(0) varies from 2.5 to 5.

For the algorithm that uses no knowledge of the true

covariance, ROI(1) changes from 2.2 to 17, which has

a much larger range than ROI(0). For example, when

N 5 11, the MLE of ROI(0) is about 1.3 times the true

ROI. When N 5 121, the MLE of ROI(0) is about 2.6

times the true ROI. Note that now there is no similar

linear relationship between the MLE and ROI for

ROI(1) [which is found for ROI(0)]. When N 5 11,

ROI 5 10 and 20, the probability density of ROI(1) all

concentrate at a single point, which causes the graph of

the (rescaled) probability density function to not be

seen in Fig. 2. Similarly for N 5 21 and 31, the prob-

ability density of ROI(1) in Fig. 2 is very concentrated

near the maximal possible ROI (i.e., ROImax). This is

because algorithm A1 does not allow ROI(1) to be

larger than (N2 3)/2 and the best radius of influence in

the search range is very likely to be the upper bound

ROImax. When N 5 121, the distribution of ROI(1) is

far away from the upper bound ROImax but the MLE

of ROI(1) does not depend linearly on the true ROI

neither.

At first glance, the differences between ROI(0) and

ROI(1) are quite large over the set of parameters that

we examine. When N 5 121, the MLE of ROI(1) is

larger than that of ROI(0) when the true ROI5 2, 5,

and 10 but smaller than that of ROI(0) when the true

ROI 5 20. This result is not surprising because in al-

gorithmA1 the true covariance is completely unknown

as in real-data applications. On the other hand, the

values of ROI(1) are close to ROI(0) when N 5 61.

FIG. 3. The (rescaled) probability density estimate of ROI(0) and ROI(1) for experiments using approximated true

covariance in a Lorenz-96 systemwithT15 50, T25 1, 10, and 100. Here we normalize the curves so the maximum of

each curve is always equal to 1. (left) ROI(0) and (right) ROI(1). Blue curves are for T2 5 1. Red curves are for T2 5
10. Black curves are for T2 5 100. The MLE of each curve is listed in Table 5.
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Moreover we see that when the ensemble size is small

ROI(1) is also small though the true covariance has

larger ROI. We also see that for a larger ensemble

size, both algorithms result in larger ROIs. There-

fore, the algorithm adjusts the ROI according to the

expected sampling error for a given data assimilation

cycle.

Although F11 would give the same value if we

slightly enlarge the region allowed by the Wishart

distribution, the integral would be different due to the

use of the noninformative Jeffreys prior. As a conse-

quence, if we only use F11 as our cost function the

resulting ROI(1) would just be ROImax in most situa-

tions. This is why the second term in F10 is required

for making the solution nontrivial. On the other hand,

the choice of prior does not necessarily have to be

the Jeffreys prior. The penalty term can have other

choices as well. In this sense, the method is still quite

empirical when the true covariance is unknown. Future

studies will explore the use of more informative prior

probability distribution functions for optimizing the

ensemble localization distance.

4. Application to the ensemble covariance
generated by the Lorenz-96 model

a. Experiments with the Lorenz-96 system and
approximated true covariance

Now we design experiments to compare algorithms A0

and A1 in a Lorenz-96 system (Lorenz 2006). Here the

system is configured to have 120 variables and 30 uni-

formly distributed observations, which lie on the model

grid points. The external forcing F is set to 8, the time step

dt is set to 0.05, and observations appear every two time

steps. We use an error variance of 0.04 for all observations

in these experiments. Observational operator H is simply

the restriction operator as required by the current version

of the algorithm.To get an approximated true covariance in

the Lorenz-96 system, we first run 6000 ensemblemembers

forT1 time steps with theEnKFdata assimilation.We then

FIG. 4. The (rescaled) probability density estimate of ROI(0) and ROI(1) for experiments using approximated true

covariance in a Lorenz-96 systemwithT15 500,T25 1, 10, and 100.Herewe normalize the curves so themaximumof

each curve is always equal to 1. (left) ROI(0) and (right) ROI(1). Blue curves are for T2 5 1. Red curves are for T2 5
10. Black curves are for T2 5 100. The MLE of each curve is listed in Table 5.
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run the ensemble members for T2 time steps without data

assimilation. Then we use the whole 6000 ensemble

members to get an approximation of the true covariance

Btrue. In the first T1 time steps, we use covariance re-

laxation with a5 0.5 (Zhang et al. 2004). Then, we drawN

ensemble members from the 6000 members and compute

the sample covariance Bs. Finally we compute the optimal

ROI(0) using algorithmA0with the known (approximated)

true covariance, and compare it with the optimal ROI(1)

that was computed by algorithm A1 with no knowledge of

the true covariance. We choose a 5 0.5 here because the

model still has a chance to blow up when no localization is

used, even if when the ensemble size is 6000. We did 1000

tests for each set of the parameters and we estimated the

probability density of the optimum ROI with respect to

both algorithm A0 and A1. The graphs of probability

density function are shown in Figs. 3 and 4 and the maxi-

mum likelihood ROI(0) and ROI(1) are listed in Table 5.

