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ABSTRACT

An observation-based ensemble subsetting technique (OBEST) is developed for tropical cyclone track pre-

diction in which a subset of members from either a single- or multimodel ensemble is selected based on the

distance from the latest best-track position. The performance ofOBEST is examined using both the 2-yr hindcasts

for 2010–11 and the 2-yr operational predictions during 2012–13. It is found that OBEST outperforms both the

simple ensemble mean (without subsetting) and the corresponding deterministic high-resolution control forecast

formost forecast lead times up to 5 days.ApplyingOBEST to a superensemble of global ensembles from both the

European Centre forMedium-RangeWeather Forecasts and the National Centers for Environmental Prediction

yielded a further reduction in track forecast errors by 5%–10% for lead times of 24–120 h.

1. Introduction

During the past couple of decades, significant progress

has been made in tropical cyclone (TC) track forecasts.

For the western North Pacific basin, the 24-h track fore-

cast error today is 100km less than that of 20 years ago

while the forecast of a 48-h track is as accurate as that of

a 24-h track forecast 20 years ago (Qian et al. 2012). For

the Atlantic basin, compared to track forecast errors 15–

20 years ago, the track forecast errors from day 1 to day 5

in 2013 have been reduced bymore than 50% (Cangialosi

and Franklin 2014). Similarly impressive improvements

in TC forecasts have also been observed in other basins

(Mohapatra et al. 2013; WMO 2007; Chan 2010).

Advances in numerical weather prediction (NWP)

are the driving force for the decrease in the TC track

forecast error. At operational centers around the world,

TC model guidance evolved from classic statistical

models, to hybrid statistical–dynamical models, and then

to deterministic fully dynamical regional and global NWP

in the 1990s (e.g., Goerss et al. 2004; Sampson et al. 2005;

Elsberry 2007, 2014; Qian et al. 2012). In the past decade

or so, there has been a major push toward a multimodel

consensus of deterministic NWP models, which is better

than the forecasts from any of the individual component

models owing to offsetting random errors (Elsberry 2014)

and represents the state-of-the-art in operational TC track

forecasting (Burton 2006).

Consensusmodels are not forecast models per se, but are

instead combinations of forecasts from multiple models

(Cangialosi andFranklin 2014).Therefore, theperformance

of a consensus model is determined by two factors: the

consensus technique and the consensus components. Con-

sensus technique refers to how the weight of each compo-

nent is assigned, and can be divided into two categories:

equal weights and unequal weights. Equal weights are cal-

culated by a simple arithmetic average, whereas unequal

weights are determined using more complex techniques

such as multiple regressions (which require a long training

phase). Because the upgrade cycles for NWP models are

short and it is difficult to retrain the data before every
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hurricane season (Williford et al. 2003), operational centers

prefer to use the faster, equal-weight consensus technique

(Goerss 2000; Goerss et al. 2004; Sampson et al. 2005;

Burton 2006; Krishnamurti et al. 2010). The research on

consensus models started in the 1970s, and the components

of the consensus forecast have evolved in the same manner

as theguidancemodels described in thepreviousparagraph.

Before the 1990s, the consensus components primarily

consisted of subjective forecasts, statistical models, and

statistical–dynamical models (Sanders 1973; Thompson

1977; Danard 1977; Leslie and Fraedrich 1990). Thereafter,

the components have mainly consisted of deterministic

NWP models (Elsberry and Carr 2000; Goerss 2000;

Krishnamurti et al. 2010; Kumar et al. 2003; Sampson et al.

2005;Weber 2003;Williford et al. 2003;Elsberry et al. 2008).

Over the past couple of decades, operational NWP has

evolved from using single deterministic forecasts toward

ensemble prediction systems (EPSs), whereby an ensemble

of forecasts is generated, often by making slight perturba-

tions to the model’s initial conditions and model physics

(e.g., Toth and Kalnay 1993). The observation-based en-

semble subsetting technique (OBEST) presented herein

follows thework of others (Lee andWong 2002;Yamaguchi

et al. 2012; Jun et al. 2014; Qi et al. 2014) by using EPS

members as components in a consensus model. The multi-

model, equal-weight approaches were used in Lee and

Wong (2002) and Yamaguchi et al. (2012), while Jun et al.

