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Abstract Inference of CO, surface fluxes using atmospheric CO, observations in atmospheric
inversions depends critically on accurate representation of atmospheric transport. Here we characterize
regional-scale CO, transport uncertainties due to uncertainties in meteorological fields using a mesoscale
atmospheric model and an ensemble of simulations with flow-dependent transport errors. During a
1-month summer period over North America, transport uncertainties yield an ensemble spread in
instantaneous CO, at 100 m above ground level comparable to the CO, uncertainties resulting from 48%
relative uncertainty in 3-hourly natural CO, fluxes. Temporal averaging reduces transport uncertainties but
increases the influence of CO, uncertainties from the lateral boundaries. The influence of CO, background
uncertainties is especially large for column-averaged CO,. These results suggest that transport errors and
CO, background errors limit regional atmospheric inversions at two distinct timescales and that the error
characteristics of transport and background errors should guide the design of regional inversion systems.

Plain Language Summary Accurate estimates of regional-scale CO, surface fluxes are essential
to improve our understanding of the carbon cycle and to verify human CO, emission inventories. CO,
surface fluxes can be inferred from atmospheric CO, measurements through inversion methods, which
use atmospheric transport models to relate CO, concentration to fluxes. However, previous studies

have shown that inversion results can be sensitive to errors in the simulated atmospheric transport. To
better understand how to account for such transport errors, we characterize the uncertainties in simulated
CO, concentration due to uncertainties in atmospheric transport by running an ensemble of perturbed
transport simulations in a regional atmospheric model. Our results show that CO, uncertainties due to
transport uncertainties are about half the magnitude as uncertainties due to erroneous CO, surface fluxes
while displaying similar spatial and temporal patterns. Transport uncertainties are reduced when CO, is
time averaged, but at the same time the influence of uncertainties in the CO, background concentration is
increased at longer timescales. Thus, the flux signals in regional inversions are degraded by transport errors
and CO, background errors at different timescales, and it is imperative to properly account for these
errors to obtain reliable regional-scale CO, flux estimates.

1. Introduction

Atmospheric CO, inversions provide a method to infer CO, surface fluxes from observed atmospheric CO,
mole fractions through the use of an atmospheric transport model (Ciais et al., 2010; Enting, 2002) and have
been widely employed to gain insights into the global and regional carbon cycle (e.g., Tans et al., 1990).
Moreover, inversions can potentially provide critical independent verification of anthropogenic CO, emis-
sion inventories to support future climate agreements (National Research Council, 2010). However, there is
still a considerable divergence between results of inversions at the continental scale (Chevallier et al., 2014;
Gurney et al., 2002), which inhibits our ability to draw reliable conclusions about regional CO, sources and
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sinks. Intercomparisons of inversion systems have revealed that the estimated CO, fluxes are often sensi-
tive to the inversion setup (Gurney et al., 2002; Peylin et al., 2013). For example, the choice of atmospheric
transport model can lead to contrasting conclusions about regional CO, fluxes (Stephens et al., 2007).

One of the largest sources of errors in atmospheric inversions is erroneous representation of atmospheric
conditions by the atmospheric transport model (Gloor et al., 1999). Errors in atmospheric transport can
lead to mismatches between modeled and observed CO, that are mistaken as flux signals. Despite the rec-
ognized importance of transport errors in atmospheric inversions, transport uncertainties are typically not
fully accounted for in current inversion systems, to a large part because of a lack of complete understand-
ing of the transport error characteristics. Transport uncertainties are typically prescribed and assumed to be
uncorrelated in space and time. With denser observations, for example, from satellite measurements, it is
expected that correlated transport errors will have a larger influence on inversion results (Chevallier et al.,
2010).

