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Abstract The Tibetan Plateau is regarded as the Earth's Third Pole, which is the source region of
several major rivers that impact more 20% the world population. This high‐altitude region is reported
to have been undergoing much greater rate of weather changes under global warming, but the existing
reanalysis products are inadequate for depicting the state of the atmosphere, particularly with regard to
the amount of precipitation and its diurnal cycle. An ensemble Kalman filter (EnKF) data assimilation
system based on the limited‐area Weather Research and Forecasting (WRF) model was evaluated for use
in developing a regional reanalysis over the Tibetan Plateau and the surrounding regions. A 3‐month
prototype reanalysis over the summer months (June−August) of 2015 using WRF‐EnKF at a 30‐km grid
spacing to assimilate nonradiance observations from the Global Telecommunications System was
developed and evaluated against independent sounding and satellite observations in comparison to the
ERA‐Interim and fifth European Centre for Medium‐Range Weather Forecasts Reanalysis (ERA5) global
reanalysis. Results showed that both the posterior analysis and the subsequent 6‐ to 12‐hr WRF forecasts
of the prototype regional reanalysis compared favorably with independent sounding observations,
satellite‐based precipitation versus those from ERA‐Interim and ERA5 during the same period. In
particular, the prototype regional reanalysis had clear advantages over the global reanalyses of
ERA‐Interim and ERA5 in the analysis accuracy of atmospheric humidity, as well as in the subsequent
downscale‐simulated precipitation intensity, spatial distribution, diurnal evolution, and
extreme occurrence.

1. Introduction

The Tibetan Plateau (TP), the highest mountain with the most complex topography, is known as the Third
Pole of the world (Yao et al., 2019). A recent assessment of environmental changes over the TP shows that
the regional warming rate over the last 50 years has been much larger than the global mean and those at
similar latitudes, which caused a wide range of environmental changes such as ecosystem and water cycle
(Chen et al., 2015). The TP encapsulates the most widespread effects on the regional and global water cycles
(Xu et al., 2008; Yang et al., 2014) and is a key factor driving the Asian monsoon (Liu & Dong, 2013; Zhang
et al., 2015). However, the physical mechanisms of atmospheric processes over the TP are still not well
understood due to the complex terrain and harsh environment, which make observations of the atmosphere
over the TP exceptionally difficult. Available satellite data indicate that spatial scale of variabilities in surface
temperature and precipitation in the region can be extremely small (Chen et al., 2016). In addition, it is still a
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huge challenge for numerical models to accurately simulate the atmospheric processes over complex
topography, especially for mesoscale and regional systems.

Several major field campaigns (Ma et al., 2008; Zhang et al., 2012) aimed at deepening our understanding of
atmospheric processes over the TP have been performed since 1979 (Tao et al., 1986). These include the
ongoing Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX‐III) that was initiated formally
in 2013 (Zhao et al., 2018). However, observational data sets from field campaigns are limited by their sparse
spatial and temporal coverage, in particular at the climatic timescales. Consequently, atmospheric reana-
lyses are often used instead of observations to explore the scientific conundrums over the TP. In addition,
reanalysis has a wide range of application in atmospheric science such as monitoring climate conditions,
detecting climate change, and providing data as inputs to climate models.

To provide a comprehensive characterization of the atmospheric states, global and regional reanalyses are
generally generated by integrating all applicable observations into numerical weather prediction models
through data assimilation methods. For instance, various generations of global reanalysis data sets including
ERA‐15 (Gibson et al., 1997), ERA‐40 (Uppala et al., 2005), ERA‐Interim (Berrisford et al., 2009; Dee et al.,
2011), and the new fifth European Centre for Medium‐Range Weather Forecasts Reanalysis (ERA5;
Hersbach & Dee, 2016) have been released by the European Centre for Medium‐Range Weather
Forecasts. Meanwhile, the global atmosphere Reanalysis 1 (Kalnay et al., 1996; Kistler et al., 2001) spanning
the period from 1948 to present was developed by the National Center for Environmental Prediction (NCEP)
and National Center for Atmospheric Research using three‐dimensional variational (3DVAR) data assimila-
tion technology; this had subsequently been updated to Reanalysis 2 (Kanamitsu et al., 2002) with newer
generation models and data assimilation techniques ingesting more observations. Also using the 3DVAR
method, the Global Modeling and Assimilation Office of National Aeronautics and Space Administration
has updated the Modern‐Era Retrospective Analysis for Research and Applications (MERRA; Rienecker
et al., 2011) to version 2 (MERRA‐2; Gelaro et al., 2017). The Japanese 25‐year Reanalysis (JRA‐25; Onogi
et al., 2007) with data from 1979 to 2004 and focusing on the Asian areas is produced by the Japan
Meteorological Agency. JRA‐25 has been extended to the more sophisticated Japanese 55‐year Reanalysis
in recent years (Ebita et al., 2011; Harada et al., 2016; Kobayashi et al., 2015).

Aside from the above global reanalysis projects, some high‐resolution regional reanalysis projects were also
launched to better resolve regional mesoscale processes, such as the North American Regional Reanalysis
(Mesinger et al., 2006) of NCEP and Uncertainties in Ensembles of Regional Re‐Analyses (Bach et al.,
2016; Niermann et al., 2017). The East Asia Regional Reanalysis (Yang & Kim, 2017, 2019) was developed
using a four‐dimensional variational (4DVAR) data assimilation technique (Courtier et al., 1994; Rabier
et al., 2000) by the Korea Meteorological Administration. Zhang et al. (2017) also produced a competitive
regional reanalysis over mainland China by using the Gridpoint Statistical Interpolation data assimilation
system and the Advanced ResearchWRF (ARW‐WRF; Skamarock et al., 2008) model. Recently, the regional
Indian Monsoon Data Assimilation and Analysis (Mahmood et al., 2014, 2018), with an emphasis of support
in the study of the Asian monsoon characteristics over the Indian subcontinent, has been developed using
the 4DVAR method by the Met Office, the National Centre for Medium Range Weather Forecasting, and
the India Meteorological Department.

Although the regional reanalyses, including those not mentioned above, have played an important role in
regional weather and climate studies, reliable high‐resolution regional reanalysis over the TP is still lacking,
which is at least in part due to the scarcity of observations over this region and the complexity of thermody-
namic and dynamic effects induced by high terrains (Bao & Zhang, 2013; Wang & Zeng, 2012). Most regional
reanalyses mentioned above do not even include the TP region. Meanwhile, model configurations and data
assimilation techniques are key factors that can affect the quality and stability of reanalysis over the TP. Of
later, the High Asia Reanalysis (Curio et al., 2015; Maussion et al., 2011) was produced by dynamical down-
scaling method using the WRF‐ARWmodel driven by the NCEP Final (FNL) data from the GFS operational
model. Even without data assimilation, increasing the spatial resolution using downscaling can improve the
model's ability to resolve processes at the mesoscale that are important for precipitation over the TP.
Nevertheless, since the performance of dynamical downscaling can be critically dependent on the quality
of driving fields from global/regional reanalysis (Hu et al., 2018), it is necessary to explore the added benefits
of alternative, TP‐specific reanalysis using moderate‐to‐high resolution nonhydrostatic regional models, and
advanced data assimilation approaches.
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In this study, the Pennsylvania State University (PSU) WRF‐EnKF system (Meng & Zhang, 2007; Meng &
Zhang, 2008a, 2008b; Weng & Zhang, 2012; Zhang et al., 2006; Zhang et al., 2009; Zhang et al., 2011) was
used to produce a regional atmospheric reanalysis at a 30‐km grid spacing over the TP and surrounding
areas. The time period of this pilot reanalysis system for the development and evaluation herein was the
summer (June−August) of 2015, which will be extended to a longer time period in the future to produce a
newer generation Tibetan Plateau Regional Reanalysis. Among studies of reanalysis systems, very few rea-
nalysis projects with the exception of the Twentieth Century Reanalysis (Compo et al., 2011) generated by
the Earth System Research Laboratory of National Oceanic and Atmospheric Administration (NOAA) used
the EnKF method. Notably, in spite of the inclusion of 10 members on a coarser grid, the uncertainty esti-
mate of ERA5 produced by the Ensemble of Data Assimilations system (Isaksen et al., 2010) is in essence
generated using the 4DVAR method. Our goal for developing a regional, higher‐resolution TP reanalysis
by using EnKF method is to provide a more accurate estimate of atmospheric states over the TP, particularly
for the regional‐scale water cycle and precipitation that have profound consequences on the human society
and ecosystems.

The design of the experiments and data used in the current study are presented in section 2, including a
detailed description of the ensemble assimilation system, model configurations, and the observations used
for data assimilation and verifications. Diagnostic methods for the WRF‐EnKF reanalysis are described in
section 3. Finally, evaluation of the WRF‐EnKF reanalysis in comparison to ERA‐Interim, ERA5 and the
summary remarks are presented in sections 4 and 5, respectively.