We do not expect that algorithms A1 and A0 give

similar values in all cases, because in algorithmA1 we do

not use the true covariance while in algorithm A0 we

have the complete information of true covariance.

WhenT15 50 (T1 is the EnKF analysis duration),N5
61, the value of ROI(0) 5 17.7, 18.6, and 10.6 for dif-

ferent T2 (T2 is the length of free ensemble forecast

without assimilation). We see ROI(1) 5 19.4, 19.5, and

11 for different T2, respectively, which are very close to

the values of ROI(0). But forT15 500 (Fig. 4), we see the

probability density function of ROI(0) is quite peculiar

for T2 5 1 and 10 (blue and red curves in the left panels)

when the ensemble size is small. The maximum likeli-

hood of ROI(0) are around 7.7, 2.5, and 8 for different T2

no matter if N 5 11, 21, or 31. Although it is not clear

why T2 5 10 results in ROI(0) ’ 2.5, which might be

due to the system dynamics, this shows that ROI(0)

only changes a little when ensemble size changes among

N 5 11, 21, and 31. The estimated probability densities

of ROI(0) for these parameters have similar shape as can

be seen in first three panels on the left of Fig. 4. Now, if

we compare the graphs on all of the left panels of Figs. 2,

3, and 4, we see that although the (approximate) true

covariance is known in all of these cases, there is a dif-

ference in the shapes of the probability distributions for

ROI(0). It can be clearly seen that in the experiments for

the left panels of Fig. 2 the probability density function

curves are approximately symmetric about their axis of

symmetry, in which case the sample is exactly drawn

from a Gaussian distribution. As a comparison, we see

that for tests using small ensemble sizes, which is for the

left panels of Figs. 3 and 4, the curves do not have

symmetry at all. This is probably because the distribu-

tions of state variables in the Lorenz-96 system are not

close to Gaussian. For N 5 21, T1 5 50, T2 5 10 (red

curve in Fig. 3,N5 21), the curve even has two peaks. In

this case it would be hard for us to determine a good

localization radius even if we know the true covariance.

For T1 5 500, T2 5 100 (the black curves in Fig. 4), the

behavior of ROI(0) becomes close to that when T1 5 50,

T2 5 100 for all ensemble sizes. This might be because

after running the model for 100 time steps without data

assimilation, the distribution of state variables become

close to the ‘‘climatological distribution.’’ But as we

compare the results in this case with the numerical re-

sults in section 4b, we see that ROI around 11 does not

give optimal RMSE for the long time real im-

plementation. However, the curves on the right panels

of Figs. 3 and 4 are more symmetric. This might because

our probabilistic method still assumes Gaussian distri-

bution and we do see in the cases T1 5 50 or 500, T2 5 1

or 10, ROI(1) would result in smaller RMSE according to

numerical results in section 4b, hence, it is a better value

for real-data implementation.

TABLE 5. Comparison of F0 and F for approximated, true covariance in Lorenz-96 system. These are maximum likelihood estimates of

ROI(0) and ROI(1). The probability estimates are based on 1000 independent tests. Our true covariance Btrue is approximated by the

sample covariance of 6000 ensemble members. First we run these 6000 members for T1 time steps with data assimilation. Then we run

these members for T2 time steps without data assimilation. Then we compute the sample covariance and set it to be the true covariance

Btrue. For each test our sample covariance Bs is computed from N randomly drawn ensemble members. Then we compute ROI(0) and

ROI(1) based on that specific sample covariance and true covariance. The left half are maximum likelihood estimates of ROI(0). The right

half are maximum likelihood estimates of ROI(1). ROImax is the maximal ROI allowed by algorithm A0 and algorithm A1.