(2014) proposed the use of multiple regressions for de-

termining the respectiveweight of themeanof eachEPSbut

each ensemble member within each EPS is still weighted

equally. Qi et al. (2014) first proposed the use of the average

of a subset of anEPS that includes allmemberswith a short-

term track error less than the average track error of the

whole ensemble. They examined two methods of obtaining

an ensemble mean track forecast: one in which all subset

members are weighted equally and the other in which the

chosen members are weighted as a function of their short-

term track forecasted error. The current study also com-

plements the work of Qi et al. [(2014); which applied to a

single ensemble] through modification in the subset selec-

tion and expansion to the use of a superensemble (combi-

nation of multiple ensemble prediction systems).

When China Meteorological Administration (CMA)

forecasters used the EPS data, they found that for a given

forecast ensemble, some (‘‘good’’) members gave small

track forecast errors whereas other (‘‘bad’’) members gave

poor forecast tracks that deviated substantially from the

truth and the good members. Unfortunately, the absolute

and relative accuracies of any given ensemblemember will

change from run to run, making it impossible for a fore-

caster to subjectively determine whether that member is

good or bad. An objectivemethod of identifying the good

memberswould provide tremendous benefit to forecasters.

This paper is organized as follows. The datasets and

methodology are presented in section 2. The application

and verification of OBEST for CMA operational TC

forecasts are described in section 3. The development

and performance of alternative OBEST approaches are

shown in section 4.An exemplar demonstration ofOBEST

for Tropical Storm (TS) Cimaron (2013) is presented in

section 5. Concluding remarks are given in section 6.

2. Datasets and methodology

a. Datasets for ensemble predictions and best-track
observations

The tropical cyclone track predictions by two oper-

ational ensemble prediction systems (hereafter EC-

EPS and NCEP-EPS) used in this study were down-

loaded from the THORPEX Interactive Grand Global

Ensemble (TIGGE) website (http://apps.ecmwf.int/

datasets/data/tigge). The position, minimum sea level

pressure, and maximum sustained wind speed near the

center of each TC from each ensemble member are in-

cluded in this dataset (Bougeault et al. 2010). The EC-

EPS is from the European Centre for Medium-Range

Weather Forecasts (ECMWF) and comprises 50 per-

turbed ensemble members plus a control forecast ini-

tialized at 0000 and 1200 UTC every day at T639

(;50 km) resolution (Buizza et al. 2007). The NCEP-

EPS is from the National Centers for Environmental

Prediction (NCEP) and comprises 20 perturbed en-

semble members plus a control forecast initialized four

times per day (the EPS resolution is T190 for the

hindcast period and T254 for the real-time applications

discussed in this study). Unlike EC-EPS, a tropical

cyclone relocation procedure is used in NCEP-EPS

(Wei et al. 2008). To temporally align the data of the

two ensemble prediction systems, only forecasts out to

5 days and initialized at 0000 and 1200 UTC are used in

this study. In addition, forecasts of the deterministic

higher-resolution models from both centers are also

used for comparison.

The best-track dataset over the western North Pacific

from the Japan Meteorological Agency (JMA; http://

www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/

trackarchives.html) has a total of 91 TCs in the domain

08–508N and 1008E–1808 from 2010 to 2013.1 During the

1Although it is beyond the scope of the current study to pinpoint

the uncertainties in the best-track estimates of JMA, a crude esti-

mate can be achieved by computing the average distance between

the JMA best-track estimate and another independent best-track

position estimate issued by the Joint Typhoon Warning Center

(JTWC). The average distance between these two operational cen-

ters for all 994 of the homogeneous samples over 2012–13 is 23 km.
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development of OBEST from 2010 to 2011, hindcast ex-