2. Experimental Design
2.1. The WRF‐EnKF Data Assimilation System

An intermediate‐resolution regional reanalysis over the TP was developed using the PSU WRF‐EnKF sys-
tem that features coupling between the ARW‐WRF (version 3.8.1) model and the EnKF data assimilation
system. As a state‐of‐the‐art data assimilation technique, the ensemble Kalman filter methodology has been
widely used in atmospheric sciences in particular for numerical weather prediction (Houtekamer & Zhang,
2016). In light of its advantages, a 40‐member ensemble was performed to produce the pilot reanalysis data
set by using the PSU WRF‐EnKF data assimilation system. This WRF‐EnKF system was originally devel-
oped in Meng and Zhang (2008a, 2008b) and Zhang et al. (2009) but has since been further updated and
applied in many subsequent studies including but not limited to analysis and prediction of rainfall (Bao
et al., 2017; Qiu & Zhang, 2016), snowstorm (Saslo & Greybush, 2017) and thunderstorms (Zhang et al.,
2018), and tropical cyclones (Weng & Zhang, 2012; Zhang et al., 2009; Zhang & Weng, 2015). The initial
ensemble perturbations were generated with balanced perturbations randomly drawn from the “CV3”
background error variance option of the WRF‐3DVAR data assimilation system (Barker, 2005; Barker
et al., 2004; Houtekamer et al., 2005) to create 40 initial ensemble members that are used to produce the
first prior estimate at the very beginning of the reanalysis. In view of the use of a moderate ensemble size
and the rather coarser resolution of available observations over the TP, the horizontal and vertical localiza-
tion radii used for the sounding observations were 1,200 km and 15 model vertical levels, respectively; simi-
lar configurations were shown in Zhang et al. (2011) to have satisfactory performance. The covariance
localization function (Gaspari & Cohn, 1999) is similar to many other regional EnKF studies (Ying et al.,
2018). The EnKF analysis was performed every 6 hr (0000, 0600, 1200, and 1800 UTC). The covariance
relaxation method was applied to prior perturbation following Zhang et al. (2004) with a relaxation coeffi-
cient of 0.8.

2.2. Forecast Model

Forecasts and downscale simulations were performed using the WRF model. Domain 01 (D01 in Figure 1)
was used to generate ensemble analysis, with 114 × 69 horizontal grid points at a 30‐km grid spacing and
60 vertical levels up to 10 hPa. Domain 02 (D02 in Figure 1), with 313 × 178 horizontal grid points at a grid
spacing of 10 km, was utilized to perform downscale experiments driven by the mean of ensemble analysis
over D01. The same physical schemes were used in the D01 and D02, including theWRF Double‐Moment 6‐
class microphysics scheme (Lim & Hong, 2010), the longwave radiation scheme of Rapid Radiative Transfer
Model for general circulationmodel applications (Iacono et al., 2008), the NewGoddard shortwave radiation
scheme (Chou & Suarez, 1999), the Monin‐Obukhov similarity surface‐layer scheme (Paulson, 1970), the
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Noah land surface model, and the Yonsei State University boundary layer scheme (Hong et al., 2006). No
cumulus parameterization scheme was used in either of the model domains (D01 and D02), which follows
Chen et al. (2018). Note that the data assimilation method used by the WRF‐EnKF system presented here
is ensemble based, which is drastically different from those variational methods used for creating ERA‐
Interim and ERA5, the IFS Cycle 31r2 4DVAR (Berrisford et al., 2011) and IFS Cycle 41r2 4DVAR
(Hersbach & Dee, 2016), respectively, besides their differences in model, resolution, and physics
parameterization schemes. The spatial resolution, which is globally ~79‐km (~31‐km) horizontal grid
spacing and 60 vertical levels up to 0.1 hPa (137 vertical levels up to 0.01 hPa) for ERA‐Interim (ERA5), is
lower than (comparable to) the 30‐km horizontal resolution used in the WRF‐EnKF system. The IFS
4DVAR system generated the ERA‐Interim and ERA5 by assimilated the Global Telecommunications
System (GTS) observations, satellite radiance data and others; however, the WRF‐EnKF reanalysis only
assimilated GTS observations in the current pilot evaluation study.

The initial and lateral boundary conditions (ICs and LBCs) for D01 were generated from ERA‐Interim with a
horizontal grid spacing of ~79 km. After a spin‐up period from 1200 UTC 31 May to 0000 UTC 1 June 2015,
the data assimilation cycles started from 0000 UTC 1 June and spanned the summer of 2015. The mean of 6‐
hr ensemble forecasts (EnKF_30_En6H) of the previous cycle was used as the new IC for the next data
assimilation cycle.

Downscale simulations were performed at different grid spacings for different comparisons. ERA‐I_30 and
ERA5_30 at a 30‐km grid spacing over D01 were interpolated from the original ERA‐Interim (at a ~79‐km
grid spacing) and ERA5 (at a ~31‐km grid spacing) reanalysis to compare with EnKF_30 (Table 1). The
12‐hr downscale simulations (Table 1) using two‐way nesting were driven by the reanalysis of ERA5_30
or ERA‐I_30 or EnKF_30. Their coarser (nested) simulations at a 30‐km (10‐km) grid spacing over D01
(D02) are referred to as ERA‐I_30_FCST, ERA5_30_FCST, and EnKF_30_FCST (ERA‐I_10_FCST,
ERA5_10_FCST, and EnKF_10_FCST). Consecutive deterministic forecasts were initiated each day at the
four assimilation times during the summer of 2015, each integrated for 12 hr and with outputs saved every
3 hr. Within the four 12‐hr forecasts of each day, every 3‐hourly accumulated rainfall from hour 3 to 6 and
the subsequent 3‐hourly accumulated rainfall from hour 6 to 9 were concatenated to describe the diurnal
evolution of precipitation in section 4.5. Different experiments over D01 and D02 are summarized in
Table 1.

Figure 1. Configuration of the Weather Research and Forecasting‐ensemble Kalman filter reanalysis domain (D01) and
downscale reanalysis domain (D02) over the Tibetan Plateau. The triangles and dots represent the sounding sites of
Global Telecommunications System that are assimilated in the model and the intensive sounding sites, respectively. Blue
and red indicate sites below and above 1,500 m (observation record starts from 700 hPa), respectively. Verification
domains (west domain, WD; middle domain, MD; east domain, ED; south domain, SD) of precipitation are shown as blue
boxes inside D02. The shaded color indicates the terrain height in meters.
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2.3. Observations

The pilot reanalysis data sets evaluated in this study were produced by EnKF over D01 that assimilated con-
ventional observations available from GTS platform every 6 hr. The assimilated GTS data set includes sur-
face observation (SYNOP), radiosonde observation (TEMP), satellite wind (SATOB), aerodrome routine
meteorological report (METAR), automated aircraft report (AMDAR), satellite remote upper‐air sounding
(SATEM), upper‐wind report (PILOT), and space‐based GPS refractivity observation (GPSRF). The standard
GTS soundings assimilated in all reanalyses, which are denoted by the triangles in Figure 1, are only inde-
pendent for verifying the 6‐ to 12‐hr WRF forecasts. Dots that represent the intensive radiosonde sites from
TIPEX‐III, which are not assimilated in this study, are independent observations for verifying both the (re)
analysis and the subsequent 6‐ to 12‐hr forecasts. To evaluate the reanalysis quality over the TP, independent
soundings only at sites over high plateaus with elevation above 1,500 m (shown by red color in Figure 1)
were collected to verify the reanalyses (against red dots) and subsequent forecasts (against red triangles
and red dots).

The Advanced TIROS Operational Sounder Level 2 (ATOVSL2) satellite‐retrieved sounding observations
(Bormann & Bauer, 2010; Li et al., 2000) were also used to evaluate the specific humidity and temperature
of the reanalyses and forecasts. Radiance observations primarily from two series of satellites, NOAA and
Metop, were used to develop the ATOVSL2 data sets. Retrieved from measurements of the Advanced
TIROS Operational Vertical Sounder, ATOVSL2 global data sets contain vertical profile of temperature at
40 pressure levels from 10 to 1,000 hPa and specific humidity at 15 pressure levels from 300 to 1,000 hPa.
Merged surface‐Climate Prediction Center MORPHed (CMORPH) rainfall observations (Joyce et al., 2004;
Qi et al., 2018; Shen et al., 2014) were used to evaluate the simulated rainfall over the TP.