ROI(0) computed by F0 using approximate

true covariance ROI(1) computed by F using Jeffreys prior

N 11 21 31 61 121 11 21 31 61 121

T1 5 50, T2 5 1 5 13.2 14.6 17.7 24.5 3.2 6.8 10.3 19.4 35.1

T1 5 50, T2 5 10 3.1 3.9 15.8 18.6 22.8 3 6.4 10.2 19.5 33.5

T1 5 50, T2 5 100 6.6 7.8 8.7 10.6 13.1 2.1 4.5 6.7 11 18.4

T1 5 500, T2 5 1 7.9 7.7 7.5 9.9 12.2 3.4 7.5 11.5 23.8 47.5

T1 5 500, T2 5 10 2.3 2.9 2.5 10.9 20.1 3.4 7.7 12 24.4 48.5

T1 5 500, T2 5 100 6.9 7.9 9 11.2 14.2 2.2 4.7 7.1 11.9 20.8

ROImax 130 130 130 130 130 4 9 14 29 59
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b. Experiments that use algorithm A1 to do adaptive
localization in Lorenz-96 system

Now we implement algorithm A1 in the Lorenz-96

system. As mentioned before, the Lorenz-96 system

configured here has n 5 120 state variables and is

integrated using the Runge–Kutta fourth-order scheme.

The observations are uniformly distributed and lie

on some of the grid points. The number of observations

m and ensemble size N are different for each case. To

handle filter divergence, we use a relaxation coeffi-

cient a5 0.5 (Zhang et al. 2004). The inflation method is

necessary here to prevent the model from blowing up.

The choice of a5 0.5 is not tuned. We also did the same

experiment for a5 0.25 and the results are similar. The

choice of a can slightly influence the resulting ROI(1),

but the change is ignorable at least for this experiment,

so we only show the results for a 5 0.5. At every time

step when observations are available, we first compute

ROI(1) using algorithmA1, then we use ROI(1) to be the

localization radius before assimilating the observations.

1) SENSITIVITY TO ENSEMBLE SIZE

In Fig. 5 we plot the curves of ROI(1) as a function of

time for different ensemble sizes. In general we see that

the resulting localization radius increases with the en-

semble size, which is consistent with the results in section

2 where the true covariance is known.

2) COMPARISON OF RMSE FOR DIFFERENT

OBSERVATIONAL DENSITY

In this subsection, we fix the ensemble size at N5 61

and plot the spatial RMSE of the ensemble mean as

a function of time for times steps between 1 and 50,

1000 and 1200, and 1200 and 1400. These values are

plotted for m 5 30, 60, and 120, in Figs. 6, 7, and 8,

respectively, along with ROI(1) as a function of time.

While the larger ROI tends to result in smaller RMSEs,

the solution can be unstable when the observations are

sparse as indicated by the missing red curve in Fig. 6.

The optimal choice of ROI must lower the RMSE,

while maintaining a stable solution. In Table 6 we show

the temporal mean of RMSE from time step 1000 to

time step 5000 for different number of observations and

fixed/adaptive ROI. When m 5 30, the temporal mean

of RMSE for the green, blue, cyan, and black curve is

0.213, 0.2274, 0.4295, and 0.2296, respectively. We find

that the ROI(1) value becomes stable after a few steps

of data assimilation and lies around 20.2, and the

RMSEs of the black, blue, and green curves are in-

distinguishable. In this case the adaptive method al-

most gives the best ROI. On the other hand, we found

that the resulting ROI is smaller when the observation

density increases. This is likely because assimilating

denser observations may cause the ensemble correla-

tion to be more narrowly supported, which then leads

to a smaller localization radius by this algorithm. Our

FIG. 5. AdaptiveROI from algorithmA1 as a function of time for

different ensemble sizes. We can see that for larger ensemble size

the resulting ROI(1) also gets larger. This experiment is done in

Lorenz-96 system.

FIG. 6. Comparison of spatial RMSE of ensemble mean using

adaptive ROI with that using fixed ROI 5 8, 16, and 24 in the

Lorenz-96 system.We can see that the ROI(1) converges to around

20 after a few time steps. The RMSE for adaptive ROI(1) is com-

parable with that for optimal ROI 5 24. The bottom plot shows

how ROI(1) evolves with time.
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speculation is based on Zhang et al. (2006, 729–730)

and Daley and Menard (1993, see their Fig. 2), which is

often called the ‘‘whitening’’ of the analysis error

spectrum in that larger-scale error will be more effec-

tively reduced first with more observations assimilated.

In the meantime it is known that with denser observa-

tions larger localization radius can be applied to im-

prove the mean update while also maintaining the

stability of the solution. When m 5 60, the temporal

mean of the red, green, blue, cyan, and black curves is

0.1038, 0.1061, 0.1138, 0.1381, and 0.1112. The temporal

mean of ROI(1) in this case is 18.2209. When m 5 120,

the temporal mean of the red, green, blue, cyan, and

black curves is 0.0652, 0.0689, 0.0718, 0.0854, and 0.0713

while the temporal mean of ROI(1) is 16.5928. In Fig. 8,

we see that the blue and black curves are nearly identical,

because the temporal mean ROI(1) is approximately 16.

