

Comparison of Gravity Waves from High Resolution WACCM Simulations with Observations

sun

Han-Li Liu

High Altitude Observatory

National Center for Atmospheric Research

earth. connections

Motivation and Objective

- Gravity waves are important for middle and upper atmosphere circulation and transport.
- Gravity wave perturbations strongly affect ionosphere E and F region electrodynamics.
- Examine gravity wave energy density, momentum fluxes, and wave characteristics as resolved by WACCM-SE NE120-NP4/L209 and compare with observations:
 - Seasonal variation
 - Altitude, latitude, and longitude dependence
 - Spectral dependence
 - Intermittency

WACCM With Spectral Element Core

- NCAR Whole Atmosphere Community Climate Model (WACCM, 0-145km) with continuous Galerkin spectral finite element dynamical core (solved on cubed-sphere—so no polar singularity).
- Resolution: quasi-uniform grid ~25km horizontal;
 0.1 scale height (500-700m) vertical.
- Scalable up to 10000+ cores on NSF NWSC/ Yellowstone.
- GW parameterization turned off.

Surface

Lower Thermosphere

Liu et al., 2014

Power Spectrum Density: Altitude Dependence

Analysis Methods

- Gravity wave momentum flux-method 1:
 - Perturbations with s between 7 and 150
 - Compute fluxes (hourly) and obtain daily average.
 - Construct monthly average based on daily averages.
 - Pros: straightforward, without the need to identify wave events.
 Useful for surveying general morphology of wave activities.
 - Cons: Underestimation, especially for higher frequency waves.
 Problematic for stationary (mountain) waves.
- Gravity wave momentum flux-method 2:
 - By using wavelet filter, reconstruct all field variables in 5 scale ranges in zonal direction: 0-100km, 100-200km, 200-400km, 400-800km, 800-1600km.
 - Compute fluxes over the respective scale ranges. Can study scale dependence.
 - More expensive and current used for case studies, and to check method 1. Problematic for waves propagating predominantly meridional.
- Both absolute and directional fluxes are calculated.

Zonally/daily averaged MFs from two methods

Solid lines: Method 2; Dash lines: Method 1.

Monthly mean Absolute MF

MF Vertical Variation in July: Tropopause to Lower Thermosphere

Variabilities: Daily to Seasonal

Zonal MF (µPa) at 90km July 5 555 Zonal MF (µPa) at 90km July 5 555 Zonal MF (µPa) at 90km

~100GW at lower thermosphere, comparable to Joule heating budget of the thermosphere.

Probability Density Function

Hertzog et al., 2012

Hertzog et al., 2012

Probability Density Function

0.0

-0.5

-1.5

0.0

-0.5

-1.5

-2.0

WRF Driven by WACCM (a) (a) (b) -170 -170 -160 -160 -150 -150 1.2 0.10 80.0 80.0 Normalized Momentum Flux **WRF-25** 1.0 0.16 WACCM 0.8 0.08 ģ Ŕ 0.6 0.00 0.4 ୍¦ନ୍[⊫] افا ا 0.2 -0.16 0.0 -170 -150 -160 -150 -170 -160 Phase Speed (m/s) (a) WRF 25 km (b) WRF 15 km Wavelength (km) (b) WACCM 25 km Wavelength (km) Longitude (degree) (c) WRF 10 km Longitude (degree) (d) WRF 4 km Wavelength (km) Longitude (degree) Longitude (degree) 190 195 Longitude (degree)

Wu et al., In preparation

Summary (1)

- WACCM-SE NE120/L209 can resolve gravity waves with horizontal scales of ~250km without severe numerical damping.
- Scale dependence
 - Contribution to zonal momentum flux comes mostly from waves with zonal scales larger than 400km.
 - Increasingly more contribution from smaller scales at increasing altitude. Consistent with the increasingly shallower slope of PSD.
 - Stratospheric/mesospheric wind too strong and reversal altitude too high, probably due to lack of wave activities for scales below ~250km.
- Intermittency and seasonal dependence: In general agreement with observations.

Summary (2)

- Temporal and spatial variation: General features in good agreement with observations:
 - Stratosphere and lower mesosphere: Strong wave activities at winter middle and high latitudes; secondary peak over summer subtropical region; southern winter strongest, from orography and fronts and/or jets.
 - Summer peak shifts to higher latitudes with altitudes, and becomes stronger relative to the winter peak.
 - Wave activity has a strong annual cycle at lower altitudes and a strong semi-annual cycle at higher altitudes.
 - Momentum flux strength and direction affected by wind.
 Longitude variation modulated by planetary waves and tides.
 - Wave activities over summer Atlantic notably weaker in model than in observations.
- Gravity wave energy input to the thermosphere is comparable to Joule heating (~100GW).

Zonal Wind and GW Forcing

Liu et al., 2014

Variation of the northern winter peak

MF in the Lower Thermosphere

MF Vertical Variation in January: Tropopause to Lower Thermosphere

Zonal Momentum Fluxes using Two Methods

Scale Dependence of MF (zonal)

Zonal MF at 110km July 5 200-400km Zonal MF at 110km July 5 400-800km Zonal MF at 110km July 5 800-1600km

Lat (deg)

-90L

0

45

Po