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1. Motivation

The roles of gravaty waves in the atmosphere
To better understand\and quantify non- orograph1c sgurces.
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@ Global energy budget in the ocean

To quantify energy-derived from mesoscale eddies
due to GW-radiation.

v' A possible flux (~1.5TW) estimated by laboratory experiment (Williams et al., 08)
1S usually referred (Ferrari & Wunsch (10) etc.)

LUNISOLAR
TIDES

INTERMAL SURFACE WAVES! | o ;
TIDES TURBULENCE
0.1EJ

IMTERMAL
WAVES

WAINTEMANCE OF ARYESAL STRATIFICATION
BY MIEXING

Arrows: energy fluxes (Terrawaits) Wunsch and Ferrari (2004)



Large scale motions 1n geophysical flow (rotating
stratified flow) are-n€arly balanced ... but limitation.

“Balanced Flow”

GW filtered out by construction.

Flow/evolution obtained from potential vorticity(advection and inversion).
Lorenz(80), Leith(80), Ford(94), Warn(97), Hord et al.(00) etc.; Slow (quasi-)manifold
Gent & McWilliams(83), Spall & McWilliams(92), Sugimote et al.(07a); Balance regimes
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“Spontaneous emission” of gravity waves (Sp-GW)

v" Inevitable radiation.
v

Demonstration in shallow water (Lighthill radiation).
Ford (94), Sugimoto et al. (05, 07b, JAS0S, 12); Analogy with sound wave radiation
Sugimoto et al. (JFM15a), Sugimoto (PoF'15b); Cyclone-anticyclone asymmetry in GW




@ Spontaneous emission of GW (Sp-GW) in continuous fluid

v' The dipole has emerged as a paradigm to understand Sp-GW from both obs. and
1dealized simulations. _Seereviews by Vanneste (13), Plougonven & Zhang (14)
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Generation mechanism (small-scale GW, backreaction, wave

capture)

Y. Yasuda, K. Sato, and N. Sugimoto: A Theoretical Study on the Spontaneous Radiation

of Inertia-gravity Waves Using the Renormalization Group(RG) Method. (JAS2015a, b).
e Construction of the new theory using RG method (Part I).

* Verification of the theory by IMA-NHM simulation (Part Il).
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This Study

Revisits the spontaneous emission of GW in a dipole

@ Long-term simulation to 1dentify the backreaction of GW.
Estimate energy leaks from dipole due to GW.
Dependence on Rossby number (Ro).

Dependence on resolution.

Provide a revised figure of the energy flux for ocean’s

energy budget based on more physical background.




@ Experimental setting
DCPAMS5-plane (Dennou-Club-Planetary Atmospheric Model)

v 3D Primitive equations.efi /~-plane without moist process

v Domain: 3000 km>3000 km*20 km (doubly periodic boundary condition)

v Resolution: 128x128x%80 t0,256x256x80 (Ax,Ay~23.4-11.7 km, AzZ~250 m)
v Sponge layer exist above 15 km

RO Uy, T At Hd
Initial condition & parameter (m/s) _(days) (min) (day)

v Surface modon (Muraki and Snyder, 2007)
v Size: 500 kmx500 kmx5 km

v =10 (1/s), N=0.01 (1/s), 6,/g=30.6/(K s*/m)

Trajectories

—Ro0=0.05 Ro0=0.10—Ro0=0.15
—R0=0.20—R0=0.25—R0=0.30

1000 2000 3000 4000 5000 6000
x [km]




@ Time evolutions of surface pressure and vertical velocity

Ro=0.3 (128x128x80)
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@& Vertical velocities after long-term integration

R0=0.3 (128x128%80)

{a) w [m/s] day 46 {b) w [m/s] day 74

1400 1540 2004 1400 1504 2000
x [km] x [km]

“Quasi-stationary state”.
Deviation from stationarity: emission and dissipation of GW

Emission occurs at well-resolved
scales, and dissipation at the smallest




@ Dependence of the amplitude of GW on Rossby number

{a) Dependence on Ro

For the maximum w,

3.5th power of Ro
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@ Dependence on the resolution (Ro=0.3)
64%x64%80 ‘ 128x%128x%80 256%256%80
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(b) Dependence on resolution Horizontal resolution determines
| the wavenumber of GW
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& Emission 1s well resolved (despite persistent sensitivity of
the small-scale waves to-the resolution).

(¢) Dependence on Resolutian

Energy derived from the
dipole almost saturates
for H192 and H256

0 10 20 30 40 50 60 70 80
day




@ Leakage of energy from the dipole can be estimated.

(b) Dependence an Ro 128x128%80 grids

~15% of TKE derived by
the dipole during 84 days
for Ro=0.3 (~0.2%/day)

normalized total KE

0 10 20 30 40 50 60 70 &0
day {*Ro/0.30)

Physically based upper bound for the leakage
of energy from balanced motions in the ocean



4. Summary and-discussion

& Spontancous-emission of GW 1 a dipole 1s revisited.
e Maximum wave vertical velocity 1s proportional to the resolution.

e The energy extracted by the waves'is weakly sensitive to the
resolution.

e The dipole loses at most 0.2% energy per day to inertia-gravity
waves.

® Global energy budget in the ocean will be revised.

e A maximum flux of energy from balanced motions is estimated by
~0.3 TW, which is weaker than the 1-1.5 TW often considered.

e This estimate 1s still upper bound because balanced eddies tend to
be monopole with weaker Ro and would have kinetic energy only
several tens of percent of the total energy ~13 EJ.
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@ Dependence on Rossby number

(a) Dependence on Ro 128x128%80 grids

Continuous GW

radiation for Ro>0.15
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Power spectra of vertical velocity
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At day 28 for Ro=0.3 runs with different e-folding time of the hyper diffusion 0.025
(blue), 0.05 (light blue), 0.1 (red), 0.2 (purple), 0.5 (green), 1 (yellow), and 2 days (black).