And from the graph we can easily see that the red curve is

consistently better than the black curve implying that

there is still room to reduce the RMSE by enlarging the

ROI. This suggests that more work needs to be done to

take observation density into account so the localization

radius determinedby this algorithm can bemore efficient.

On the other hand, comparing the graphs in the top

panels we see that with more observations the RMSE

reduces more quickly and it is hard to distinguish the

curves for the first 50 time steps in Figs. 7 and 8.

3) CURVE OF F VALUE

The value of the cost function F for each observation

in the m 5 30 cases is plotted in the top of Fig. 9 as

a function of ROI for time steps 2, 120, and 1020. The

TABLE 6. The temporal RMSE of the ensemble mean from time steps 1000 to 5000 in the Lorenz-96 system for different observation

densities and fixed/adaptive ROI. NaN refers to missing data caused by frequent model breakdown.

Red (ROI 5 30) Green (ROI 5 24) Blue (ROI 5 16) Cyan (ROI 5 8) Black (adaptive ROI)

m 5 30 NaN 0.213 0.2274 0.4295 0.2296

m 5 60 0.1038 0.1061 0.1138 0.1381 0.1112

m 5 120 0.0652 0.0689 0.0718 0.0854 0.0713

FIG. 7. Comparison of spatial RMSE of ensemble mean using

adaptive ROI with that using fixed ROI 5 8, 16, . . . , 30 in the

Lorenz-96 system.We can see that the ROI(1) converges to around

18 after a few time steps. The RMSE for adaptive ROI(1) is slightly

larger than that for optimal ROI5 30. The bottom plot shows how

ROI(1) evolves with time.

FIG. 8. Comparison of spatial RMSE of ensemble mean using

adaptive ROI with that using fixed ROI 5 8, 16, . . . , 30 in the

Lorenz-96 system.We can see that the ROI(1) converges to around

16 after a few time steps. The RMSE for adaptive ROI(1) is slightly

larger than that for optimal ROI5 30. The bottom plot shows how

ROI(1) evolves with time.
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ensemble size N 5 61. The red dots indicate where F is

a minimum for each observation. In the bottom panels,

the curves are the (rescaled) estimated probability den-

sity of all possible ROIs. The blue dot shows where the

maximum likelihood is taken, hence it is also the final

ROI(1) we use for localization at each time step. The

curves in the top panels are almost convex, making

finding the minimum value (red dots) of F for each ob-

servation not a trivial problem. This is also the conse-

quence of adding the penalty term to the cost function.

The bottom panels show that the optimal ROI(1) for each

observation is distributed in a way that the probability

density function of ROI(1) only has one peak (i.e., the

maximum likelihood estimate is clearly well defined).

If the density function has two peaks, then it is not easy

to determine a unique localization radius. In that case,

one can try dividing observations into groups so for

each group of observations the probability density

function of ROI(1) is better behaved. This aspect of the

algorithm needs further exploration in the future.

5. Discussion and summary

In this article we first presented a cost function ap-

proach to analyze the sampling error issue in the case

where the true covariance is known. Then we generalized

this method to the case where the true covariance is not

known. We presented a probabilistic approach to de-

termine the localization radius adaptively when serial

ensemble square root filters are used to assimilate un-

correlated observations. The advantage of this method is

that it uses the information from the ensemble members

and observations only within a single assimilation window.

Further the computational cost of this algorithm is small

and its performance in the Lorenz-96 system is promising.

We compared the results from this probabilistic method

with that from the deterministic method in the case that

the true covariance is known. The results show that the

probabilistic method gives more useful radius of influence

for long time implementation than the deterministic

method.As a side result, we find that in order to determine

a good localization radius, one needs to consider more

than simply sampling error. In particular, the dynamical

property of the model needs to be taken into account.

There are severe issues worth further discussion and

investigation. First of all, the algorithm under discussion

does not utilize any information regarding the observation

density. As a consequence, the ROI(1) is not the optimal

radius of influence when observations are dense. Second

the algorithm in this article is based on serial ensemble

square root Kalman filters and has the requirement that

the observational operator H must be the restriction op-

erator and that observations must be uncorrelated, which

must be eliminated in the future work. Third the output of

ROI(0) in the experiments in Lorenz-96 system, where the

true covariance is approximated by 6000 ensemble mem-

bers, is clearly not optimal according to the curves in

Fig. 8, suggesting again that in order to get a good local-

ization radius other system dynamics besides sampling

error need to be considered. On the other hand the choice

of a noninformative prior and the use of an empirical

penalty term are not necessarily to be optimal as presented

in this article. Deriving a useful mathematical formula for

other choices of prior is a challenging problem.