3. Evaluation Metrics

The reanalysis and subsequent forecasts were evaluated by calculating the mean bias and root‐mean‐square
errors (RMSEs). The mean bias was defined as

Table 1
A Summary of Data Assimilation Forecast and Downscale Experiments

Experiment name Domain Resolution (km) Description

ERA‐I_30 D01 30 Interpolated ERA‐Interim reanalysis to 30‐km grid spacing
ERA5_30 D01 30 Interpolated ERA5 reanalysis to 30‐km grid spacing
EnKF_30 D01 30 Mean of the EnKF ensemble analysis
ERA‐I_10 D02 10 Interpolated from ERA‐I_30 to 10 km grid spacing
ERA5_10 D02 10 Interpolated from ERA5_30 to 10 km grid spacing
EnKF_10 D02 10 Interpolated from EnKF_30 to 10 km grid spacing
ERA‐I_30_FCST D01 30 Deterministic forecast from ERA‐I_30
ERA5_30_FCST D01 30 Deterministic forecast from ERA5_30
EnKF_30_FCST D01 30 Deterministic forecast from EnKF_30
ERA‐I_10_FCST D02 10 Deterministic forecast from ERA‐I_10
ERA5_10_FCST D02 10 Deterministic forecast from ERA5_10
EnKF_10_FCST D02 10 Deterministic forecast from EnKF_10
ERA‐I_30_6H D01 30 6‐hr forecast result from ERA‐I_30_FCST
ERA5_30_6H D01 30 6‐hr forecast result from ERA‐5_30_FCST
EnKF_30_6H D01 30 6‐hr forecast result from EnKF_30_FCST
ERA‐I_30_12H D01 30 12‐hr forecast result from ERA‐I_30_FCST
ERA5_30_12H D01 30 12‐hr forecast result from ERA‐5_30_FCST
EnKF_30_12H D01 30 12‐hr forecast result from EnKF_30_FCST
ERA‐I_10_6H D02 10 6‐hr forecast result from ERA‐I_10_FCST
ERA5_10_6H D02 10 6‐hr forecast result from ERA‐5_10_FCST
EnKF_10_6H D02 10 6‐hr forecast result from EnKF_10_FCST
ERA‐I_10_12H D02 10 12‐hr forecast result from ERA‐I_10_FCST
ERA5_10_12H D02 10 12‐hr forecast result from ERA‐5_10_FCST
EnKF_10_12H D02 10 12‐hr forecast result from EnKF_10_FCST
ERA‐I_79_ORIG Global 79 Original forecasts from ERA‐Interim data set
ERA5_31_ORIG Global 31 Original forecasts from ERA5 data set

Note. EnKFs = ensemble Kalman filter; ERA5 = fifth European Centre for Medium‐Range Weather Forecasts
Reanalysis.
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Bias ¼ 1
n
∑n

i¼1 Mi−Oið Þ (1)

whereMi and Oi denote the model simulated value and observation at the ith (i = 1, 2, 3, … , n) site, respec-
tively. All theMi were interpolated from model grid to observation sites on the pressure level by the bilinear
interpolation algorithm. RMSE was defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑n

i¼1 Mi−Oið Þ2
r

(2)

The adjusted ensemble spread following Houtekamer et al. (2005) was defined as

SPRD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1
∑N

i¼1 f i−f
� �2 þ σ2o

r

(3)

where fi and f represent the ith (i = 1, 2, 3, … , N) ensemble member and the ensemble mean, respectively,
and σ2o is the observational error variance. Consistent with the innovation statistics as in (Parrish & Derber,
1992) commonly used for examining the consistency between ensemble spread and root‐mean difference to
observations, the prior ensemble can be regarded as generally reasonable when the prior RMSE is compar-
able to the square root of the sum of background error variance and observation error variance (SPRD here-
inafter) following Meng and Zhang (2008b).

4. Results
4.1. Evaluation of Overall RMSE and Bias Against Sounding Observations

The WRF‐EnKF, ERA‐Interim, and ERA5 reanalysis are compared in this section. All the bias and RMSE
showed in this section were calculated based on independent sounding observations at elevations higher
than 1,500 m (observation record starts from 700 hPa), except for those shown in Figure 2, which used the
sounding observations that were assimilated. Figure 2 shows the RMSE of EnKF_30 is smaller than those
of ERA‐I_30 and ERA5_30, especially in terms of specific humidity (Q) and of horizontal winds (U and
V). In general, the bias of temperature (T) and horizontal winds are similar in these three reanalyses, while
the EnKF_30 Q shows considerably smaller bias compared to the two global reanalyses, particular to ERA‐

Figure 2. Vertical profiles of mean bias (a–d) and root‐mean‐square error (RMSE; e–h) for ERA‐Interim reanalysis (green: ERA‐I_30), ERA5 reanalysis (blue:
ERA5_30), and the Weather Research and Forecasting‐ensemble Kalman filter reanalysis (red: EnKF_30) verified at the Global Telecommunications System
sounding sites (12 red triangles in Figure 1) for specific humidity (a and e), temperature (b and f), U wind (c and g), and V (d and h) wind over D01 during the
summer season of 2015.
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I_30. The results implied that this pilot EnKF data assimilation system worked effectively even though only
the GTS observations were assimilated. Nevertheless, we note that the EnKF_30 V wind had a slightly larger
bias than ERA‐I_30 and ERA5_30 at the upper to middle levels, implying that there is still room for
improving the WRF‐EnKF ensemble‐based reanalysis configurations, along with future inclusion of other
observations including those from the satellites.

The mean bias (Figures 3a–3d) and RMSE (Figures 3e–3h) of Q, T, U, and V were calculated using the inde-
pendent sounding observations (red dots in Figure 1) during the summer of 2015. Figures 3a and 3e show
that the EnKF_30 had apparent improvement in Q at all vertical levels when compared to ERA‐I_30 and
ERA5_30. The positive bias (Figure 3a) of ERA‐I_30 and ERA5_30 reached up to 0.4 and 0.5 g/kg at 700
hPa, while the bias of EnKF_30 was close to the zero line with a negative value less than 0.1 g/kg.
Although the ERA5_30 bias is smaller than ERA‐I_30 near 500 hPa, it still is larger than the EnKF_30 bias.
Consistent with the bias, the RMSE of Q (Figure 3e), which was comparable with the ensemble spread
underestimated shown in Figure 3i, was also smaller than those of ERA‐I_30 and ERA5_30, except at the
pressure levels from 400 to 500 hPa in ERA5_30. Generally speaking, comparable performance
(Figures 3b and 3f) was observed in T between the three reanalyses except that EnKF_30 had a slightly larger
error than ERA‐I_30 in the middle troposphere and ERA5_30 in the lower levels. The rank histogram indi-
cated the ensemble spread was underestimated in T. Although it is beyond the scope of this study, it is fore-
seeable in the future we can test different relaxation coefficient or using adaptive covariance inflation
methods (Yue & Zhang, 2015) in EnKF to have better spread of specific humidity and temperature succes-
sively while retaining the advantage in the accuracy of the analysis. The bias of U wind (Figure 3c) of
EnKF_30 was slightly smaller than that of ERA5_30 excluding at near surface, but ERA‐I_30 displaying a
smallest bias at upper levels and a larger bias at lower levels. The RMSE of U wind (Figure 3g) of
EnKF_30 was larger than that of ERA‐I_30 and ERA5_30, and the ERA5_30 showed the smallest RMSE.
The spread ofUwind was reasonable based on the flat rank histogram (Figure 3k); however, its vertical pro-
file was far away from the RMSE of EnKF_30 at middle levels, which was likely due to the larger observation
error variance (~9 m/s) between 150 and 300 hPa according to equation (3). EnKF_30 displayed a larger bias
(Figure 3d) compared to ERA‐I_30 and ERA5_30 for V wind at most levels. V wind (Figure 3h) showed an
analogous feature to U wind in terms of the RMSE for EnKF_30. However, different from the U wind, the V

Figure 3. As in Figure 2 but verified at the intensive sounding sites (11 red dots in Figure 1) for the ERA‐I_30 (green),
ERA5_30 (blue), and EnKF_30 (red) reanalyses. Grey line displays the spread of the Weather Research and
Forecasting‐ensemble Kalman filter reanalysis (EnKF_30_SPRD). (i−l) The rank histogram of posterior ensemble forQ, T,
U, and V. The y coordinate denotes the relative frequency of the verifying observation; the x coordinate denotes the bins
formed by the ensemble.
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wind of EnKF_30 showed a reasonable vertical spread but with a slight deficiency (Figure 3k) compared to
its RMSE.