periments were performed for a total of 35 TCs with 302,

242, 190, 140, and 98 homogeneous samples for lead times

of 24, 48, 72, 96, and 120h, respectively. For the opera-

tional testing of OBEST during 2012–13, forecasts for a

total of 56 TCs with 473, 372, 273, 182, and 119 homog-

enous samples are compared for lead times of 24, 48, 72,

96, and 120h respectively. All forecasts with initial in-

tensity reaching tropical storm strength or stronger are

included in the verification. No additional requirements

are imposed on the forecasts of TC intensity at the veri-

fying time, as long as there are best-track data to be

verified against, including those degraded to tropical de-

pressions (TDs) or under extratropical transition.

Track forecast error is defined as the great-circle

distance between a TC’s forecast position and the

best-track position at the forecast verification time.

Expressed as a percentage improvement over the base-

line, reduction in track forecast errors of a forecast Sf is

defined as a percentage by

S
f
(%)5 100(e

b
2 e

f
)/e

b
, (1)

where eb is the error of the baseline model and ef is the

error of the forecast being evaluated. It can be seen that

the percentage is positive when the forecast error ef is

smaller than the error from the baseline eb (Cangialosi

and Franklin 2014).

b. Methodology: Observation-based ensemble
subsetting technique

There is nearly a 12-h lag between the initialization

time of the EC-EPS and the time that TC track pre-

diction data are first available to CMA operational

forecasters (Fig. 1a). In contrast, observational best-

track data are available in near–real time, which allows

for comparison with 12-h forecast data from the EC-

EPS. A schematic diagram of OBEST is illustrated in

Fig. 1b. Out of an EPS of N total members (e.g., N5 51

for EC-EPS), the OBEST consensus consists of the M

members (M # N) that have the smallest 12-h track

errors as verified against the latest best-track observed

position. The subsequent OBEST consensus forecast

track is a simple arithmetic average of the position

forecasts from the M selected members.

The inherent premise of this technique is that mem-

bers with a more accurate short-term forecast (smaller

12-h track error) will on average give better perfor-

mance at longer forecast lead times. An important ad-

vantage of OBEST is that it can adjust quickly to the

FIG. 1. (a) Schematic illustration of the 12-h difference between the time when EC-EPS

forecasts arrive at CMA and the time when official forecasts are issued. (b) Schematic illus-

tration of the OBEST algorithm where the blue dashed lines represent the track of selected

members for subsetting (see text for details).
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updated model configuration and performance char-

acteristics. A schematic representation of the subset-

ting technique is depicted in Fig. 1b in which ensemble

members 2, 3, and 4 (out of six total depicted; i.e.,M5
3 andN5 6 in this example) are selected based on their

verification against the best-track observations at 12 h

after model initial time. In OBEST, the exact number

of selected goodmembers (M) in the ensemble subset is

based on past performance with all available ensemble

members. This strategy is different from that of Qi et al.

(2014), in which M varies according to the number of

members whose errors are smaller than the simple

average error. Figure 2 shows the consensus mean track

errors (normalized by total ensemble mean error,

which is the case where M 5 N; a normalized error ,1

indicates that the OBEST method for a given M out-

performs the full ensemble mean) as a function of se-

lected good members M for EC-EPS for all western

North Pacific storms during 2010 and 2011. It is clear

from Fig. 2a that for most lead times, the smallest track

errors can be obtained when only M 5 16–21 good

members (out of N 5 51 total) were selected. For

simplicity and without loss of generality, we useM5 20

members in OBEST for the EC-EPS, which represents

about 40% of the total available members. Neverthe-

less, future studies will explore the use of a time-variant

M in selecting the ensemble subset.