FIG. 9. (top) F-value curves [defined in Eq. (11)] for different observations and different time steps, and (bottom) the estimated

(rescaled) probability density of ROI. This experiment is done in the Lorenz-96 system. Since we have m5 30 observations, we have

30 curves in each panel at the top. The red dots are where the minimum of F value are taken for each observation. The blue dots are the

maximum likelihood estimate of ROI(1) at each time step. Hence, the blue dots are the output ROI(1) of algorithm A1 at each time

step.
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There are several ways to make modifications in the

algorithm in order to make use of more statistical tools.

For example, we can generalize the concept of maximum

likelihood as the ‘‘peaks of the density function.’’ More

precisely speaking, if the probability density function of

ROI(1) has more than one peak, it may be more wise to

use the different peak values as the ROI for different

observations rather than using only the peak value at the

maximum likelihood estimate. One can also try incor-

porating this scheme with other methods. For example,

one can consider taking observational impact into

account to get a weightedmaximum likelihood estimate.

Future research is also warranted to extend the current

one-dimensional study to 2D or 3D as well as for co-

variance across different physical variable (e.g., between

temperature and winds).
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APPENDIX

Mathematical Derivation

a. Notation

For convenience the notation in this appendix is a little

different from those in the main context. For example, Bs

in the appendix is not sample covariance, but (N2 1)Bs
Loc;

B is actually BLoc; the true regression coefficient is not

denoted by r t
i, but by ri; and n is actually short for nLoc.

b. Review of setup

We now consider how to determine the localization ra-

dius when assimilating a single observation. Since we only

assimilate one observation each time, for the convenience

ofnotation,wealwaysassume theobservation is on thefirst

grid point. The observation operatorH is a row vector in

this case and more specifically H 5 (1, 0, . . . , . . . , 0).

Let ri
s be the regression coefficient for the ith variable

when using the pure sample covariance matrix. Let ri be

the regression coefficient for the ith variable when using

the true covariance matrix. Then the regression co-

efficient for the ith variable when using localized sample

covariance matrix is rsi ri where ri 5 GC(ROI, di).

We do not know what the true covariance is hence

we think of the true covariance as a random matrix.

Let Bs be N 2 1 times the sample covariance matrix.

Let p(B jBs) be the probability density of the true covari-

ance matrix given Bs. Then

p(B jBs)5
p(B,Bs)

p(Bs)
} p(B,Bs)5 p(Bs jB)p(B) .

Let B5 (bij), B
s 5 (bsij), R be the observational co-

variance, H 5 (1, 0, . . . , 0).

Then

rsi 5
bs1,i/(N2 1)

R1 bs1,1/(N2 1)
5

bs1,i
(N2 1)R1 bs11

, and

ri 5
b1,i

R1b1,1
.

Let n 5 nLoc be the number of state variables within

distance ROI to the observation and N be the ensemble

size. We require N . nLoc.

We define functions F1 and F2:

F1(ROI)5C(S)

ð
�
n

i52

[(rir
s
i 2 ri)

22 r2i ]p(B
s jB)p(B) dB ,

and

F2(ROI)5C(S)

ð
�
n

i52

r2i (r
s
i 2 ri)

2p(Bs jB)p(B) dB ,

where

C(S)5
1

p(Bs)

is a constant depending only on the sample and n

such that

C(S)

ð
p(Bs jB)p(B) dB5 1. (A1)

We want to minimize the following:

F(ROI)5F1(ROI)1F2(ROI). (A2)

In this draft we use Jeffreys prior: p(B)51/[det(B)(n11)/2].

The notations are

dB5 db1,1db1,2 . . . db1,ndb2,2 . . . db2,n . . . dbn,n

and etr(A)5 etr(A)

(Muirhead 1982).
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c. Mathematical derivation

1) FIRST WE COMPUTE C(S):

15C(S)

ð
p(Bs jB)p(B) dB5

C(S)

2[n(N21)/2]Gn

�
N2 1

2

� ð det(Bs)[(N2n22)/2]

det(B)(N21)/2
etr

�
2
1

2
B21Bs

�
1

det(B)(N11)/2
dB

5
C(S)

2[n(N21)/2]Gn

�
N2 1

2

� ð det(Bs)[(N2n22)/2]

det(B)(N1n)/2
etr

�
2
1

2
B21Bs

�
dB .