Further improvements were observed in the reanalysis initiated short‐term forecast (and subsequent down-
scaling) than in the analysis (Figure 3) with the WRF‐EnKF. The mean of 6‐hr ensemble forecasts
(EnKF_30_En6H) from the posterior ensemble members showed notable improvement relative to that from
ERA‐I_30 and ERA5_30 (ERA‐I_30_6H and ERA5_30_6H), particularly for specific humidity at all vertical
levels (Figures 4a and 4e). The rank histogram of EnKF_30_En6H (Figure 4i) was similar to Figure 3i, but
the ensemble vertical spread (Figure 4e) was closer to RMSE than that of Figure 3e. The mean bias
(Figure 4b) of T generally showed similar performance between EnKF_30_En6H and ERA‐I_30_6H, with
a smaller bias of EnKF_30_En6H than that of ERA‐I_30_6H near 400 hPa and above 150 hPa. The T bias
was larger than EnKF_30_En6H and ERA‐I_30_6H in term of ERA5_30_6H. The temperature RMSE
(Figure 4f) had an even smaller difference between the three forecasts with respect to that difference in
Figure 3f, and the temperature spread (Figure 4f) of EnKF_30_En6H underestimated based on Figure 4j
was closer to its RMSE relative to the vertical spread of EnKF_30 (Figure 3f). The bias of U wind exhibited
an analogous shape in the EnKF_30_En6H and ERA‐I_30_6H (Figure 4c) and was smaller than that of
ERA5_30_6H at middle‐to‐upper levels. The bias of V wind (Figure 4d) of EnKF_30_En6H was smaller at
lower to middle levels and larger at upper levels compared to ERA‐I_30_6H, while the ERA5_30_6H showed
the smallest bias than the others. The wind RMSE of EnKF_30_En6H (Figures 4g and 4h) was consistently
smaller than that of ERA5_30_6H at lower‐to‐middle levels and ERA‐I_30_6H with a maximum difference
of ~0.5 m/s, even though the wind of EnKF_30 was worse than ERA‐I_30 and ERA5_30 in Figures 3g and
3h. This is likely due to the advantage of the EnKF‐based reanalysis using flow‐dependent error covariance
from the short‐term ensemble forecasts with a higher‐resolution, nonhydrostatic regional model, rather
than due to the ensemble spread, which showed more flat rank histogram than that of posterior ensemble
(Figure 3k) for U wind and a positive bias (Figure 4l) for V wind. Overall, the EnKF_30_En6H simulations
outperform the other two 6‐hr simulations, which were initialized with ERA‐Interim and ERA5 reanalysis.

4.2. Evaluation of Specific Humidity Against Satellite Observation

The performances of EnKF_30 and ERA‐I_30 were evaluated against the ATOVSL2 observations (Ahn et al.,
2003; Bormann& Bauer, 2010; Li et al., 2000) fromNOAA19,MetopA, andMetopB satellites for temperature

Figure 4. As in Figure 3 but verified at the independent sounding sites (12 red triangles and 11 red dots in Figure 1) for
6‐hr forecasts driven by three reanalyses. Grey line displays the spread of ensemble forecast (EnKF_30_En6H_SPRD).
The rank histogram of 6‐hr ensemble forecast shows in bottom panels (i−l). RMSE = root‐mean‐square error.
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and specific humidity. Note that some of the radiances used to derive the satellite‐retried ATOVSL2 observa-
tions have been assimilated for the ERA‐Interim and ERA5 reanalyses (that initiated ERA‐I_30 and
ERA5_30) but none was used for theWRF‐EnKF (for initiating EnKF_30). Nevertheless, regardless of which
satellite observations were compared against, EnKF_30 had smaller bias and RMSE in specific humidity
than those of ERA‐I_30 and ERA5_30, indicating that the specific humidity of EnKF_30 over the TP was
more reliable and accurate than that of ERA‐I_30 and ERA5_30 (Figure 5) consistent with the verification
against sounding sites as shown in Figure 3. Consistently, smaller biases and RMSE of specific humidity
were also observed in terms of 6‐hr forecasts (Figure 6) in EnKF_30_En6H relative to ERA‐I_30_6H and
ERA5_30_6H except that the ERA5_30_6H exhibited a commensurate bias at middle‐to‐upper levels when

Figure 5. As in Figure 2 but verified against ATOVSL2 NOAA19 (a and d), MetopA (b and e), and MetopB (c and f) satel-
lite‐retrieved observations for the specific humidity of three reanalyses over D01.Verification times are 06 UTC and 18
UTC for NOAA19 and 06 UTC and 12 UTC for MetopA and MetopB. RMSE = root‐mean‐square error.

Figure 6. As in Figure 5 but for the 6‐hr Weather Research and Forecasting forecasts. RMSE = root‐mean‐square error.
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compared against MetopA/MetopB. In addition, the bias and RMSE (Figures 5 and 6) based on MetopB
observations were the smallest, followed by that of MetopA and NOAA19, probably because of different
accuracy of different satellite observations, but more detailed analysis is out of scope for this work.

In summary, the independent sounding and satellite observations demonstrated that the EnKF_30
improved notably over ERA‐Interim and ERA5 in specific humidity estimation and subsequent forecasts.
The improved moisture analysis will have significant implications in the precipitation analysis, and the
water cycles over this region, which is one of the primary objectives in developing a regional reanalysis data
set as the eventual goal. As for the verification of temperature with ATOVSL2 observation, the bias and
RMSE showed comparable values for three reanalysis and forecast (not shown).

4.3. Evaluation of Specific Humidity in Spatial and Temporal Distribution

As theWRF‐EnKF pilot reanalysis tended to show amore accurate description for the key components of the
water cycles over the TP, the daily evolution of the vertically averaged RMSE of Q (Figure 7) from 300 to 700
hPa is further examined against the same soundings used in Figures 3 and 4. The ERA5_30 RMSE was smal-
ler than that of ERA‐I_30 in most days during summer, especially in June and July (Figure 7a). Compared
with ERA5_30, the EnKF_30 RMSE showed a favorable performance. Furthermore, the 6‐hr ensemble fore-
cast initiated from the EnKF_30 showed smaller RMSE than that from ERA‐I_30_6H and most days of
ERA5_30_6H (Figure 7b), indicating again the advantages of the EnKF_30 in terms of specific humidity.

Figure 8 displays the horizontal distributions of vertically averaged error of specific humidity at verification
sites (red markers in Figure 1) that have observations starting from 700 hPa. The ERA5 experiment
(Figure 8b) particularly over the sites of the eastern TP had a slightly smaller bias than the ERA‐Interim
experiment (Figure 8a) with the largest positive value of ~0.3 g/Kg. However, the EnKF experiment
(Figure 8c) displayed the smallest bias over most sites, which was consistent with Figure 3a. Using more ver-
ifiable sites, the 6‐hr forecasts of ERA‐I_30 and ERA5_30 showed larger biases (Figures 8d and 8e) with the
biases greater than 0.1 g/kg at most sites over the TP. The EnKF_En6H bias (Figure 8f) of specific humidity
was less than 0.1 g/Kg over most sites, thus closer to the observations more significantly than ERA‐I_30 and
ERA5_30 forecasts, except for several sites on the southeast of TP and India. The RMSE (Figures 8g–8l) dis-
tribution characterizations of specific humidity of EnKF experiment were analogous to that of the bias in
Figures 8a–8f. Overall, the WRF‐EnKF reanalysis data sets provided more accurate spatiotemporal features
of specific humidity than ERA‐Interim and ERA5.

4.4. Evaluation of Downscale Data Sets

Dynamical downscaling was performed to produce high‐resolution model data sets through running 6‐ and
12‐hr deterministic forecast at a 10‐km grid spacing from ERA‐I_30, ERA5_30, and EnKF_30. The 10‐km
downscale experiments were verified with the same observations as used to verify reanalyses and their fore-
casts in Figures 3 and 4. In general, the downscale experiment of the EnKF_30 was more accurate than that
of the ERA‐I_30 but comparable to ERA5_30.

Figure 7. Time evolution of the vertically averaged (from 300 to 700 hPa) root‐mean‐square error of specific humidity for (a) the three reanalyses and (b) the
sequent 6‐hr Weather Research and Forecasting forecasts initialized from respective reanalyses during the summer season of 2015. Root‐mean‐square error is
the average at 00, 06, 12, and 18 UTC for each day.
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The bias and RMSE of the specific humidity of EnKF_10 (Figures 9a and 9e), which was interpolated into a
10‐km grid spacing from EnKF_30, was smaller than that of ERA‐I_10 and ERA5_10 as the reanalyses at 30‐
km grid spacing. The EnKF_10 forecasts (EnKF_10_6H and EnKF_10_12H) biases of specific humidity were
positive except near 400 hPa and smaller than that of ERA‐I_10_6H and ERA‐I_10_12H (ERA5_10_6H and
ERA5_10_12H). This might result in too strong predicted precipitation, but the EnKF_10 forecasts were
much closer to the observed precipitation than the WRF forecasts downscaled from ERA‐I_30 and
ERA5_30. For the RMSE of the forecasts, The EnKF_10_6H and EnKF_10_12H showed a slightly larger
error than ERA5_10_6H and ERA5_10_12H but smaller than ERA‐I_10_6H and ERA‐I_10_12H. The three
downscale experiments had comparable temperature bias (Figure 9b) at the corresponding times, but the
ERA‐I_10 and ERA5_10 downscale had a smaller RMSE (Figure 9f) than that of EnKF_10 downscale at mid-
dle levels (from 200 to 400 hPa). For wind, bias and RMSE of ERA‐Interim experiments (Figures 9c and 9d,
and 9g and 9h) grown faster along forecast times than those of the ERA5 and EnKF experiments and became
greater after 6 hr, except that the bias of U wind of three experiments was of comparable magnitudes
(Figure 9c). Additionally, the wind bias of ERA5_10 and subsequent forecasts were the smallest, followed
by the EnKF_10 and ERA‐I_10 simulations. ERA5_10_6H and ERA5_10_12H exhibited smaller magnitude
for wind RMSE than EnKF_10_6H and EnKF_10_12H although the EnKF_30_En6H showed a smaller
RMSE compared to ERA5_30_6H. It was found that ERA5 downscale at 10‐km grid spacing displayed an
advantage than the others, followed by EnKF and ERA‐Interim downscale simulations. The compared
experiments (not shown) at the 30‐km horizontal resolution displayed a similar performance to the down-
scale experiments at the 10‐km horizontal resolution.

