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* Deep Gravity Wave “Hot Spots”
over New Zealand & Tasmania:

—26 G-V & 13 Falcon flights sampled
frequent, but episodic gravity wave events

— What influences the predictability of
gravity waves and deep propagation?

— What are the wave source characteristics?

* Predictability: 20-hPa Winds Jun-Jul 2014

—Nonlinear numerical models exhibit a sensitive dependence on initial state.

—Quantify initial state sensitivity & predictability of wave launching and GWs
—Understand implications for interpreting GW characteristics and fluxes

« “Trailing” Gravity Waves and Sources:
—Frequent “trailing” gravity waves observed near the New Zealand S. Island
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—Examine role of lateral wind shear associated with SH stratospheric polar jet

—ldentify characteristics and sources of “trailing” and non-orographic waves



Optimal
Perturbation

Adjoint is the transpose of the TLM, and evolves
the gradient of a response function (J) with
respect to x, backward through time.

Errico (1997); Langland et al. (1995); Doyle et al. (2012; 2014) Adapted from Brett Hoover (UW) 3




Predictability of Deep Propagating GWs

What are the predictability characteristics of deep propagating GWs?
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DEEPWAVE G-V Predlctablllty MlSSlons

_ RF03 (13 June
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» G-V predictability flights (w/ drops) sampled initial condition sensitivity
regions upstream of S. Alps prior to gravity wave events (3 flights; 6 IOPs)

 Sensitivities located in dynamically active regions (jet, front, convection).

» Evolved adjoint perturbations are large enough to impact wave launching.

» G-V gravity wave “verification” flights (following day) observed deep
propagating waves and are used to quantify the predictability.




Moist Adjoint Sensitivity
June-July 2014 Moisture Sensitivity Maximum (m? s' (g Kg)-')

1.2

Moisture Sensitivity Maximum (m?2 s-2 (gKg)-")
o
(o)}

0.4 [ ?
IOP #
NZ Flight =°2 -
Tasmania 2 P2(P i1
S.Ocean o — 00@126@‘ ~—
. e a 6/1 6/4 6/7 6/106/136/166/196/226/256/28 71 7/14 717 7/107/137/167/197/227/257/287/31
Predictability Month / Day (2014)

* Maximum sensitivity of the low-level wind speed (GW launching) over
the S. Alps (1 km deep response function) to the initial moisture.

« Maxima correspond to the |OP periods in general.
 Largest moisture sensitivity peaks: IOPs 1, 8, 9, lesser 4, 10, 13




G-V Targeted Dropsonde Impact
Adjoint Forecast Sensitivity to Observation Diagnostics
Total Impact

12 h Forecast Error Norm Reduction (J/k
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* Adjoint (model+DA) observation impact on
12-h forecasts for the 3 predictability flights.

» Targeted dropsondes have the largest
impact on a per observation basis, and 4t
largest impact overall.

* Forecasts with dropsondes assimilated in
4D-Var differ greatly in wave launching.



COAMPS Ensemble
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* 40 members: IC/BC’s perturbations from global Ensemble Transform
« Ensemble mean IC/BC interpolated from a NAVGEM analysis

» 93 vertical levels: 38 levels below 10 km, 61 levels below 20 km
* Ensemble runs of w and MFx for 14 June and 04 July




COAMPS Ensemble

Ensemble Gravity Wave Forecasts
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* 13 km: Weak wave, some phase uncertainty
* 40 km: Wave grows with height, large phase

and amplitude uncertainty near stratopause
* Large uncertainty in zonal momentum flux
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“Trailing” Gravity Waves
during DEEPWAVE
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Frequent cases during DEEPWAVE of observations
of “trailing” gravity waves oriented nearly normal to the terrain ridge.
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Gravity Waves in Sheared Flow
Idealized Shear Experiments
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*High wind speeds imply a large component of wind normal to horizontal
wavevector (and intrinsic horizontal group velocity), which allows advection
of wave energy perpendicular to wavevector (parallel to phase lines) (see
Dunkerton 1984, Sato et al. 2009, Vosper 2015)

«Zonal momentum flux in the stratosphere shows refraction due to shear



Gravity Waves in Sheared Flow

Idealized Shear Experiments

2007.07.24 Ascending 2 hPa Vertical Velocity (65 m s Jet)
soes. ) Max =330 K 28 km (~10 hPa

3600 km
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«Stronger shear leads to greater wave refraction and further propagation
of the wave energy into the jet and downstream

*Marked asymmetries are apparent in the waves due to the refraction
into the jet and absorption at directional critical lines
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Gravity Waves in Sheared Flow