3. Applications and verification

a. Performance of hindcasts with OBEST during
2010–11

We first evaluate the OBEST using the track forecasts

from the operational ECMWF ensemble (EC-EPS) for

all western North Pacific tropical cyclones during 2010

and 2011 archived in the TIGGE dataset. Figure 3 shows

the performance of OBEST in terms of absolute error

with themean of the entire EC-EPS ensemble (ECM) as

well as the high-resolution ECMWF deterministic

model prediction (ECD), all of which were verified

against the JMA best-track estimates. It can be seen

from Fig. 3a that OBEST has considerably smaller error

than ECM for all lead times until 96 h [although only the

difference up to 36h passes the 95% statistical signifi-

cance using the Student’s t test; Wilks (2006)]. In par-

ticular, OBEST has track errors of 59 (118) km at 24 (48)

h, which represents an 18.5% (10.1%) error reduction

from the simple ensemblemean of ECM. The advantage

of OBEST over ECM diminishes at 108 h, and ECM

performs better at 120-h lead time. OBEST also per-

forms better than the deterministic forecast (ECD) at

almost all lead times except for 84 and 96h. It is also

worth noting that ECD is comparable to or slightly

better than ECMup to 96h, but considerably worse than

ECM at longer lead times of 108 and 120 h. The reasons

that lead to the different performance of ECD versus

ECM are beyond the scope of the current study.

b. Operational performance of OBEST during
2012–13

Our OBEST approach was motivated by a similar

subsettingmethod proposed byQi et al. (2014).However,

the number of subsetting ensemble members was not

fixed in Qi et al. (2014) while the weight of their subset-

ting ensemble mean is inversely proportional to the re-

spective errors of each ensemble member. A preliminary

comparison of our new approach to the original method

of Qi et al. (2014) for 2012–13 shows a persistent re-

duction of absolute mean forecast error at nearly all

times; however, none of these differences is statistically

FIG. 2. The consensus mean track errors (normalized by total

ensemble mean error without subsetting) as a function of selected

good members for (a) the EC-EPS ensemble and (b) the combined

ECMWF–NCEP superensemble for all western North Pacific

storms during 2010–11. Colored lines represent the normalized

errors at different lead times. Triangles are plotted at locations

corresponding to the smallest mean errors at different lead times.
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significant and thus is not shown. Therefore, thanks to the

collective efforts by several operational TC forecasters at

CMA, OBEST was implemented operationally by the

start of the 2012 western North Pacific typhoon season.

Figure 3b shows the operational performance of

OBEST during 2012 and 2013 in terms of absolute mean

track forecast error in comparison withECMandECDat

different lead times. Note that because none of the three

forecast products (OBEST, ECM, and ECD) is available

at the model initialization time, the effective operational

lead times for each of the products have been subtracted

by 12h. In addition, the initial positions of the TCs (which

are used for selecting the OBEST ensemble subset in real

time) are based on the CMA operational best-track es-

timate while the forecast error is verified against the

(independent) JMA postseason best-track estimate.

It can be seen from Fig. 3b that OBEST gives consider-

ably better performance than both ECM and ECD at

almost all lead times (though again the statistical signifi-

cance at the 95% confidence level can only be established

for shorter lead times). More specifically, the mean track

forecast errors for OBEST at 24-, 48-, 72-, and 96-h forecast

times (which equal lead times plus 12h) are 61, 117, 189,

and 277km, respectively, which are 15.3%, 5.5%, 2.0%, and

3.5% smaller than the ECM errors of 73, 124, 193, and

288km, respectively. Note that while CMA issues forecasts

every 6h, the verifications shown here are only for forecasts

issued at 0000 and 1200 UTC. Operationally OBEST is

applied at 0600 and 1800 UTC cycles using 18-h EC-EPS

forecasts in member selection (not shown).

