Statistical Analysis of NGV Flight Level Data from DEEPWAVE

Ron Smith, Chris Kruse, Alison Nugent (Yale University) and the DEEPWAVE Team

Mt. Cook South Island New Zealand

DEEPWAVE PIs D. Fritts R.B. Smith S. Eckermann J. Doyle M. Taylor A Dörnbrack M. Uddstrom

Support from NSF-AGS-1338655 DEEPWAVE NGV aircraft flight level observations

- Location: New Zealand and surrounding ocean
- Observing period: SH Winter: June/July 2014
- Altitude: mostly 12.1km
- NGV Survey legs
 - Total (26 flights, 180 hours)
 - Over New Zealand (97 legs; 49.1 hours)
 - Over Ocean (157 legs; 84.3 hours)
 - Typical leg length = 350km
 - Improved accuracy of flux estimation

NGV Legs: mostly at z=12.1km

NGV Legs: mostly at z=12.1km

Typical balloon soundings during NZ wave events

Two flights over Mt Aspiring Vertical air displacements for RF04 and RF16

Flight level Flux calculations

The fluxes are computed from

- $MFx = \rho < u \uparrow' w \uparrow' >$
- $MFy = \rho < v \uparrow' w \uparrow' >$
- $EFz = \langle p'wl' \rangle$
- $EFx = \langle p'ul' \rangle$
- $EFy = \langle p'vl' \rangle$
- EFzM = -(U*MFx+V*MFy) (Eliassen-Palm, 1960)

Vertical Energy Flux (EFz): all DEEPWAVE NGV flights

Vertical Energy Flux for 14 NZ flights

Zonal Momentum Flux for 14 NZ

Comparing Energy and Momentum Fluxes EFz versus EFzM

Gravity wave breaking

- Weaker winds above 12 km promote wave nonlinearity and breaking (i.e. the "Valve Layer")
- On five occasions, by ascending from 12.1km to 13.2km we could enter a region of wave breaking. (e.g. RF09, Leg 9)
- Characteristics of wave breaking
 - Ambient flow deceleration
 - Steeply rising isentropes
 - High frequency turbulence (scale 500m)
 - Small turbulent EFz; positive MFx

Two mysteries in this NGV data set

- Rapid changes in flux during a flight
- Strong flux cases exhibit a "scale downshift" with dominant wavelength reduced from 60-200km to 20-30km.

Flux transients in RF16

Low pass filter L>60km

> Partitioning flux into long and short waves

Note scale change.

Short wave dominant leg (MFx=130mPa, L=20km)

Conclusions

- 1. Only small fluxes were found over the sea at 12km
- 2. Clear mountain wave properties found over NZ
 - a. Positive vertical energy flux (max EFz = 22W/m2)
 - b. Negative zonal momentum flux (min MFx=-560mPa)
 - c. E-P relationship satisfied
 - d. Strong upstream energy flux (max EFx=130W/m2).
- 3. Wave breaking at 13 and above (Valve layer*)
- 4. Rapid transients in wave fluxes
- 5. "Scale downshifting" in strong events
- 6. Possible non-linear processes
 - a. Flow into or over valleys?
 - b. Severe downslope wind events?

Broader Question

Do

- GW intermittency
- Field project bias
- Scale downshifting

distort our understanding of global GWD patterns and the relative role of different sources?

EFz at z=12km vs. Wind speed at z=4km

100

200

Distance [km]

300

400

0

10

20

30

RF09 Leg 10 W-power <w'w'> L= 5 to 20km MFx

<u'w'> L=20 to 200km

U-power <u'u'> L=60-300km

New Zealand terrain wavelets

$$\begin{aligned} \operatorname{Var}(w) &= \int_{-\infty}^{\infty} w^2(x) dx = \left(\frac{v^2}{2\pi}\right) \int_{-\infty}^{\infty} k^2 \,\hat{\eta}(k) \hat{\eta}(k)^* dk \\ \operatorname{Cov}(u,w) &= \int_{-\infty}^{\infty} u(x) w(x) dx = -\left(\frac{NU}{2\pi}\right) \int_{-\infty}^{\infty} |k| \,\hat{\eta}(k) \hat{\eta}(k)^* dk \end{aligned}$$
$$\begin{aligned} \operatorname{Var}(u) &= \int_{-\infty}^{\infty} u^2(x) dx = \left(\frac{N^2}{2\pi}\right) \int_{-\infty}^{\infty} \hat{\eta}(k) \hat{\eta}(k)^* dk \end{aligned}$$