Transport errors can be grossly divided into two components: (1) transport errors due to errors in the trans-
port model, including errors in model parameters, and (2) transport errors due to errors in meteorological
initial and boundary conditions. Previous studies have mostly focused on the first class of transport errors
and quantified the uncertainties using different transport models (e.g., Engelen et al., 2002; Gurney et al.,
2002) or perturbed model physics (e.g., Diaz-Isaac et al., 2018). However, even with a perfect transport model,
there can exist significant transport errors due to errors in meteorological initial and boundary conditions
combined with intrinsic atmospheric error growth. A few studies have quantified CO, transport uncertain-
ties due to uncertainties in meteorological conditions at the global scale (Liu et al., 2011; Miller et al., 2015;
Polavarapu et al., 2016) and the mesoscale (Lauvaux et al., 2009) and investigated ways to include transport
uncertainties in atmospheric inversions (Kang et al., 2012; Lin & Gerbig, 2005), but no rigorous character-
ization of CO, uncertainties due to flow-dependent transport errors has been performed at the regional to
continental scales.

In this paper we characterize transport uncertainties due to uncertainties in meteorological initial and
boundary conditions on subseasonal timescales. We focus on a summer case during the month of July 2016
over North America, coincident with the first intensive Atmospheric Carbon and Transport (ACT)-America
field campaign. ACT-America's objectives include quantifying and reducing uncertainties in atmospheric
inverse estimates of CO, fluxes via targeted comparisons of simulations and aircraft observations of
atmospheric CO, mole fractions. This paper represents a preliminary exploration of the uncertainties in
atmospheric CO, mole fractions associated with transport uncertainty. Through the use of an ensemble
data assimilation system, the flow-dependent forecast error structures are represented by an ensemble
of high-resolution model simulations and constrained by periodically assimilating simulated rawinsonde
observations. To put the transport uncertainties in perspective, we performed two additional sensitivity
experiments, one in which we perturbed only CO, surface fluxes and the other in which we perturbed only
CO, lateral boundary conditions. Together, these three experiments shed light on how flux signals in atmo-
spheric CO, mole fractions are degraded in regional inversions by uncertainties in atmospheric transport
and CO, lateral boundary conditions.

2. Methods

2.1. Model and Data

We use the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem; Grell
et al., 2005) version 3.6.1, which is a regional chemical transport model with online meteorology from WRF.
WREF is a fully compressible, nonhydrostatic mesoscale model integrated on the staggered Arakawa C-grid
and with mass-based terrain-following vertical model levels (Skamarock et al., 2008). Here WRF-Chem was
run at a horizontal resolution of 27 km in a domain that covers most of North America (see Figure 1) and
with 60 vertical levels extending up to 50 hPa. The vertical spacing is smallest in the boundary layer and
increases gradually with height.

CO, is treated as an inert passive tracer; that is, the trace gas has no feedback on meteorological variables
and is not part of any chemical reactions. Thus, the total mass of CO, in the model domain depends only
on the surface fluxes of CO, inside the domain and the CO, lateral boundary conditions. We use a positive
definite sixth-order diffusion scheme to more accurately simulate diffusive processes, the Mellor-Yamada
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Figure 1. (a) Map of the model domain and locations of simulated rawinsonde observations (yellow circles) that were
used to constrain transport errors. The shading shows the ocean regions that were used to perturb oceanic CO, fluxes.
(b) Ecoregions and lakes used in the terrestrial CO, flux perturbations (shading), based on the ecoregions defined by
Olson et al. (1985; doi: 10.3334/CDIAC/lue.ndp017).

Nakanishi and Niino Level 2.5 PBL scheme (Nakanishi & Niino, 2006), to represent the planetary boundary
layer physics, and the Kain-Fritsch convective scheme (Kain, 2004). See supporting information section S1
(Dudhia, 1988; Hong et al., 2004; Mlawer et al., 1997; Tewari et al., 2004) for more information about the
WRF-Chem setup.

WRF-Chem was initialized using meteorological initial conditions from the global European Cen-
tre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim; Dee et al, 2011) and
driven by boundary conditions from ERA-Interim available at 6-hr intervals. For CO, mole frac-
tions and surface fluxes, we used the CarbonTracker Near-Real Time (CT-NRT) v2017 reanalysis
(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT-NRT/), which is provided by the National Oceanic
and Atmospheric Administration. CT-NRT is an extension of the CarbonTracker system (Peters et al., 2007)
and uses observations of atmospheric CO, to optimize CO, surface fluxes. Here we used the global CT-NRT
product with a spatial resolution of 3 x 2° longitude-latitude and 25 vertical levels for atmospheric CO,
mole fractions, a spatial resolution of 1 X 1° longitude-latitude for surface CO, fluxes, and 3-hourly time
resolution for both CO, mole fractions and fluxes. To simplify the interpretation of the results, we chose to
focus on land biosphere and ocean fluxes and excluded emissions from fossil fuel combustion and wildfire.
The latter two sources are often assumed to be relatively well-known in inversions (e.g., CarbonTracker and
CT-NRT; ; Peters et al., 2007) and therefore not considered in the flux optimization.