Figure 4 shows scatterplots of track errors from OBEST

versus those from ECM for all valid forecast samples at

different forecast hours for 2012 and 2013 [different from

Fig. 3b in which CMA best-track estimates were used, the

results displayed in Fig. 4 (and later; see Figs. 6–9) are de-

rived using the JMA best-track estimates]. At 24h (Fig. 4a),

OBEST provides a more accurate forecast than ECM by a

large margin (specifically, OBEST has a smaller error in

over 77.6% of all 24-h forecast samples). At forecast hours

48 and 72 (Figs. 4b,c), OBEST is more accurate than ECM

approximately 60% of the time. At the longest lead times

(96 and 120h; see Figs. 4d and 4e, respectively) OBEST

outperforms ECM in just over 50% of all cases. The de-

creasing advantage of OBEST at increasingly longer lead

times is a sign of nonlinear error growth and saturationwhen

initially small-scale and/or small-amplitude initial condition

or forecast model errors begin to alter the larger-scale en-

vironmental flow that can significantly affect the track

forecasts (Lorenz 1969; Zhang et al. 2007; Gilmour et al.

2001). Nevertheless, at both these two long lead times,

OBEST has noticeably smaller track errors for the ECM

forecasts that have extremely large forecast errors (sub-

jective thresholds at 800km for the 96-h forecast and at

1000km for the 120-h forecast). Combining all five of these

lead times results in better performance of OBEST (com-

pared with ECM) for 63.9% of the total 1419 valid forecast

samples (Fig. 4f). Moreover, if we consider any forecast by

either OBEST or ECM to be an outlier (very bad forecast)

when it exceeds the 95th percentile threshold value out of

the total combined forecast error samples at each respective

lead time, the percentage of outliers is larger for ECM than

OBEST at almost all lead times (except for at 120h). The

sum of the outliers for all five lead times is 164 for ECMand

122 for OBEST (Fig. 4f).

The use of ensemble forecasts, especially those from

the ECMWF, has contributed to significant progress

in CMA official track forecast accuracy2 over the

past decade (Fig. 5a) while improvement in intensity

FIG. 3. Performance of OBEST in terms of mean absolute error

(black) at different forecast lead times (x axis; h), in comparison with

ECM(red) aswell asECD(yellow), verified against the JMAbest-track

estimates for (a) hindcasts of 2010 and 2011 and (b) operational fore-

casts of 2012 and 2013. Best-track positions are replaced by CMA op-

erational estimates for selecting OBEST members during operational

implementation of 2012–13, but forecasts are still verified against the

JMAbest track for independent validation.Percentages of relative error

reduction from ECM to OBEST at different times are marked above

the bars while the sample sizes in the comparison are noted in paren-

theses. Forecast mean error difference between ECM and OBEST

significant above the 95% confidence level is noted with a star.

2 Verified against an independent best-track estimate from JMA.
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forecasting has been slow to materialize (Fig. 5b), sim-

ilar to other TC forecast centers around the world

(Cangialosi and Franklin 2014). More specifically in

Fig. 5a, the track forecast error has been decreasing

steadily but slowly from 2004 to 2009 while there is a

sharp reduction since 2010 when the ECMWF EPS was

introduced as the primary forecast guidance. Also re-

markable is that Fig. 5a suggests there may have been

FIG. 4. Scatterplots of consensus track errors fromOBESTwith EC-EPS vs those fromECM for all valid forecast

samples for 2012 and 2013 at different forecast hours: (a) 24, (b) 48, (c) 72, (d) 96, and (e) 120 h, as well as (f) all five

times (numbers in the parentheses are the total number of samples). The number of outliers at each lead time, and

the percentage of samples where ECM error is greater than OBEST, are marked in each panel. Solid dots indicate

that both ECM and OBEST errors are outliers, upward (downward)-pointing triangles are used when only ECM

(OBEST) error is an outlier, and crosses are for forecasts where neither ECM nor OBEST is an outlier.
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further track forecast improvement through the in-

troduction of theOBESTmethod since 2012. Although

there is considerable variability at the track forecast

accuracy from year to year, it is certainly encouraging

to observe that the CMA official track forecast errors

at 24-, 48-, 72-, and 96-h lead times were on average

reduced from 120, 195, 289, and 406 km in 2011 to 85,

134, 201, and 309 km in 2013, leading to improvements

of 29%, 31%, 30%, and 24% over the 2-yr period,

respectively.