4.5. Evaluation of Diurnal Precipitation

In view of the more apparent and consistent improvement in specific humidity, further verification of pre-
cipitation using the 10‐km downscale experiments over the D02 was performed. Three‐hourly accumulated
precipitation from surface‐CMORPH observations and downscale experiments are shown in Figure 10.
According to the observations (Figures 10a–10h), precipitation mainly occurred along the southern edge

Figure 8. Spatial distribution of the vertically averaged (from 300 to 700 hPa) bias (a–f) and root‐mean square error (g–l) for specific humidity (g/kg) during the
summer season of 2015. (a–c and g–i) Reanalysis fields and (d–f and j–l) 6‐hr forecasts for ERA‐Interim (a, d, g, and j), fifth European Centre for Medium‐

Range Weather Forecasts Reanalysis (ERA5; b, e, h, and k), and Weather Research and Forecasting‐ensemble Kalman filter (EnKF; c, f, i, and l). The same verified
sounding sites and units as in Figures 3 and 4 for the bias and root‐mean‐square error of specific humidity.
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of TP during summer, which was closely related to the lifting effects of the Himalaya mountains. The
averaged extreme value of accumulated precipitation within 3 hr at 0800 LST (local standard time)
reached ~11 mm over the south TP slope (subdomain, SD) and 1‐3 mm over the eastern TP and India (east-
ern domain, ED). Notably, there were some local scattered precipitation near the lakes (e.g., Zhari Namco,
Selin Co, and NamCo, located on themiddle domain [MD] with cyan color in Figure 1) mostly located at the
middle TP (MD), especially at 1100, 2000, and 2300 LST. The accumulated precipitation increased from 0200
LST, peaking at 0800 LST, then decreased until 1400 LST, followed by increasing again to the second peak at
2000 LST.

The rainfall forecast of the ERA‐I_30 downscale experiment (Figures 10i–10p) showed a similar distribution
and diurnal variation patterns as the surface‐CMORPH observations. However, the simulated precipitation
was considerably larger along the southern edge of the TP and over the main body of TP (Figures 10i–10k
and 10n–10p). Compared with ERA‐I_10_FCST, despite the rainfall from ERA5_10_FCST (Figures 10q–
10x) showed apparent improvement in term of precipitation intensity, which showed the maximum rainfall
reduced from 40 to 25mmwithin 3 hr along the southern edge of TP, ERA5_10_FCST precipitation were still
more heavier than observation. The precipitation forecast from the EnKF_30 downscaling experiment
(Figures 10I–10VIII), however, simulated more reasonable precipitation including a better precipitation
magnitude and less spurious rainfall over the TP. It was found that the three reanalyses simulated the best
precipitation forecasts in daytime from 0800 LST to 1700 LST and the worst nighttime rainfall from 2000 LST
to 0500 LST. The smallest precipitation bias was at 1400 LST in EnKF_10_FCST and the largest precipitation
bias appeared at 2000 LST and 2300 LST in ERA‐I_10_FCST that could also be seen in Figure 11. The per-
formance of reanalyses in different times of the day could be captured from the variation of rain rates
(Figure 11), which were calculated and spliced from the forecasts driven by the reanalyses at 0800 LST,
1400 LST, 2000 LST, and 0200 LST. It indicates that the reanalyses (ERA‐Interim, ERA5 and WRF‐EnKF)
from 0200 LST to 0800 LST showed the best rainfall forecasts than that from 1400 LST to 2000 LST while they
showed the largest rainfall bias in their forecasts in the night. Consequently, three reanalyses should be
improved during the night particular for rainfall forecasts of 2000 LST and 2300 LST in future, even though
the WRF‐EnKF initiated forecasts have improved much compared to ERA‐Interim and ERA5 forecasts.
Besides the data assimilation, the differences between the ERA reanalyses and the WRF‐EnKF analysis
could also be partially contributed by the different physics schemes used in the ERA forecast models and
the WRF model. The relative contributions of data assimilation and model configurations to the

Figure 9. As in Figure 2 but verified against independent sounding observations over D02 for the reanalysis as well as the 6‐ and 12‐hr Weather Research and
Forecasting forecasts initialized from ERA‐I_30, ERA5_30, and EnKF_30. RMSE = root‐mean‐square error.
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improvement deserve future investigations. The precipitation variation (not shown) from downscale
experiments over D01 at the 30‐km grid spacing (ERA‐I_30_FCST or ERA5_30_FCST or EnKF_30_FCST)
had an analogous shape, but a weaker intensity than the precipitation of the 10‐km grid spacing (ERA‐
I_10_FCST or ERA5_10_FCST or EnKF_10_FCST), which can also be seen in Figure 11. This was likely
due to better resolvability of mesoscale precipitation at the finescale grid (10 km) using fully explicit
precipitation than that at the coarse‐grid (30‐km) domain that relies heavily on cumulus parameterizations.

Diurnal cycles of hourly rain rate over D02 from observation, three reanalysis simulations at 10‐ and 30‐km
grid spacing, ERA5_31_ORIG, and ERA‐I_79_ORIG were compared in Figure 11. ERA‐I_79_ORIG (bold
purple) not only overestimated the precipitation with an averaged rain rate of ~0.34 mm/hr but also showed
an erroneous diurnal cycle of rainfall with a maximum value of ~0.38 mm/hr at 1400 LST and a minimum
value of ~0.27 mm/hr at 2000 LST. In contrast, the ERA5_31_ORIG (bold magenta) rainfall showed a rea-
sonable diurnal variation but with a averaged rain rate of ~0.21 mm/hr that was larger than the
CMORPH observational analysis, while there was still a 3‐hr delay in the diurnal precipitation peak com-
pared to CMORPH. ERA‐I_30_FCST and ERA‐I_10_FCST (green lines) had a better diurnal cycle of rain
rate than that of ERA‐I_79_ORIG though still with a larger value than the observation with the minimum
of ~0.2 mm/hr and the maximum of ~0.44 mm/hr. The relatively better rain rates from ERA5_30_FCST
and ERA5_10_FCST (blue lines) correctly caught the diurnal variation in comparison to ERA5_31_ORIG.

Figure 10. Spatial distributions of 3‐hourly accumulated rainfall from different downscale forecasts (units: mm). (a–h) Observation; (i–p) ERA‐I_10_FCST down-
scaled ERA‐I_30; (q–x) ERA5_10_FCST downscaled ERA5_30; and (I–VIII) EnKF_10_FCST downscaled EnKF_30 at the 10‐km horizontal grid spacing.
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Furthermore, the ERA5 simulations were closer to satellite‐observed rain rates than ERA‐Interim
simulations. The rain rates (red lines) of EnKF_30_FCST and EnKF_10_FCST had similar diurnal
variation pattern and comparable rainfall intensity to the observations, except that the evening peak was
slightly overestimated. The largest difference between observation and three downscale experiments was
~0.27 mm/hr at 2000 LST in ERA‐Interim experiment, followed by ERA5 and EnKF experiments. These
findings suggest that the prototype WRF‐EnKF reanalysis had considerable advantages in simulating
diurnal precipitation over the TP in comparison to ERA‐Interim and ERA5.