2.2. Experiments
As noted above we performed three experiments for the month of July 2016, independently perturbing
meteorological fields in the first (labeled “Transport” below), perturbing surface CO, fluxes in the second
(“Flux”), and perturbing CO, lateral boundary conditions in the third (“Background”). These experiments
are explained next.

For the Transport sensitivity experiment, we performed an observing system simulation experiment to quan-
tify the effect of meteorological uncertainties on atmospheric CO, mole fractions. In the observing system
simulation experiment, we assume that the transport model is perfect and that the CO, initial conditions,
lateral boundary conditions, and surface fluxes are known; thus, errors in CO, mole fractions arise only from
uncertainties in meteorological initial and boundary conditions. These errors are characterized using an
ensemble of 40 WRF-Chem forecasts with flow-dependent transport errors, which was constructed follow-
ing the methodology of Meng and Zhang (2007). First, we perturbed the meteorological initial conditions at
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0 UTC on 1 July 2016 using climatological background error statistics (supporting information section S2)
to generate 41 ensemble members. The 41st member was taken as the “truth” and run forward in free fore-
cast mode for 1 month to create a reference run. Atmospheric errors tend to grow rapidly with time (Lorenz,
1963), so to constrain the magnitude of transport errors in the other 40 ensemble members, we extracted
pseudo-rawinsonde observations from the reference run with realistic added measurement noise (support-
ing information Figure S1) and assimilated them into the other members every 12 hr using the ensemble
Kalman filter (Evensen, 1994; Houtekamer & Zhang, 2016). This study employed the Penn State Univer-
sity WRF-ensemble Kalman filter system, which is originally developed in Meng and Zhang (2008a, 2008b),
but whose configuration and algorithms have been continuously updated and improved for a wide range
of applications (e.g., Weng & Zhang, 2012, 2016; Zhang et al., 2016, 2019, 2011, 2009); see also supporting
information section S2 (Gaspari & Cohn, 1999; Zhang et al., 2004). The locations of the rawinsonde observa-
tions are based on the operational network from the Meteorological Assimilation Data Ingest System and are
shown in Figure 1a. All ensemble members in this experiment were initialized with identical CO, initial con-
ditions and forced with the same CO, lateral boundary conditions and surface fluxes. This ensemble-based
data assimilation approach allows us to explicitly model transport error structures and estimate transport
error magnitudes based on the current meteorological observation network.

To quantify the sensitivity of atmospheric CO, mole fractions to CO, surface fluxes, we performed another
sensitivity experiment (Flux) in which only the CO, fluxes were perturbed using an approach typically found
in CO, inversions. Specifically, we followed the methodology of the CarbonTracker system (Peters et al.,
2007): for each predefined subregion, a random scaling factor is drawn from a Gaussian distribution with
mean 1 and standard deviation 0.4 (40% relative uncertainties) for ocean subregions (Figure 1a) and 0.8 (80%
relative uncertainties) for land subregions (Figure 1b) and applied to the 3-hourly fluxes from CT-NRT in the
subregion. Flux errors are assumed to be uncorrelated between different subregions. Unlike CarbonTracker,
we do not optimize the scaling factors but instead keep them constant for the whole simulation period.
Forty flux realizations were generated using this method and propagated to atmospheric CO, mole fractions
through the true transport from the reference run.