4. Super-OBEST

The success of OBEST following its operational

implementation at CMA since 2012 encouraged us to

investigate how this EPS-based consensus forecast

model can be further improved. One way to do so is

through multimodel ensembles (sometimes called

superensembles), a topic that has seen more research

and operational attention in recent years. For example,

Pearman (2011) combined the EPSs from ECMWF,

NCEP, and the Met Office to form a superensemble

and found that track forecasts from the superensemble

mean (using equal weights) were generally more ac-

curate than the forecasts from any of the individual

component models.

Motivated by Pearman (2011) and other recent

successes in using multimodel ensembles, we explore

the potential benefit of a 72-member superensemble

version of OBEST (Super-OBEST), by adding the

21-member NCEP-EPS to the 51-member EC-EPS3

already used in the operational OBEST. We only

selected the NCEP and ECMWF EPSs because these

two provide the most reliable TC track guidance out

of all EPSs available in real time to operational TC

forecasters at CMA.

We first examine the performance of the NCEP-EPS

ensemble mean without subsetting in comparison with

the full EC-EPS ensemble mean and the superensemble

mean (SUPERM) that includes both NCEP and ECMWF

ensembles without subsetting; the control high-

resolution deterministic forecasts from both centers

(ECD and NCEPD) are also shown in Fig. 6a. It is

found that ECM performs similarly to NCEP-EPS

ensemble mean (NCEPM) at ensemble forecast times4

before 60h, whereas NCEP-EPS outperforms at longer

lead times. As a reference, the ensemble mean of each

EPS performs similarly to its respective high-resolution

deterministic forecast for forecast lead times up to 72h,

but better at longer lead times.

We also compare the performance of the track fore-

casts from both ECM and NCEPM for all storms at all

lead times (Fig. 7). Except at lead time 96h, ECM is

slightlymore often accurate thanNCEPM [ranging from

just over 50.3% of all 24-h forecasts (Fig. 7a) to 53.8% of

all 120-h forecasts (Fig. 7e)]; overall, ECM yields the

more accurate forecast nearly 50.6% of the time

(Fig. 7f). The marginally better forecast skill of EC-EPS

over NCEP-EPS is consistent with similar findings of

Lee andWong (2002), despite the fact that considerable

changes have been made to both EPSs in the past de-

cade. That being said, however, Fig. 7 indicates that the

NCEP ensemble mean has fewer outliers of extremely

erroneous track forecasts, most evident at 72, 96, and

120 forecast hours (Figs. 7c–e).

Given the rather comparable performance of the two

ensembles (NCEP vs EC) in terms of TC track forecasts

(Figs. 6a and 7), it is natural to combine them into a

superensemble that will not only enlarge the ensemble

size but also potentially compensate for themodel errors

in each ensemble. As shown in Fig. 6a, given a slightly

FIG. 5. Evolution of annual mean absolute CMA official TC

forecast errors from 2004 to 2013 for (a) track errors (km) and

(b) intensity errors (m s21).

3We only include the 0000 and 1200 UTC NCEP-EPS forecasts

to be compatible with EC-EPS. TheNCEP ensembles initialized at

0600 and 1800 UTC will be considered in future operational

implementations.
4 The first effective forecast lead time is 24 h because the en-

semble prediction systems are only available in real time at 12 h of

ensemble integration time, which is used as the x axis in Fig. 6a.
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smaller average track error for ECM than NCEPM at

shorter lead times and a slightly larger error for ECM

thanNCEPMat longer lead times, SUPERMwill have a

slightly larger average track error than ECM at shorter

lead times and a slightly smaller error than ECM at

longer lead times, though none of the differences are

statistically different (not shown).

