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7-km GEOS-5 NR

2-year, free-running simulation produced with
GEOS-5

7-km horizontal resolution (0.0625°)
Non-hydrostatic

Cubed sphere, finite volume numerics
Non-orographic parameterized gravity wave drag
after Garcia and Boville, 1994

2nd order divergence damping

Relaxed Arakawa-Schubert moist physics scheme



NR vertical resolution
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NR vertical velocity on 100 hPa level
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Outline

* Global evaluation of NR gravity waves in
the stratosphere
— Comparison to other models
— Comparison to AIRS



January Absolute GW Momentum Flux at 20 km

Kanto 6.29 mPa CAMS 0.60 mPa

HadGEM3 3.99 mPa
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Nature Run 0.6 mPa
(Resolved GWs < 1000 km)

Abs Flux (log,, Pa) at 20 km
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Global variations very
realistic

Mean values on the low
end (comparable to CAMS5)




July Absolute GW Momentum Flux at 20 km

Kanto 6.29 mPa CAMS5 0.50 mPa

Nature Run 0.6 mPa
(Resolved GWs < 1000 km)

Geller et al., 2013 JC

Global variations very
realistic

Mean values on the low
end (comparable to CAM5)




AIRS and NR brightness temperature (T,)

AIRS

anomalies (< 500 km)
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July AIRS & NR T, sampled at AIRS locations:
Number of events

AIRS Thousands of Events

* For AIRS, events identified as amplitudes > 3*noise(T)
* For Nature Run, events identified amplitudes > 0.02K

Events occur with similar global patterns
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July AIRS & NR T, sampled at AIRS locations:

Amplitudes

AIRS Amplitudes (K)

NatureRun Amplitudes (K)
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* AIRS amplitudes are about 5x larger than NR

* Global patterns are very similar
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July AIRS & NR T, sampled at AIRS locations:
Propagation direction

Phase Line
Orientation

NatureRun Azimuth from Eost/West (rod)

Gray = little or no data

* At 30-40km altitude, AIRS sees waves propagating latitudinally into the jets (e.g. Sato et
al., 2009)

* Nature run shows this even more clearly

* AIRS waves propagate mostly within +/- 30 degrees from zonal except in SH winter
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Outline

* Tropical waves and the QBO in the NR
— Evaluation of tropical waves in the NR
— QBO in NR and resolved waves



NR produces broad range of convectively
coupled waves in tropics

TRMM _ Eastward
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NR parameterized GWD and resolved EP-

Pressure [hPa]
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flux divergence
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Resolved EP-Flux divergence < 25 % of parameterized GWD
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NR vertical EP-Flux divergence from different
wavenumber-frequency bins
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Westward small-scale waves
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High-frequency, small scale GWs dominate during westward shear phase

* Kelvin waves provide half of the forcing in eastward shear phase
* In agreement with previous studies (e.g. Kawatani et al., 2010) 17




Pressure [hPa]

NR EP-flux divergence averaged over
shear zones
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Solid lines = Total EP flux
divergence in eastward shear
(red) and westward shear
(blue) zones

' Dashed lines = Only

. eastward (westward) EP
' flux divergence in

. eastward (westward)

' shear zones

Large amount of cancelation in both shear zones and especially in westerly

shear zones. Probably due to vertical resolution and dissipation.
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July 2005

GW sources in the SH

GW (<1000 km) Abs
Mom Flux at 15 km

Binned to 10° lon x 5° lat
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Can we relate large-scale
diagnostics of convection and fronts

in the troposphere to the GW
momentum flux in the lower
stratosphere?
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Convection

July 1, 2005 Precipitation
(hourly average)
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Frontogenesis function

Frontogenesis function at
600 mbar
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ty wave sources

SH grav

July 11, 2005 1:00Z

July 1, 2005 1:00Z
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Spearman rank correlation with GW momentum flux for July

July 2005

SH gravity wave sources

Precipitation

Convection is an important source of GWs in the SH in NR

July 2005

Fronts
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Conclusions

Global pattern of gravity wave absolute momentum flux in NR
compares well to other models but global mean values are on the
lower end

NR is similar to AIRS in global pattern but NR waves have smaller
amplitude and longer wavelength

Resolved small-scale waves in tropics are well-represented and
behaving realistically in NR

Still need parameterized GWs to get QBO—vertical resolution?
Dissipation?

A look at SH sources highlights the importance of convection
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October 2005
Vorcore Nature Run Abs Mom Flux from Resolved

GWs <1000 km at 20 km

October 2005
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AIRS & NR T, sampled at AIRS locations:
Wavelengths

NatureRun Wavelength (km)
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White = little or no data

AIRS Wavelengths are about 2x smaller than NR
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Fraction (%)

Probability distribution of surface
orecipitation compared to TRMM

l = Observation (PR)
W ? pr| e Nature Run
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Precipitation Rate (mm/hr) Precipitation Rate (mm/hr)

* NR>TRMM for light precipitation (<1 mm/hr) and heavy
precipitation (> 20 mm/hr)

NR < TRMM for precipitation between 1 and 20 mm/hr
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Frequency [cpd]

NR vertical EP-Flux compared to that derived
from Global Cloud Imager
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Double lobe structure is present in NR

NR captures the high phase speed lobe




Pressure [hPa]

Pressure [hPa]

NR and MERRA-2 QBO
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Kinetic energy, Power (m"2/s"2)
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Dissipation?

i Pressure-le\l/el=250 hPa ;

10*

| L T | L T | LR

10° 10° 10’
Spherical wavelength (km)

NR KE spectrum follows n3
law for large scales

NR KE spectrum falls off
sharply as horizontal
wavelength approaches
smaller scales

Characteristic of
unrealistically large

dissipation at the smallest
resolved model scales
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Pressure [hPa]

Vertical resolution?

Zonal Wind [m/s] EP-Flux Div [m/s/day]
10 | 10 |
(a) (b) Control—1° horizontal

resolution

o0l | ool | Doublepl vertical
resolution

72-Level
30" :\fgkg\g'n 1 80 1 Horizontal resolution
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Increasing the horizontal resolution by 16x leads to 4x larger EP flux
divergence near 0 m/s wind line

Doubling vertical resolution leads to 2x larger EP flux divergence near
0 m/s wind line
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NR vertical EP-flux div compared to
MERRA-2 total zonal forcing
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Without large amount of cancelation perhaps the

parameterized GWD could be tuned down
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Pressure hPa Pressure (hPa)

Pressure hPa
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Influence of dynamical core choice?
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* Dry GCM dynamical cores

e (QBO-like oscillations in all

but FV

* Measures of wave activity
much lower in FV

Yao and Jablonowski, 2015 JAS
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log-pressure altitude (km)
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Vertical resolution?
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Geostrophic adjustment

Spontaneous emission of gravity waves from PV anomalies in a
vertical shear produce a gravity wave EP-flux given by:

J=Richardson number

Lott et al., 2010 JAS




Estimate of EP-flux due to PV

July 1, 2005 0:00Z

anomalies

I
]
N
iS

I
.
n
o

-2.8

-3.2

EP-Flux due to GW launched
from PV anomalies near

tropopause

EP Flux [log,, Pa]

July 1, 2005 1:00Z

22

GW (<1000 km) Abs
Mom Flux at 15 km
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