Regional CO, inversions also need to consider background CO, mole fractions that originate from outside
the regional domain. In the third and final sensitivity experiment (Background), we assessed the uncer-
tainties in atmospheric CO, mole fractions stemming from uncertainties in the CO, background using
four ensemble members driven by lateral boundary conditions from four different global CO, models:
CarbonTracker CT2016 (3 x 2° lon-lat, 25 vertical levels; Peters et al., 2007), with updates documented
(http://carbontracker.noaa.gov); CMS-Flux GEOS-Chem (5 X 4° lon-lat, 47 vertical levels; Liu et al., 2014);
TM5 4DVAR (3 x 2° lon-lat, 25 vertical levels; Basu et al., 2016); and GEOS-Chem-CarbonTracker (5 x 4°
lon-lat, 47 vertical levels; Schuh et al., 2015). We used 3-hourly resolution output from all global models
and the fluxes in all members were set to 0. One caveat of this experiment is that we used data from 2010
instead of 2016 because that was the last year for which all products were available to us when this study
was conducted. This point is not critical for our study because we are interested in the uncertainties (i.e.,
the resulting ensemble spread) rather than the actual CO, mole fractions and focus on error statistics and
orders of magnitudes. As in the flux sensitivity experiment, the background sensitivity simulations were run
using the true transport from the reference run. To include uncertainties in CO, initial conditions in the
Background experiment, we started the simulations in this experiment from December the previous year to
allow time for the lateral boundary CO, to completely fill the domain.

These three experiments quantify the sensitivity of atmospheric CO, mole fractions to uncertainties in trans-
port, CO, surface fluxes, and CO, background mole fractions. Unless otherwise noted, all uncertainties are
reported in terms of one ensemble standard deviation in CO, mole fractions of all simulations in each experi-
ment. Whenever uncertainties were integrated in space or time, we averaged the squared ensemble standard
deviations (i.e., the variances) and then took the square root of the average.

3. Results and Discussion

Atmospheric transport errors were constrained in the data assimilation system to about 2.2 m/s for
the instantaneous u and v components of the wind in terms of vertically and domain-integrated
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Figure 2. Time evolution of 3-hourly domain-integrated uncertainties in CO, mole fractions in terms of one ensemble
standard deviation in the different experiments for (a, b) all vertical model levels (no vertical averaging), (c, d) CO, at
100 m above ground level (AGL), (e, f) CO, in the free troposphere, and (g, h) column-averaged CO,. The right column
shows the corresponding mean diurnal cycles for the different error components in Central Daylight Time (CDT),
which is the local time zone for the middle of the domain.

root-mean-square errors between the mean of the ensemble simulations and the reference run (supporting
information Figure S2). Although the ensemble simulations and the reference run use the same boundary
layer parameterization scheme, there are significant errors in boundary layer height due to uncertainties
in meteorological conditions, with domain-integrated root-mean-square errors of 100 m for the nocturnal
boundary layer (6-12 UTC) to 250 m in the convective boundary layer (0 UTC). The wind errors overall
are slightly smaller than but nevertheless highly consistent with the errors in Meng and Zhang (2008b;
supporting information Figure S3). Meng and Zhang (2008b) found that their uncertainties in the u and v
components of the wind are realistic when verifying against observations, which indicates that the transport
errors in our experiment are reasonable.

Next, we focus on uncertainties in simulated atmospheric CO, mole fractions. The temporal evolutions
of vertically and domain-integrated transport, flux, and background uncertainties are shown in Figure 2a.
Uncertainties in transport or CO, fluxes quickly degrade the perfect atmospheric CO, initial conditions. The
uncertainties saturate after only 12 hr and maintain a consistent mean daily magnitude over time, except for
an apparent increase on 9 July and a decrease on 30 July, which are due to changes in the weekly optimized
CO, fluxes in CT-NRT. The vertically integrated transport and flux uncertainties reflect mainly the large
uncertainties close to the surface (Figure 2c). There is a distinct diurnal cycle in both transport and flux
uncertainties, with large peaks in the early mornings local time related to the stratification of the nocturnal
boundary layer. The diurnal variation in transport uncertainties is not seen in column-averaged CO, (XCO,;
see Figures 2g and 2h), suggesting that the large transport uncertainties in the nocturnal boundary layer
are mostly due to uncertainties in vertical mixing. The near-surface flux uncertainties show a secondary
and smaller peak in the afternoon local time (Figure 2d) due to the strong photosynthetic uptake of CO, in
summer, which is also reflected in XCO, (Figure 2h).