Let Cs 5 (Bs)21 and C 5 B21

5
C(S)det(Bs)[(N2n22)/2]

2n(N21)/2Gn

�
N2 1

2

�

3

ð
det(C)(n1N)/2etr

�
2
1

2
C(Cs)21

�
dC21 .

[By Muirhead (1982) theorem 2.1.8, dC21 5
det(C)2n21dC.]

5
C(S)det(Bs)[(N2n22)/2]

2n(N21)/2Gn

�
N2 1

2

�

3

ð
det(C)[(N2n22)/2]etr

�
2
1

2
C(Cs)21

�
dC

[By Muirhead (1982) theorem 2.1.11.]

5
C(S)det(Bs)[(N2n22)/2]

2n(N21)/2Gn

�
N2 1

2

� 2n(N21)/2Gn

3

�
N2 1

2

�
det(Cs)(N21)/2 5

C(S)

det(Bs)(N11)/2
.

Hence,
lemma 1: C(S)5 det(Bs)(n11)/2.

2) COMPUTE C(S)
Ð
rip(B

s jB)p(B) dB

C(S)

ð
rip(B

s jB)p(B) dB5
det(Bs)(N21)/2

2n(N21)/2Gn

�
N2 1

2

�

3

ð
b1i

R1b11
det(B)2(N1n)/2etr

�
2
1

2
B21Bs

�
dB .

Let

T5

�
t1 0

t In21

�
,

where In21 is the (n 2 1) 3 (n 2 1) identity matrix, 0 is

the zero row vector, and t 5 (t2, . . . , tn)
T is a column

vector whose entries are defined by ti52(b1i/bii) for 2#

i# n. We define dT5 dt1, . . . , dtn and dt5 dt2, . . . , dtn.

Let ~B1 be a (n 2 1) 3 (n 2 1) matrix whose entries are

defined by (~B1)ij 5 bi11,j112 b1,i11b1,j11/b11. Then it can

be straightforwardly verified that

TBTT 5

�
1 0

0 ~B1

�
and we have
lemma 2: dB5 2b

n1(1/2)
11 dTd~B1 5 2t2122n

1 dTd~B1.

Because of space limitations we merely remark that

this can be proven by careful but straightforward com-

putation, leaving to the interested reader the task of

filling in the details.

It is easy to see that det(B)5 (1/t21)det(
~B1). So

C(S)

ð
rip(B

s jB)p(B) dB52
det(Bs)(N21)/2

2n(N21)/2Gn

�
N2 1

2

�

3

ð
2ti

11Rt21
tN2n21
1 etr

(
2
1

2
TT

 
1 0
0 ~B21

1

!
TBs

)
det(~B1)

2(N1n)/2 dT d~B1.

It is known that for n 3 n SPD matrix A, dA21 5 det(A)2(n11)dA [see Muirhead (1982), theorem 2.1.8].

Therefore d~B1 5 det(~B21
1 )2nd~B21

1 and

C(S)

ð
rip(B

s jB)p(B) dB52
det(Bs)(N21)/2

2n(N21)/2Gn

�
N2 1

2

� ð 2ti
11Rt21

etr

(
2
1

2
TT

 
1 0
0 ~B21

1

!
TBs

)
tN2n21
1 det(~B21

1 )(N2n)/2 d~B21
1 dT.
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Now define B1 5 ~B21
1 . So

52
det(Bs)(N21)/2

2n(N21)/2Gn

�
N2 1

2

� ð 2ti
11Rt21

etr

�
2
1

2
TT

�
1 0
0 B1

�
TBs

�
tN2n21
1 det(B1)

(N2n)/2 dB1 dT .

Let the ensemble perturbation be E 5

0
B@

e1
..
.

en

1
CA5

�
e1

E1

�
and define di 5 ei 1 tie1. Then by direct computation one

can get

tr

�
TT

�
1 0

0 B1

�
TBs

�
5 tr

�
TT

�
1 0

0 B1

�
TEET

�

5 tr

�
ETTT

�
1 0

0 B1

�
TE

�
5 (e1t1)

2 1 tr

2
664
0
BB@

d2

..

.

dn

1
CCAB1( d2 . . . dn )

3
775 .

Then

C(S)

ð
rip(B

s jB)p(B) dB5

2
det(Bs)(N21)/2

2n(N21)/2Gn

�
N2 1

2

� ð 2ti
11Rt21

t N2n21
1 e2(1/2)t21 je1j2etr

2
6421

2
(dT2 , . . . ,d

T
n )B1

0
B@

d2
..
.

dn

1
CA
3
75det(B1)

(N2n)/2 dB1 dT .