Does the advantage of the OBEST still apply for the

combined NCEP and ECMWF superensemble? Using

the combined superensemble (which has a total of N 5
72 members), we tested different sizes of the ensemble

subset (i.e., the value ofM) using a procedure similar to

that in section 2b and Fig. 2a; we found that the best

performance for Super-OBEST is obtained when M 5
28 members are selected in the ensemble subset

(Fig. 2b). Figure 6b directly compares the means of the

track errors for the control OBEST (EC-EPS only as in

sections 2 and 3), the superensemble version of OBEST

(Super-OBEST), and the superensemble mean without

subsetting (SUPERM), Super-OBEST has considerably

smaller mean track errors than the control OBEST at

almost all lead times (though again only at shorter lead

times are the results statistically significant at the 95%

significance level, as marked with stars in Fig. 6b). More

specifically, the mean position forecast errors are re-

duced from the control OBEST of 60, 116, 189, 277, and

390 km to 55, 108, 179, 254, and 352km for model fore-

cast times of 24, 48, 72, 96, and 120 h (subtract 12 h to

have the effective lead forecast times), respectively,

which represent an improvement over the control

OBEST in the track forecast accuracy by averages of

9.5%, 7.2%, 5.4%, 8.3%, and 9.7%, respectively.

Compared to SUPERM, Super-OBEST is superior at

all lead times. Despite this modest improvement in the

mean sense (Fig. 6b), the percentage of forecasts among

all valid samples for which Super-OBEST has a lower

track error than SUPERMranges from 84.1% at hour 24

(Fig. 8a) to around 65% at hours 96 and 120 (Figs. 8d,e);

aggregating over all forecast lead times, Super-OBEST

yields a more accurate track than SUPERM in 73.1% of

all samples (Fig. 8f). Super-OBEST also has a noticeably

smaller number of forecast outliers than SUPERM.

Moreover, there is also amuch greater chance for Super-

OBEST to have smaller track errors than for control

OBEST with EC-EPS only when evaluating individual

forecasts at different lead times (Fig. 9). There is also

noticeable improvement in accuracy for forecasts with

very large errors (outliers).

5. An example of an OBEST forecast: Tropical
Storm Cimaron (2013)

The use of OBEST for TC forecast tracks is exem-

plified in the forecast of TS Cimaron (2013). Cimaron

was a relatively short-lived tropical cyclone that de-

veloped from a tropical disturbance on 16 July 2013

and that subsequently developed into a tropical storm

with a 10-min maximum sustained wind of 20ms21 by

0000 UTC 17 July 2013. At that time, Cimaron was

moving northwestward under the influence of the

western North Pacific subtropical high. The operational

challenge in Cimaron’s track forecast was to evaluate

whether the subtropical high would weaken, which

would lead Cimaron northward and eventually recurve,

and potentially make landfall on the southeastern coast

of China, or if the subtropical high would strengthen,

resulting in a west-southwestward track toward Viet-

nam. The track uncertainty is partially reflected by the

divergence of ensemble tracks within the EC-EPS single

ensemble (Fig. 10a), and even more so among the

members of the superensemble with the addition of

NCEP-EPS (Fig. 10b). In reality, Cimaron took the track

FIG. 6. (a) Comparison of forecast performance in terms of mean

absolute track error verified against JMA best track among ECD,

ECM, NCEPD, NCEPM, and SUPERM at different forecast lead

times for 2012–13. (b) Comparison of the performance with Super-

OBEST vs SUPERM and the control OBEST with EC-EPS only.

The percentage values are improvements in the superensemble

mean against ECM in (a) and Super-OBEST against control

OBEST in (b), with those differences significant above the 95%

confidence level noted by a star. The sample sizes in the compari-

son are noted in parentheses.
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toward the southeastern seaboard of China, as a result of

the weakening of the subtropical high over the western

North Pacific region.

For this particular event at this forecast time, a ma-

jority of EC-EPSmembers (and thus ECM) predicted a

west-southwestward track of the TC toward Vietnam,

as a consequence of the strengthening subtropical high

that stretches farther westward. The OBEST with the

EC-EPS improves upon the ECM considerably, espe-

cially for the first 48 h, through the selection of en-

semble members that have smaller 12-h forecast errors

(Fig. 10a).