Flux uncertainties in the free troposphere above the boundary layer take about a week to saturate (Figure 2e).
There is not much CO, error growth due to erroneous CO, surface fluxes beyond 1 week because air that has
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Figure 3. Vertical distribution of time- and domain-integrated uncertainties in CO, mole fractions in terms of one
ensemble standard deviation for (a) all hours, (b) late night to early morning hours (6-12 UTC), and (c) afternoon hours
(18-0 UTC). The vertical axis is the nominal pressure level (log scale) based on a sea-level pressure of 1013.25 hPa.

been affected by the regional fluxes is continuously advected out of the limited-area domain. As a result of
this loss of flux signals through the lateral boundaries, transport and background uncertainties have a larger
influence in the free troposphere than flux uncertainties in our experiments. Moreover, our results suggest
that CO, errors due to transport uncertainties or background uncertainties are significantly correlated ver-
tically and therefore do not cancel out when averaged vertically; thus, these error sources can considerably
influence XCO, estimates (Figure 2g).

Figure 3 shows the vertical distribution of time- and domain-integrated CO, uncertainties. For this and all
subsequent time integrations we excluded the first week to account for the spin-up time of uncertainties.

Transport uncertainty Flux uncertainty Background uncertain

24

20

16

ppm

12

100 m AGL
ppm

Free troposphere

XCO,

Figure 4. Horizontal distribution of time-integrated uncertainties in CO, mole fractions (ppm) in terms of one
ensemble standard deviation for transport uncertainties (left column), flux uncertainties (middle column), and
background uncertainties (right column) for (a-c) CO, at 100 m above ground level (AGL), (d-f) vertically integrated
CO, uncertainties in the free troposphere, and (g-i) column-averaged CO,.
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Figure 5. Time- and domain-integrated uncertainties in CO, mole fractions in terms of one ensemble standard
deviation when the CO, mole fractions are averaged over varying time windows. Actual CO, uncertainties (left
column) and relative uncertainty contributions from the different error sources to the total variance assuming that the
errors are independent (right column) for (a, b) CO, at 100 m above ground level (AGL) and (c, d) column-averaged
CO,. The gray lines in the left column indicate the flux uncertainties for different relative flux errors, obtained by
scaling the 80% flux uncertainties from the flux sensitivity experiment.

Flux and transport uncertainties are largest close to the surface, as expected, while background uncertain-
ties vary only weakly across vertical model levels. In the afternoon, when atmospheric CO, mole fractions in
the boundary layer are typically representative of larger areas, the time- and domain-integrated flux uncer-
tainties near the surface are almost twice as large as the transport uncertainties (Figure 3c), which suggests
that near-surface CO, observations are primarily influenced by flux uncertainties (roughly four times larger
variance than transport uncertainties) during this time.

Figure 4 shows the horizontal distributions of time-integrated CO, uncertainties. Because we used scaling
factors to perturb the CO, surface fluxes, the flux uncertainties at 100 m above ground level are large in
areas with strong fluxes (Figure 4b). The same areas tend to have large near-surface transport uncertain-
ties (Figure 4a) due to the stronger horizontal and vertical CO, gradients created by the fluxes. Background
uncertainties are comparably small near the surface (Figure 4c) but considerable in the free troposphere
(Figure 4f) and for XCO, (Figure 4i). Much of the background uncertainties originate from the northern lat-
eral boundaries (supporting information Figure S4). In the free troposphere, transport and flux uncertainties
are larger in the northern part of the domain where there is more extratropical cyclone activity (Figures 4d
and 4e). Uncertainties in XCO, (Figures 4g-4i) reflect the joint uncertainties at both the surface and in the
free troposphere.

Finally, we quantify how transport, flux, and background uncertainties vary from subdaily to monthly
timescales. To this end, we calculated moving averages of 3-hourly instantaneous atmospheric CO, mole
fractions over different-length time windows and then calculated the mean domain-integrated uncertainties
for the different time-averaged CO, fields. Figure 5 shows the CO, uncertainties for the different error com-
ponents with varying averaging window size. At 100 m above ground level, transport and flux uncertainties
exhibit a similar exponential decay with increasing averaging window size, while background uncertain-
ties decrease by only a small amount when time averaged (Figure 5a). The magnitude of near-surface flux
uncertainties initially decreases fastest with increasing window length when averaged over the daily cycle.
As the analysis is extended to longer averaging windows, transport uncertainties decrease until they are the
smallest of the error components (Figure 5b). These results suggest that background uncertainties have the
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largest spatial and temporal error correlation structures, while transport uncertainties have smaller error
correlation length scales than flux uncertainties. For instantaneous CO, at 100 m above ground level, the
transport uncertainties in our experiment yield a similar domain-integrated ensemble spread in CO, mole
fractions as 48% uncertainties in 3-hourly surface fluxes (see gray lines in Figure 5a). When averaged over 1
week the transport uncertainties correspond to about 36% relative uncertainties in CO, fluxes, and over the
whole month the correspondence asymptotes to 24%.