Idealized Shear Experiments with New Zealand Terrain
Vertical Velocity (70 m s Jet)
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New Zealand terrain launches gravity waves that are refracted by the
shear in a similar manner to the idealized hill.
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Sensitivity of TWs to Topography

CNTRL: Real Terrain

)

Meridional Wave Number

8%
 oet 21 2014%10P 5,715 km 4f%d

-
N

(210, 480)

ok

Zonal Wave Number (k

RIDGE: a smooth ridge with h_ =3 km

H QUNVY T W

PEAKS: Multiple (4) peaks along ridge

B e

oy s

s S e T Tt T
e = ] : SANCCENEENNN
i S e AN R RN
s, et | Y ARSI ENEN

\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\
~~~~~~~~~~~~~~~~~~~

\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\

\\\\\\\\\\\\\
\\\\\\\
\\\\\\\
TR R R N R N NS

N B e e T e S N
I\\\\\\\\\\\

A R

-~
-~
~ o~

~

-

N

=N
e

RIDGE

12

] 6 12 18
Zonal Wave Number (k

(270,480) |

24

SRS T e

Zonal Momentum Flux in Wave Number Space

. PEAKS (140,320)
12|
6.
of |
0 6 12 18 24

Zonal Wave Number (k

Wavelength, wave strength, and momentum fluxes are sensitive to
topography, suggestive that nature of the terrain is closely linked to the

trailing gravity waves characteristics in stratosphere




Gravity Wave Source Identification
Trailing Waves in IOP 3 (RF04)
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* Adjoint identifies most sensitive portion of the Alps for wave launching
Trailing waves located to S of NZ are launched from S. Alps (south of Cook)

* Excitation of waves by non-orographic sources for detached trailing GWs




Grawtx Wave Source Identification
on-Orographic Waves ( RF25)
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* Adjoint identifies exit region of jet as a possible source (in at Ieast 2 cases)
*GWs excited by non-linear imbalance in the high-amplitude pattern



Summary and Conclusions

» Gravity Wave Predictability

—Sensitive regions (particularly moisture) are in physically meaningful
locations important for wave launching: troughs, jets, and convection

—DEEPWAVE dropsondes have a large positive impact on gravity wave
launching and impacts the explicit prediction of gravity waves

—Ensembles highlight large uncertainties in the prediction of mountain wave
characteristics and momentum flux

« Gravity Wave Sources

—Evidence of GW refraction due to lateral shear from the SH polar jet,
explains the existence of “trailing” gravity waves in the lee of New Zealand

—Implications for momentum fluxes and GW drag parameterizations

—Preliminary adjoint results show non-orographic GWs generated in jet exit
and along fronts in moist convection
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Trailing Gravity Waves

» Trailing Wave source? = o Fx |
—GW Launching by Topography T BN

 What determines the TW characteristics? | ;x 1
—Topography 4 :

—Vertical and lateral wind shear
 How does shear impact the GWs?
—Vertical directional shear filters out

shorter waves . .
—The left branch of waves are dissipated | | ,¥8% 1
or refracted due to lateral shear 0 0.5 1

—(Uu’v(z’+Vv’w’)

' i ?
Why are TWs present in stratosphere* According to Eliassen-Palm Theorem: For

—TWs in stratosphere are more apparent linear stationary waves, the wave energy

due to shear filtering flux is related to momentum flux as
p'w'/ p(z)=- [Uu'w'+ Vv'w']

—Development of TWs may require wave

refraction due to strong lateral shear * Wave energy fluxis much reduced
from troposphere to stratosphere

* Instratosphere, TWs are consistent
with EP theorem.
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Gravity Wave Source Identification
Trailing Waves in IOP 6 (RF07)

COAMPS Adjoint Optimal Perturbation w (15 hPa); 1800 UTC 19 June (12 h)
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Grawtx Wave Source Identification
on-Orographic Waves (RF24)
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* Adjoint identifies left exit region of jet as possible source

*GWs excited by decelerations in high-amplitude pattern.




Gravity Wave Source Identification
Non-Orographic Wave Case
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Sensitivity maximum is locations upstream of the response function near the

exit region of a very strong jet and near 7 km near the top of a region of
saturated rising motion (e.g., grid scale precipitation).
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Gravity Wave Source Identification
_Non-Orographic Wave Case
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Adjoint optimal perturbation project on to the gravity wav packet generated
by the exit region of the jet and precipitation processes, demonstrating the
physical significance of the adjoint sensitivity.
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Adjoint Optimal Perturbation Growth
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*Rapid growth for 24 & 28 June cases - slower growth for 13 June case.

« Growth most rapid at medium (synoptic) scales.