Different features in the diurnal variations of hourly rain rate were observed over the four TP subregions
(Figure 12). TheWest Domain (WD) region showed a similar diurnal cycle pattern to the whole D02 domain,
in which ERA‐I_30_FCST and ERA‐I_10_FCST showed notable moist bias, while EnKF‐based forecasts
(EnKF_30_FCST and EnKF_10_FCST) were much smaller. The EnKF‐based downscale rainfall over WD
had a comparable performance to ERA5_31_ORIG, ERA5_30_FCST, and ERA5_10_FCST evaluated against
CMORPH observation; the latter had a better fit from 0500 LST to 1400 LST, while the former had a better fit
from 1400 LST to 2000 LST. Over the MD of the TP region, the EnKF‐based forecasts better captured the
diurnal cycle of precipitation than the ERA‐Interim (ERA5) forecasts at the 79‐ (31‐), 30‐, 10‐km grid spacing
due to the reducing of spurious precipitation. In contrast, ERA5_31_ORIG and the rain rates of ERA5 down-
scale experiments over MDwas better than those downscaled from ERA‐Interim. The ED had a local rainfall
center over the TP with a mean hourly rain rate of ~0.1 mm/hr. Compared with ERA‐Interim (ERA‐
I_30_FCST, ERA‐I_10_FCST, and ERA‐I_79_ORIG) and ERA5 precipitation (ERA5_30_FCST,
ERA5_10_FCST, and ERA5_31_ORIG), the EnKF‐based precipitation simulation well captured the shape
and scale of diurnal cycle over ED, except that its rainfall bias were larger than that of observation and
ERA5_31_ORIG during the night. This improvement depended on the more accurateWRF‐EnKF reanalysis
as clearly shown by the bias and RMSE in Figure 8 over the ED area. In term of ERA‐I_30 downscaled rain-
fall products, ERA5_30_FCST and ERA5_10_FCST rainfall over ED displayed a comparable diurnal cycle
and slightly smaller bias, while ERA5_31_ORIG had an apparent smaller rainfall bias.

Figure 11. Diurnal cycles of D02‐averaged hourly rainfall from different downscaled forecasts. The black line represents
observation, the bold (light) green line represents ERA‐I_10_FCST (ERA‐I_30_FCST), the bold (light) blue line represents
ERA5_10_FCST (ERA5_30_FCST), the bold (light) red line represents EnKF_10_FCST (EnKF_30_FCST), and the
magenta and purple lines represent the rain rate of the original forecasts (ERA‐5_31_ORIG and ERA‐I_79_ORIG) from
fifth European Centre for Medium‐RangeWeather Forecasts Reanalysis (ERA5) and ERA‐Interim at ~31 and ~79 km grid
spacing respectively. The x coordinate shows the time using local standard time. LST = local standard time.

10.1029/2019MS001665Journal of Advances in Modeling Earth Systems

HE ET AL. 2516



The primary precipitation center of the TP was located over the south domain (SD). Rainfall simulation over
this region was still a challenge for most current numerical weather prediction models (Feng & Zhou, 2012;
Maussion et al., 2011; Maussion et al., 2014; Wang & Zeng, 2012), likely due to its complex terrains and
related complicated dynamic and thermodynamic processes (Lin et al., 2018; Zhou et al., 2018). The biases
of the EnKF‐based forecast rainfall (red lines) were much smaller than those of the ERA‐Interim forecasts
(green and purple lines) over SD during the daytime, primarily due to the better moisture in the WRF‐
EnKF reanalysis as discussed in Figure 10. In term of ERA5 simulations (blue and magenta lines), the rain
rates of EnKF‐based forecast showed an analogous performance with smaller bias in the day and larger bias
in the night. Overall, the rainfall diurnal cycle and intensity from downscaled forecasts initialized with the
WRF‐EnKF reanalysis showed distinct advantages in comparison to ERA‐Interim and ERA5 over the
TP region.

Frequency bias (Jermey & Renshaw, 2016) was calculated using surface‐CMORPH rainfall observation over
a 6‐hr period and same threshold (1, 8, and 16mm) for ERA‐Interim, ERA5, andWRF‐EnKF simulated rain-
fall (10‐ and 30‐km) during the summer of 2015. All three simulation experiments (Figures 13a and 13b)
overestimated the occurrence of low‐threshold events (1 mm) in June, but the EnKF showed the smallest
precipitation bias. The occurrence of low‐threshold events (1 mm) were underestimated in July and
August by EnKF simulation; however, ERA5 simulation captured more accurate low‐threshold events
regardless of 10‐ or 30‐km horizontal resolution. For frequency bias of 8‐mm events (Figures 13c and
13d), it was overestimated in ERA‐Interim forecasts at coarse and fine‐scale resolution, but EnKF forecasts
were close to a perfect score, followed by the ERA5 experiment with a slight overestimation. The noticeable
overrepresentativity of 16‐mm events was displayed in Figures 13e and 13f for ERA‐Interim rainfall at 10‐
and 30‐km grid spacing. With reference to above, ERA5 rainfall only had a slight overestimation while
EnKF rainfall closely approached to the observed proportion of high‐threshold events at both grids spacing.
The frequency bias of different threshold indicating that the WRF‐EnKF reanalysis are better than ERA‐
Interim and ERA5 to capture the intense precipitation events.

Figure 14 shows the evolution of rainfall RMSE from the ERA‐I_30, ERA5_30, and EnKF_30 downscale
forecasts during the summer of 2015. EnKF_30_6H (EnKF_30_12H) had a smaller RMSE (Figures 14a

Figure 12. As in Figure 11 but evaluated over the blue domains (west domain,WD; middle domain, MD; east domain, ED; south domain, SD) as shown in Figure 1.
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Figure 13. Time evolutions of daily frequency bias of precipitation in the downscaled forecasts driven by ERA‐Interim
(green), fifth European Centre for Medium‐Range Weather Forecasts Reanalysis (ERA5; blue), and Weather Research
and Forecasting‐ensemble Kalman filter (EnKF; red) reanalysis at 10‐km (a, c, and e) and 30‐km (b, d, and f) grid spacing
over D02. Setting the precipitation thresholds: 1 mm (a, b), 8 mm (c, d), and 16 mm (e, f) over the 6‐hr accumulation
period.

Figure 14. Time evolution of root‐mean‐square error (RMSE) of the precipitation in the ERA‐Interim (green), fifth
European Centre for Medium‐Range Weather Forecasts Reanalysis (ERA5; blue), and ensemble Kalman filter (EnKF;
red) downscaled forecasts (6 and 12 hr) at 10‐ (bold) and 30‐km (dashed and circled) grid spacing over D02.
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and 14b) than ERA‐I_30_6H (ERA‐I_30_12H). However, the performance of EnKF_10_6H
(EnKF_10_12H), which was slightly worse than that of EnKF_30_6H (EnKF_30_12H), had a
comparable improvement to ERA5_10_6H (ERA5_10_12H). In detail, the rainfall RMSE of WRF‐
EnKF 6‐ to 12‐hr simulations were larger (June), comparable (July), and smaller (August) than those
of ERA5 simulations at 10‐ and 30‐km grid spacing. For three experiments, the rainfall error for the
forecasts at the 10‐km grid spacing was larger than that of the forecasts at the 30‐km grid spacing.
Overall, the WRF‐EnKF reanalysis had a consistent improvement in rainfall simulations for the whole
experiment period compared to ERA‐Interim simulations and showed a competitive performance in
comparison to ERA5 simulations.

5. Summary and Conclusions

This study evaluated an ensemble‐based intermediate‐resolution regional reanalysis over the Tibetan
Plateau for the summer of 2015 against the soundings with site altitude higher than 1,500 m including inten-
sive radiosonde observations from the TIPEX‐III project of China and independent GTS radiosonde observa-
tions, as well as the ATOVSL2 satellite sounder observations. Diurnal variations of precipitation were
further compared with rainfall observations (surface‐CMORPH rainfall) from Chinese Precipitation
Analyses for two short‐period forecasts that are driven by the ERA‐Interim, ERA5, and WRF‐EnKF reana-
lysis at 30‐ and 10‐km grid spacing, respectively.

The experiments showed that the WRF‐EnKF reanalysis of Q, T, U, and V approached the observations sig-
nificantly after only assimilating GTS observations by the PSU WRF‐EnKF data assimilation system.
Independent verification against the conventional soundings indicates that the WRF‐EnKF reanalysis and
6‐hr ensemble forecast of specific humidity had a clear advantage over those of ERA‐Interim and ERA5 in
both spatial and temporal distributions. This result was further confirmed by the verification against satellite
sounder observations. The specific humidity of 6‐ to 12‐hr deterministic forecast by downscaling the WRF‐
EnKF reanalysis produced smaller (comparable) forecast errors than those of ERA‐Interim (ERA5). The
temperature displayed a comparable performance in different reanalyses or forecasts (ensemble forecasts
and downscale forecasts), though the ERA‐Interim and ERA5 had advantage in the horizontal wind analy-
sis. However, for 6‐hr ensemble forecast and 12‐hr deterministic downscale forecast driven by the ensemble
analysis and its mean, their wind errors were smaller and grown slower than those by ERA‐Interim reana-
lysis but larger than those by ERA5 reanalysis when only compared with 12‐hr deterministic downscale fore-
cast from the WRF‐EnKF reanalysis.