In terms of time- and domain-integrated uncertainties in XCO,, the influence of background uncertainties
exceeds the other uncertainty sources at all timescales in our month-long experiments (Figure 5c). Further,
the relative importance of background uncertainties increases at longer timescales (Figure 5d). Although
local XCO, estimates can be more sensitive to CO, fluxes in the close vicinity of strong sources and sinks
(Figure 4h), these results indicate that background uncertainties can be a major error source for XCO,
estimates, especially when considering longer timescales.

4. Concluding Remarks

In this study, we quantified and contrasted uncertainties in simulated atmospheric CO, mole fractions in
a regional model from three error sources: atmospheric transport errors, errors in CO, surface fluxes, and
errors in CO, background mole fractions from the lateral boundaries. Transport uncertainties were derived
from an ensemble of simulations with perturbed meteorological fields. The uncertainties in meteorological
variables reflect the current capabilities of estimating meteorological conditions based on the operational
network of rawinsonde observations and state-of-the-art data assimilation methods. It is possible that mete-
orological uncertainties can be further reduced by assimilating, for example, satellite observations, but
considering that we ignored other error sources in our idealized experimental setup (e.g., model error, rep-
resentation error, and biased meteorological observations), we are likely underestimating transport errors,
which is also indicated by our overall smaller wind errors compared with Meng and Zhang (2008b). Nev-
ertheless, we found that transport uncertainties due to only imperfect meteorological initial and boundary
conditions significantly affect forward simulations of CO, mole fractions in our experiment.

The fluxes in our flux sensitivity experiment were perturbed by applying ecoregion-specific scaling factors
to the fluxes following the methodology used by, for example, the CarbonTracker system. Although these
flux error covariances are highly simplified, they correspond to the flux uncertainties that are presently used
in some inversion systems including CarbonTracker. In our study we kept the flux scaling factors constant
over the whole simulation period, but despite this long-term persistence in flux errors, the fluxes leave a
limited footprint on CO, mole fractions in our regional model because the flux signals are advected out of
the limited-area domain. One caveat of our modeling experiments is that the convective parameterization
scheme we used does not include tracer transport and we therefore most likely underestimate atmospheric
flux uncertainties due to neglected convective transport, especially in the southern part of the domain.
Nonetheless, we do not expect the inclusion of convective transport to change the conclusions of this study.
Uncertainties in CO, lateral boundary conditions resulted in persistent differences in the CO, background
that may arise from biases in the global systems, or from systematic errors in the interpolation of the global
CO, mole fractions to the regional lateral boundary conditions.

The findings of this study have several implications for regional atmospheric inversions. Because erroneous
CO, fluxes do not lead to long-term accumulation of errors in CO, mole fractions in a limited-area domain,
regional inversions need to take into account the relatively large transport and background uncertainties
when assimilating free tropospheric CO, observations, including aircraft measurements outside the bound-
ary layer and column-averaged XCO, from satellites. At short timescales the flux signals in near-surface CO,
mole fraction estimates are degraded by transport uncertainties, which have similar spatial and temporal
patterns as CO, uncertainties due to erroneous fluxes. At longer timescales transport uncertainties are par-
tially averaged out but compensated by uncertainties in CO, background mole fractions. In our experiments,
background uncertainties exceed transport uncertainties when the averaging window size exceeds 5 days
for CO, observations at 100 m above ground level. Finally, we found that CO, lateral boundary conditions
from different global modeling systems produce persistent differences in CO, background mole fractions,
and it may be advantageous for regional inversions to also continually optimize the CO, background as part
of the inversion procedure.
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