In contrast, a majority of NCEP-EPS members (and

thus NCEPM) predicted northward-curved tracks

FIG. 7. As in Fig. 4, but for scatterplots of consensus track errors from the ensemblemeanwith NCEPMvs ECM for

all valid forecast samples for 2012 and 2013.
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(Fig. 10b). The track of SUPERM is closer to the best

track than either ECM or NCEPM, which highlights

the importance of including more than one ensemble

prediction system to form a superensemble. Further-

more, Super-OBEST utilizing the EC-EPS and

NCEP-EPS combined superensemble correctly pre-

dicted the northern turn of the TC that had the least

mean error (Fig. 10b). In addition to the reduction in

track error, another benefit of superensembles is that

they provide more uncertainty information to fore-

casters and decision-makers (e.g., Elsberry and Carr

2000; Yamaguchi et al. 2009; Majumdar and Finocchio

2010;Yamaguchi et al. 2012). It is alsoworth noting that the

track forecast of Cimaron or similar storms in operations

FIG. 8. As in Fig. 4, but for scatterplots of consensus track errors from SUPERM vs Super-OBEST for all valid

forecast samples for 2012 and 2013.
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is particularly challenging because of its weak intensity,

which will be further explored in future studies.

6. Concluding remarks

An observation-based ensemble subsetting tech-

nique (OBEST) is developed for tropical cyclone (TC)

track prediction in which a subset of members from

either a single- or multimodel ensemble is selected

based on the distance from the latest best-track posi-

tion. The performance of OBEST is examined using

the THORPEX Interactive Grand Global Ensemble

(TIGGE) dataset as archived by the China Meteoro-

logical Administration (CMA).

FIG. 9. As in Fig. 4, but for scatterplots of consensus track errors from Super-OBEST vs the control OBEST with

EC-EPS only for all valid forecast samples for 2012 and 2013.
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Results from both the 2-yr hindcasts for 2010–11 and

the 2-yr operational predictions during 2012–13 show

that OBEST outperforms both the simple ensemble

mean (without subsetting) and the corresponding de-

terministic high-resolution control prediction at most

of the forecast lead times up to 5 days. The operational

implementation of OBEST using EC-EPS may have

led to considerable track forecast improvements at

CMA since 2012.

Further reduction in track forecast errors by as much

as 5%–10% for 24–120-h forecasts in experiments was

found with the application of OBEST to a super-

ensemble consisting of global ensembles from both

the European Centre for Medium-Range Weather

Forecasts (ECMWF) and the National Centers for

Environmental Prediction (NCEP). The illustration

and comparison of OBEST with the EC-EPS single en-

semble versus the ECMWF–NCEP combined super-

ensemble is exemplified in the forecast of Tropical Storm

(TS)Cimaron (2013). Super-OBESTperformedbetter than

either ensemble mean or the single-ensemble OBEST.

However, despite the promising results shown in

this study, there are potential drawbacks of this newly

proposed technique, which include, but are not limited to,

1) a relatively larger number of ensemble members is

required to applyOBEST, 2) this techniquemay bemore

limited for those EPSs whose individual member storms

have gone through the vortex relocation procedure (al-

though limited tests have shown there is still advantage to

applying the OBEST for NCEP-EPS, which has vortex

relocation), 3) OBEST may be affected by initial model

spinup–spindown issues, and 4) there will be some delay

in the forecast delivery time. Moreover, it is unclear

whether the dispersion of the member ensemble(s) mat-

ters when applying OBEST. For instance, if subsampling

from an underdispersive (and limited sized) ensemble,

there are likely to be cases in which the method per-

forms very well but also cases where the nonlinearity

of the system causes the method to perform not so well

(e.g., good short-term forecasts but poor long-term fore-

casts). These issues will be further examined in future

studies as well as in practical operations. Future studies

will also systematically examine the potential of using

OBEST for probabilistic forecasts, along with the in-

clusion of more ensemble prediction systems into a

greater superensemble.
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