Let Dt 5

0
B@

d2
..
.

dn

1
CA(dT2 , . . . , d

T
n ). Then

C(S)

ð
rip(B

s jB)p(B) dB

52
det(Bs)(N21)/2

2n(N21)/2Gn

�
N2 1

2

� ð 2ti
11Rt21

t N2n21
1 e2(1/2)je

1
j2t21 etr

�
2
1

2
B1Dt

�
det(B1)

(N2n)/2 dB1 dT .

It follows from Muirhead (1982) theorem 2.1.11 thatð
etr

�
2
1

2
B1Dt

�
det(B1)

(N2n)/2 dB15 2N(n21)/2Gn21

�
N

2

�
det(Dt)

2N/2 .

Hence,

C(S)

ð
rip(B

s jB)p(B) dB52

det(Bs)N21/2Gn21

�
N

2

�

je1jN2n222(N2n)/2Gn

�
N2 1

2

�
(ð‘

0

2tN2n21
1

je1j21Rt21
e2(1/2)t21 dt1

)(ð
ti

det(Dt)
N/2

dt

)
.

Let

e5

0
BB@

e1e
T
2

..

.

e1e
T
n

1
CCA

and s5je1jt1e/je1j, (E0)ij5eie
T
j , ei5e1e

T
i , for 2 # i

and j # n.

Then

Dt 5 ssT 1E02
eeT

je1j2
,

ds5

				det ›(s)›(t)

				dt5
					det ›(s2, . . . , sn)›(t2, . . . , tn)

					dt5 je1jn21dt ,

and dT 5 dt1dt.

Hence, it suffices to compute the following:

a1 5

ð‘
0
e2(1/2)je21jt21 t

N2n21
1

11Rt21
dt1 ,
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a25

ð
ti

det(Dt)
N/2

dt ,

a3 5

ð‘
0
e2(1/2)je21jt21 tN2n21

1 dt1 .

Lemma 3: For 2l . n 1 2 and even integer n,ð‘
2‘

� � �
ð‘
2‘

1

(a2 1u211 � � � 1 u2n)
l
du1 . . . dun

5
(2l2 n2 2)!!

(2l2 2)!!
(2p)n/2

Lemma 4: For 2l . n 1 2,
Ð ‘
2‘ . . .

Ð ‘
2‘ [ui/(a

2 1
u21 1 � � � 1 u2n)

l]du1 . . . dun 5 0.

Lemma 5: Let I 2 R
n3n denote the identity matrix and

s 2 R
n be a column vector. Then det(I 1 ssT) 5 1 1 jsj2.

Lemma 6:

a35G

�
N2 n

2

�
2(N2n22)/2

je1jN2n
,

a252
1

je1jn21
1

det

 
E02

ee0

je1j2
!N21/2 ei

je1j2
(N2n21)!!

(N22)!!
(2p)n21/2,

where E0 2 (eeT/je1j2)5VTDV is the singular value de-

composition, and (VT)i is the ith row of the matrix VT.

Proof: Recall that Dt 5 ssT 1E0 2 (eeT/je1j2) and

s5 je1jt1 (e/je1j):

a2 5

ð
ti

det(Dt)
N/2

dt

5

ð
si

je1jdet(ssT 1VTDV)N/2
2

ei

je1j2det(ssT 1VTDV)N/2
dt

5
1

je1jn
ð

si

det(ssT 1VTDV)N/2
ds2

1

je1jn11

ð
ei

det(ssT 1VTDV)N/2
ds .

Let b5
ffiffiffiffiffiffiffiffiffi
D21

p
Vs as before, then s5VT

ffiffiffiffi
D

p
b and ds5 det(D)1/2db:

5
1

je1jndet(D)(N21)/2

ð
(VT)i

ffiffiffiffi
D

p
b

det(bbT 1 I)N/2
db2

ei

je1jn11det(D)(N21)/2

ð
1

det(I1bbT)N/2
db

52
1

je1jn21det(D)(N21)/2

ei

je1j2
(N2 n2 1)!!

(N2 2)!!
(2p)(n21)/2 ,

where a3 is essentially aGamma function.One can easily

get the desired expression of a3 by substitution.

Let

D5E02
eeT

je1j2

then

C(S)

ð
rip(B

s jB)p(B) dB

5

det(Bs)(N21)/2Gn21

�
N

2

�

je1jN2n222(N2n)/2Gn

�
N2 1

2

�
(ð‘

0

2tN2n21
1

je1j21Rt21
e2(1/2)t21 dt1

)
1

je1jn21

1

det(D)(N21)/2

ei

je1j2
(N2 n2 1)!!

(N2 2)!!
(2p)(n21)/2 .