The precipitation forecast initialized from the ensemble‐based WRF‐EnKF reanalysis was more accurate
than forecasts using ERA‐Interim and ERA5 particularly in terms of precipitation magnitude and spur-
ious rainfall. In addition, the diurnal variation of precipitation of the EnKF‐based forecast, which cor-
rected the extreme values of rain rate and reduces the rainfall errors demonstrably, had a clear
improvement in comparison to rainfall forecasts from ERA5 and ERA‐Interim including the original
and downscaled rainfall. The forecast precipitation of WRF‐EnKF could more accurately capture the pro-
portion of intense precipitation events based on the frequency bias over 6‐hr period. These improvements
should come primarily from the benefits of the more accurate WRF‐EnKF reanalysis at a higher resolu-
tion, which was produced using a state‐of‐the‐art ensemble data assimilation system and a nonhydrostatic
regional model.

Despite the WRF‐EnKF experiments showing an encouraging performance in specific humidity, precipita-
tion, and diurnal variation of rain rate over the TP by assimilating only conventional observations, the
WRF‐EnKF reanalyses of temperature and wind may need further improvement compared to ERA5, which
assimilated much more observations including radiances from NOAA‐18/NOAA‐19, METOP‐A/METOP‐B,
and other satellites. Ongoing research seeks to further improve the prototype regional WRF‐EnKF system
through direct assimilation of all‐sky radiances (Minamide & Zhang, 2017, 2018; Zhang et al., 2016).
Moreover, a larger domain covering the whole Tibetan Plateau and/or higher‐resolution convection‐
permitting data assimilation (Ying & Zhang, 2018) will be considered for the WRF‐EnKF reanalysis in the
future study, as well as the use of more advanced assimilation techniques including En3DVar and
En4DVar (Zhang et al., 2013; Zhang & Zhang, 2012).

10.1029/2019MS001665Journal of Advances in Modeling Earth Systems

HE ET AL. 2519



References
Ahn, M.‐H., Kim, M.‐J., Chung, C.‐Y., & Suh, A.‐S. (2003). Operational implementation of the ATOVS processing procedure in KMA and its

validation. Advances in Atmospheric Sciences, 20(3), 398–414. https://doi.org/10.1007/BF02690798
Bach, L., Schraff, C., Keller, J. D., & Hense, A. (2016). Towards a probabilistic regional reanalysis system for Europe: Evaluation of

precipitation from experiments. Tellus A: Dynamic Meteorology Oceanography, 68(1), 32,209. https://doi.org/10.3402/tellusa.
v68.32209

Bao, X., Luo, Y., Sun, J., Meng, Z., & Yue, J. (2017). Assimilating Doppler radar observations with an ensemble Kalman filter for convection‐
permitting prediction of convective development in a heavy rainfall event during the pre‐summer rainy season of south China. Science
China Earth Sciences, 60(10), 1866–1885. https://doi.org/10.1007/s11430‐017‐9076‐9

Bao, X., & Zhang, F. (2013). Evaluation of NCEP–CFSR, NCEP–NCAR, ERA‐Interim, and ERA‐40 reanalysis datasets against independent
sounding observations over the Tibetan Plateau. Journal of Climate, 26(1), 206–214. https://doi.org/10.1175/JCLI‐D‐12‐00056.1

Barker, D. (2005). Southern high‐latitude ensemble data assimilation in the Antarctic Mesoscale Prediction System. Monthly Weather
Review, 133(12), 3431–3449. https://doi.org/10.1175/MWR3042.1

Barker, D. M., Huang, W., Guo, Y.‐R., Bourgeois, A., & Xiao, Q. (2004). A three‐dimensional variational data assimilation system for MM5:
Implementation and initial results. Monthly Weather Review, 132(4), 897–914. https://doi.org/10.1175/1520‐0493(2004)132<0897:
ATVDAS>2.0.CO;2

Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., & Uppala, S. (2009). The ERA‐interim archive, ERA report series,
(pp. 1–16).

Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kallberg, P.et al. (2011). The ERA‐Interim archive, version 2.0.
Bormann, N., & Bauer, P. (2010). Estimates of spatial and interchannel observation‐error characteristics for current sounder radiances for

numerical weather prediction. I: Methods and application to ATOVS data. Quarterly Journal of the Royal Meteorological Society,
136(649), 1036–1050. https://doi.org/10.1002/qj.616

Chen, D., Tian, Y., Yao, T., & Ou, T. (2016). Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over
the Tibet Plateau. Scientific reports, 6(1), 30,304. https://doi.org/10.1038/srep30304

Chen, D., Xu, B., Yao, T., Guo, Z., Cui, P., & Chen, F. (2015). Assessment of past, present and future environmental changes on the Tibetan
Plateau. Chinese Science Bulletin.

Chen, X., Pauluis, O. M., & Zhang, F. (2018). Regional simulation of Indian summer monsoon intraseasonal oscillations at gray‐zone
resolution. Atmospheric Chemistry Physics, 18(2), 1003–1022. https://doi.org/10.5194/acp‐18‐1003‐2018

Chou, M.‐D., & Suarez, M. J. (1999). A solar radiation parameterization for atmospheric studies. Technical Report, 15.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., et al. (2011). The twentieth century reanalysis project.

Quarterly Journal of the Royal Meteorological Society, 137(654), 1–28. https://doi.org/10.1002/qj.776
Courtier, P., Thépaut, J. N., & Hollingsworth, A. (1994). A strategy for operational implementation of 4D‐Var, using an incremental

approach. Quarterly Journal of the Royal Meteorological Society, 120(519), 1367–1387. https://doi.org/10.1002/qj.49712051912
Curio, J., Maussion, F., & Scherer, D. (2015). A 12‐year high‐resolution climatology of atmospheric water transport over the Tibetan

Plateau. Earth System Dynamics, 6(1), 109–124. https://doi.org/10.5194/esd‐6‐109‐2015
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA‐Interim reanalysis: Configuration and

performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/
10.1002/qj.828

Ebita, A., Kobayashi, S., Ota, Y., Moriya, M., Kumabe, R., Onogi, K., et al. (2011). The Japanese 55‐year reanalysis “JRA‐55”: an interim
report. Sola, 7, 149–152. https://doi.org/10.2151/sola.2011‐038

Feng, L., & Zhou, T. (2012). Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. Journal of
Geophysical Research, 117, D20114. https://doi.org/10.1029/2011JD017012

Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal
Meteorological Society, 125(554), 723–757. https://doi.org/10.1002/qj.49712555417

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The Modern‐Era Retrospective Analysis for Research
and Applications, version 2 (MERRA‐2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI‐D‐16‐0758.1

Gibson, J., Kållberg, P., Uppala, S., Hernandez, A., Nomura, A., & Serrano, E. (1997). ERA description. ECMWF Reanalysis Project Report
Series 1, Shinfield Park. Reading, United Kingdom, 77.

Harada, Y., Kamahori, H., Kobayashi, C., Endo, H., Kobayashi, S., Ota, Y., et al. (2016). The JRA‐55 Reanalysis: Representation of atmo-
spheric circulation and climate variability. Journal of the Meteorological Society of Japan. Ser. II, 94(3), 269–302. https://doi.org/10.2151/
jmsj.2016‐015

Hersbach, H., & Dee, D. (2016). ERA5 reanalysis is in production. ECMWF newsletter, No. 147, p7.
Hong, S.‐Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly

Weather Review, 134(9), 2318–2341. https://doi.org/10.1175/MWR3199.1
Houtekamer, P., & Zhang, F. (2016). Review of the ensemble Kalman filter for atmospheric data assimilation. Monthly Weather Review,

144(12), 4489–4532. https://doi.org/10.1175/MWR‐D‐15‐0440.1
Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L., & Hansen, B. (2005). Atmospheric data assimilation

with an ensemble Kalman filter: Results with real observations. Monthly Weather Review, 133(3), 604–620. https://doi.org/10.1175/
MWR‐2864.1

Hu, X. M., Xue, M., McPherson, R. A., Martin, E., Rosendahl, D. H., & Qiao, L. (2018). Precipitation dynamical downscaling over the Great
Plains. Journal of Advances in Modeling Earth Systems, 10(2), 421–447. https://doi.org/10.1002/2017MS001154

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long‐lived
greenhouse gases: Calculations with AER radiative transfer models. Journal of Geophysical Research, 113, D13103. https://doi.org/
10.1029/2008JD009944

Isaksen, L., Bonavita, M., Buizza, R., Fisher, M., Haseler, J., Leutbecher, M., & Raynaud, L. (2010). Ensemble of data assimilations at
ECMWF: European Centre for Medium‐Range Weather Forecasts.

