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Stratospheric Winds and Regional Climate

Skillful long-range prediction of the North Atlantic Oscillation
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QBO & Tropical Cyclone Activity
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Evidence the QBO may be changing with warming climate
Kawatani and Hamilton [2013]:

QBO amplitude at 70hPa tropical upwelling at 70hPa
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Evidence that QBO winds near tropopause have grown weaker with time
Consistent with model predictions that the Brewer-Dobson circulation is
growing stronger, and may continue to do so in the future.

Models also tend to predict the QBO period will get longer in the future.



Richter et al [2015]: QBO in the NCAR 60-Level CAM5 Model
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Gravity Waves and the QBO

Kawatani et al. [2010]: Analysis of T213 spectral model with 300m
vertical resolution and no gravity wave parameterization

Internal inertia—gravity

Wind shear EQWs waves
Eastward ~25%-50% ~50%—-75%
Westward Up to 10% during weak A, = 1000 km main

westward wind phase wave forcing*
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The quasi-biennial oscillation in a warmer climate:

sensitivity to different gravity wave parameterizations
Schirber et al [2014]
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Effects of changes to the model’s gravity
wave scheme on the simulated QBO.
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* Subtle changes in the gravity wave parameterization details gave different
predictions for changes in the QBO in a warmer climate.

e Different cases have almost the same average momentum flux spectrum,
but assume either frequent weak waves or intermittent stronger waves.




Observations and Speculations
in the Literature

* Taguchi [2010]: Evidence that Composites [Taguchi, 2010]
1. QBO period shorter El Nino
and longer La Nina.

2. QBO wind amplitude 10%
stronger La Nina.

* Geller et al. [2016] suggest:
1. GW momentum flux is
higher during El Nino than La
Nina, but
2. The phase speed spectrum

is broader during La Nina
than El Nino. LAG (months)

(hPa)

PRES.

(hPa)

PRES.



Model Study with Observational Validation

e Study of tropical gravity waves in differing ENSO
conditions

e Observationally constrained model:
- Global idealized primitive equation model
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e Study of tropical gravity waves in differing ENSO
conditions

* Observationally constrained model:
- Global idealized primitive equation model
- Forced with latent heating derived from ..
observed precipitation rates

- Zonal mean state constrained to MERRA
reanalysis

- Validation of waves with 3-dimensional limb-
sounding momentum fluxes



Model Study with Observational Validation

e Study of tropical gravity waves in differing ENSO
conditions

* Observationally constrained model:

Global idealized primitive equation model

Forced with latent heating derived from
observed precipitation rates
Zonal mean winds and temperatures &

constrained to MERRA reanalysis



Model Study with Observational Validation

e Study of tropical gravity waves in differing ENSO
conditions

* Observationally constrained model:

Global idealized primitive equation model

Forced with latent heating derived from
observed precipitation rates

Zonal mean state constrained to MERRA
reanalysis
Validation of waves with 3-dimensional &~

limb-sounding momentum fluxes



Need “3D” information
off the measurement
track to correct the
major known bias in
these momentum fluxes

HIRDLS has best coverage and

resolution in lower stratosphere.

Method is limited to a “2D”
approach due to the satellite
sampling pattern.
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3D Method: Combines GPS and HIRDLS

* Previous analysis compared amplitudes of largest wave components of co-
located profiles, suggested HIRDLS & COSMIC RO temperatures have
approximately same vertical resolution [Gille et al 2008; Barnett et al 2008].

 Wright et al. (2011): HIRDLS resolution =1 km, COSMIC slightly better, and
COSMIC amplitudes slightly larger.
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Occurrence

Combined GPS a

nd HIRDLS

Alexander [2015]

Distributions of Horizontal Wavelength and Momentum Flux

2D = HIRDLS-only 3D = HIRDLS+COSMIC
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Median horizontal wavelength change is small:
270 km 2 250 km

Mean wavelength decreases substantially:
888 km = 354 km
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Momentum Flux (mPa)

Mean absolute momentum flux
increases by a factor of 3.7:
1.7 mPa = 6.4 mPa
 Amplitudes display long large-
amplitude tails.