Recall the following (well known) identities about

multivariate gamma functions (assuming n, N are both

odd numbers):

Gn

�
N21

2

�
5pn(n21)/4G

�
N21

2

�
G

�
N22

2

�
...G

�
N2n

2

�
,
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Gn21

�
N

2

�
5p[(n22)(n21)]/4G

�
N

2

�
G

�
N21

2

�
...G

�
N2n12

2

�
,

G

�
N2n11

2

�
G

�
N2n

2

�
5211n2N ffiffiffiffi

p
p

G(N2n) ,

G

�
N

2

�
5 2(12N)/2 ffiffiffiffi

p
p

(N2 2)!!

It is not hard to check that

det(Bs)5 det(D)je1j2 .

Hence (combining all the above identities), we have

lemma 7:

C(S)

ð
rip(B

s jB)p(B) dB

5 rsi

ð‘
0

tN2n21
1

je1j21Rt21
e2(1/2)t21 dt1ð‘

0

tN2n21
1

je1j2 1 (N2 1)R
e2(1/2)t21 dt1

. (A3)

3) COMPUTE C(S)
Ð
r2i p(B

s jB)p(B) dB:
By similar derivation we can get

C(S)

ð
r2i p(B

s jB)p(B) dB

5

det(Bs)(N21)/2Gn21

�
N

2

�

je1jN2n242(N2n)/2Gn

�
N2 1

2

�

3

8><
>:
ð‘
0

2tN2n21
1

(je1j21Rt21)
2
e2(1/2)t21 dt1

9>=
>;
(ð

t2i

det(Dt)
N/2

dt

)
.

Hence, it suffices to computeð
t2i

det(Dt)
N/2

dt .

Lemma 8:

dt

det(Dt)
N/2

5
db

det(D)(N21)/2(11 jbj2)N/2je1jn21
.

It is easy to see that by symmetry when i 6¼ j

ð bibj

11 jbj2
db5

ð
bi

11 jbj2
db5 0,

ð
b2
i

11 jbj2
db5

ð
b2
j

11 jbj2
db .

On the other hand,

t2i 5
1

je1j2
(
�
n21

j51

(VT)
2

ijdjjb
2
j

)
1

(
�
i6¼j

( � � � )bibj

)

1

(
�
n21

j51

( � � � )bj

)
1

e2i

je1j4
.

Hence, one can derive

ð
t2i

det(Dt)
N/2

dt

5
1

det(D)(N21)/2je1jn21

Dii

je1j2
ð

b2
1

(11 jbj2)N/2
db

"

1
e2i

je1j4
ð

1

(11 jbj2)N/2
db

#
.

Lemma 9: For odd numbers n, 2k:

a5 :5

ð
x21

(a21 x211 x22 1⋯1 x2n21)
k
dx1dx2 . . . dxn21

5
(2k2 n2 3)!!

(2k2 2)!!
p(n21)/22(n21)/2 1

a2k2n21
.

And similarly, we can derive

Lemma 10:

C(S)

ð
r2i p(S jB)p(B)dB

5

 
Diije1j2
N2n21

1e2i

!ð‘
0

tN2n21
1

(je1j21Rt21)
2
e2(1/2)t21 dt1ð‘

0
tN2n21
1 e2(1/2)t21 dt1

. (A4)

Combining all the results above, we have the follow-

ing theorem:

Theorem 5.1:

F1(ROI)5�
n

i52

8>>>><
>>>>:
ri(r

s
i )
222rir

s
i ei

ð‘
0
e2(1/2)t21

tN2n21
1

Rt211je1j2
dt1ð‘

0
e2(1/2)t21 tN2n21

1 dt1

9>>>>=
>>>>;
,

(A5)
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F2(ROI)5�
n

i52

r2i

8>>>>>><
>>>>>>:
(rsi )

222rsi ei

ð‘
0
e2(1/2)t21

tN2n21
1

Rt21 1 je1j2
dt1ð‘

0
e2(1/2)t21 tN2n21

1 dt1

1

 
Diije1j2

N2 n21
1 e2i

!ð‘
0
e2(1/2)t21

tN2n21
1

(Rt211je1j2)2
dt1ð‘

0
e2(1/2)t21 tN2n21

1 dt1

9>>>>>>=
>>>>>>;
,

(A6)

where Dii is the ith diagonal element of D.

It is not hard to see that

rsi 5
ei

(N2 1)R1 je1j2
.

And by doing the same substitution as in the com-

putation of a3 in the proof of lemma 7, it is not hard

to see the equivalence between Eqs. (A5), (A6) and

Eqs. (4), (5).
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