Compare to Geller et al [2013] Momentum Flux
GPS/HIRDLS DJF GPS/HIRDLS JUA
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* Dry global primitive
equation model
[Ortland et al 2011]

 Waves forced by
latent heating \ OS] N K
Q(x,y,z,t) 30°S—-30°N L) ‘

* Heating derived from CMORPH rain observations [Joyce et al. 2004]
Method of Ryu et al. [2011] includes convective and stratiform heating profiles




Dry global primitive
equation model
[Ortland et al 2011]

Waves forced by
latent heating S AR
a(xy,z,t) 30°s-30°N [N L) N

Heating derived from CMORPH rain observations [Joyce et al. 2004]
Method of Ryu et al. [2011] includes convective and stratiform heating profiles
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Model Comparisons: Dec 2006 vs Dec 2007

2004

2005

El Nino Case
Dec 2006

QBO Period
=20.9 mo

QBO Amplitude
=0.90

2006

2007 2008

La Nina Case
Dec 2007

QBO Period
=25.1mo

QBO Amplitude
=1.49

Yuan et al. [2013]:

El Nino Mean La Nina Mean
QBO Period QBO Period
=25.0mo =31.8 mo

QBO Amplitude
=1.15

QBO Amplitude
=1.24

- Geller et al. [2016] hypotheses

The El Nino year has significantly
shorter QBO period

- larger gravity wave fluxes
The La Nina year has significantly
larger QBO amplitude

-> broader phase speed spectrum




Total heating DeCOG
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Total heating DeCO7
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Compare Model & Observations

Gravity wave momentum fluxes at 20km:

20°S—20°N Model GPS/HIRDLS HIRDLS-only
Zonal mean flux Dec 2007 2.6 mPa 3.4 mPa 0.8 mPa
Fraction zonal flux Dec 2007 76% 75% N/A

Zonal mean flux Mar-May 2010 PreConcordiasi balloons: 3.9 — 5.4 mPa’
(balloons include a broader spectrum of waves)
"[Jewtoukoff et al., 2013]
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Model Results: Force on the Flow

Fz at 20 km, Dec 21-30 2006
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Zonal Mean Momentum Flux

Average of all longitudes, and altitudes 15-18 km
Wavelengths < 3000 km, Periods < 1 day

El Nino Case La Nina Case
Dec 2006 Dec 2007
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* La Nina Flux > El Nino Flux
* No obvious differences in spectral widths
* No confirmation of Geller et al [2016] hypothesis



Zonal Flux Comparison

Average of all the longitudes, at z=16 km
La Nina/El Nino
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Notes on these results:

e Zonal mean fluxes are 8.5mPa (El Nino), 9.4mPa (La Nina)

* ElI Nino year fluxes are 10-20% larger only for westward waves -5 to -30m/s
and for eastward waves with phase speeds >35 m/s.

* La Nina fluxes are 15-30% larger for eastward phase speeds < 30 m/s and 10%
larger for westward waves < -40m/s.

- Overall, this limited sample does not support the Geller et al. [2016] hypothesis.
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Momentum Flux Distributions

Long duration balloon observations
in the tropics (red and black) show
log-normal distributions >

Model fluxes display same lognormal

shape, although fewer large values
near the balloon altitude (20km).

2007 La Nina > 2006 El Nino
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Conclusions

* Combined HIRDLS + COSMIC give 3D momentum flux
corrections ~ 5x in the tropics. Sampling pattern of
HIRDLS combined with wave propagation directions means
traditional 2D methods have large errors in tropics.

Observationally constrained model study comparing Dec
2006 (El Nino) to Dec 2007 (La Nina) conditions does not
confirm previously hypothesized differences in the gravity
wave spectrum.

Gravity waves in climate models are too uniform: Missing
large amplitude waves that will break in the lower
stratosphere affecting QBO wind shears including lower
levels most important for weather and climate effects.