Jermey, P., & Renshaw, R. (2016). Precipitation representation over a two‐year period in regional reanalysis. Quarterly Journal of the Royal
Meteorological Society, 142(696), 1300–1310. https://doi.org/10.1002/qj.2733

Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive
microwave and infrared data at high spatial and temporal resolution. Journal of hydrometeorology, 5(3), 487–503. https://doi.org/
10.1175/1525‐7541(2004)005<0487:CAMTPG>2.0.CO;2

10.1029/2019MS001665Journal of Advances in Modeling Earth Systems

HE ET AL. 2520

Acknowledgments

The authors thank Yue Ying and Robert
Nystrom for their helpful advice and
codes. Jie He is supported by the China
Scholarship Council. This work is pri-
marily sponsored by the U.S. National
Science Foundation (AGS‐1712290),
the U.S. Department of Energy project
WACCEM, the Strategic Priority
Research Program of Chinese Academy
of Sciences (grant XDA20060401), the
Swedish STINT (grant CH2015‐6226),
the Swedish VR (grant 2017‐03780), the
Gothenburg Chair Programme for
Advanced Studies (GoCAS), and the
National Research Foundation of South
Korea (grant 2017R1E1A1A03070968).
Computer sources from the ADAPT of
PSU are provided to run the experi-
ments at the Texas Advanced
Computing Center (TACC). The data
sets evaluated in this paper are archived
and accessible on the stampede2 cluster
of TACC (http://www.tacc.utexas.edu).



Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40‐year reanalysis project.
Bulletin of the American Meteorological Society, 77(3), 437–471. https://doi.org/10.1175/1520‐0477(1996)077<0437:TNYRP>2.0.CO;2

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.‐K., Hnilo, J., Fiorino, M., & Potter, G. (2002). NCEP–DOE AMIP‐II Reanalysis (R‐2).
Bulletin of the American Meteorological Society, 83(11), 1631–1644. https://doi.org/10.1175/BAMS‐83‐11‐1631

Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., et al. (2001). The NCEP–NCAR 50‐year reanalysis: Monthly means CD‐
ROM and documentation. Bulletin of the American Meteorological Society, 82(2), 247–267. https://doi.org/10.1175/1520‐
0477(2001)082<0247:TNNYRM>2.3.CO;2

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et al. (2015). The JRA‐55 reanalysis: General specifications and basic
characteristics. Journal of the Meteorological Society of Japan. Ser. II, 93(1), 5–48. https://doi.org/10.2151/jmsj.2015‐001

Li, J., Wolf, W. W., Menzel, W. P., Zhang, W., Huang, H.‐L., & Achtor, T. H. (2000). Global soundings of the atmosphere from ATOVS
measurements: The algorithm and validation. Journal of Applied Meteorology, 39(8), 1248–1268. https://doi.org/10.1175/1520‐
0450(2000)039<1248:GSOTAF>2.0.CO;2

Lim, K.‐S. S., & Hong, S.‐Y. (2010). Development of an effective double‐moment cloud microphysics scheme with prognostic cloud con-
densation nuclei (CCN) for weather and climate models. Monthly Weather Review, 138(5), 1587–1612. https://doi.org/10.1175/
2009MWR2968.1

Lin, C., Chen, D., Yang, K., & Ou, T. (2018). Impact of model resolution on simulating the water vapor transport through the central
Himalayas: Implication for models' wet bias over the Tibetan Plateau. Climate dynamics, 1–13.

Liu, X., & Dong, B. (2013). Influence of the Tibetan Plateau uplift on the Asian monsoon‐arid environment evolution. Chinese Science
Bulletin, 58(34), 4277–4291. https://doi.org/10.1007/s11434‐013‐5987‐8

Ma, Y., Kang, S., Zhu, L., Xu, B., Tian, L., & Yao, T. (2008). Tibetan observation and research platform: Atmosphere–land interaction over a
heterogeneous landscape. Bulletin of the American Meteorological Society, 89(10), 1487–1492.

Mahmood, S., Davie, J., Jermey, P., Renshaw, R., George, J. P., Rajagopal, E., & Rani, S. I. (2018). Indian monsoon data assimilation and
analysis regional reanalysis: Configuration and performance. Atmospheric Science Letters, 19(3), e808. https://doi.org/10.1002/asl.808

Mahmood, S., Jermey, P., & Renshaw, R. (2014). Methods for evaluating model performance of IMDAA. Met Office.
Maussion, F., Scherer, D., Finkelnburg, R., Richters, J., Yang, W., & Yao, T. (2011). WRF simulation of a precipitation event over the

Tibetan Plateau, China—An assessment using remote sensing and ground observations. Hydrology & Earth System Sciences, 15(6),
1795–1817. https://doi.org/10.5194/hess‐15‐1795‐2011

Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., & Finkelnburg, R. (2014). Precipitation seasonality and variability over the Tibetan
Plateau as resolved by the High Asia Reanalysis. Journal of Climate, 27(5), 1910–1927. https://doi.org/10.1175/JCLI‐D‐13‐00282.1

Meng, Z., & Zhang, F. (2007). Tests of an ensemble Kalman filter for mesoscale and regional‐scale data assimilation. Part II: Imperfect
model experiments. Monthly Weather Review, 135(4), 1403–1423. https://doi.org/10.1175/MWR3352.1

Meng, Z., & Zhang, F. (2008a). Tests of an ensemble Kalman filter for mesoscale and regional‐scale data assimilation. Part III: Comparison
with 3DVAR in a real‐data case study. Monthly Weather Review, 136(2), 522–540. https://doi.org/10.1175/2007MWR2106.1

Meng, Z., & Zhang, F. (2008b). Tests of an ensemble Kalman filter for mesoscale and regional‐scale data assimilation. Part IV: Comparison
with 3DVAR in a month‐long experiment. Monthly Weather Review, 136(10), 3671–3682. https://doi.org/10.1175/2008MWR2270.1

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., et al. (2006). North American regional reanalysis. Bulletin
of the American Meteorological Society, 87(3), 343–360. https://doi.org/10.1175/BAMS‐87‐3‐343

Minamide, M., & Zhang, F. (2017). Adaptive observation error inflation for assimilating all‐sky satellite radiance.Monthly Weather Review,
145(3), 1063–1081. https://doi.org/10.1175/MWR‐D‐16‐0257.1

Minamide, M., & Zhang, F. (2018). Assimilation of all‐sky infrared radiances from Himawari‐8 and impacts of moisture and hydrometer
initialization on convection‐permitting tropical cyclone prediction. Monthly Weather Review, 146(10), 3241–3258. https://doi.org/
10.1175/MWR‐D‐17‐0367.1

Niermann, D., Borsche, M., Kaiser‐Weiss, A., Lussana, C., Tveito, O. E., Isotta, F., Jermey, P., et al., (2017). Report for Deliverable 3.8 (D3.8):
User friendly synthesis report on evaluation and uncertainty of regional reanalyses. Technical Report, 1‐24.

Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., et al. (2007). The JRA‐25 reanalysis. Journal of the
Meteorological Society of Japan. Ser. II, 85(3), 369–432. https://doi.org/10.2151/jmsj.85.369

Parrish, D. F., & Derber, J. C. (1992). The National Meteorological Center's spectral statistical‐interpolation analysis system. Monthly
Weather Review, 120(8), 1747–1763. https://doi.org/10.1175/1520‐0493(1992)120<1747:TNMCSS>2.0.CO;2

Paulson, C. A. (1970). The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer.
Journal of Applied Meteorology, 9(6), 857–861. https://doi.org/10.1175/1520‐0450(1970)009<0857:TMROWS>2.0.CO;2

Qi, W., Liu, J., & Chen, D. (2018). Evaluations and Improvements of GLDAS2. 0 and GLDAS2. 1 Forcing Data's Applicability for Basin Scale
Hydrological Simulations in the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 123, 13,128–113,148. https://doi.org/
10.1029/2018JD029116

Qiu, X. X., & Zhang, F. Q. (2016). Prediction and predictability of a catastrophic local extreme precipitation event through cloud‐resolving
ensemble analysis and forecasting with Doppler radar observations. Science China, 59(3), 518–532. https://doi.org/10.1007/s11430‐015‐
5224‐1

Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J. F., & Simmons, A. (2000). The ECMWF operational implementation of four‐dimensional
variational assimilation. I: Experimental results with simplified physics. Quarterly Journal of the Royal Meteorological Society, 126(564),
1143–1170. https://doi.org/10.1002/qj.49712656415

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al. (2011). MERRA: NASA's modern‐era retrospective
analysis for research and applications. Journal of Climate, 24(14), 3624–3648. https://doi.org/10.1175/JCLI‐D‐11‐00015.1

Saslo, S., & Greybush, S. J. (2017). Prediction of lake‐effect snow using convection‐allowing ensemble forecasts and regional data assimi-
lation. Weather and Forecasting, 32(5), 1727–1744. https://doi.org/10.1175/WAF‐D‐16‐0206.1

Shen, Y., Zhao, P., Pan, Y., & Yu, J. (2014). A high spatiotemporal gauge‐satellite merged precipitation analysis over China. Journal of
Geophysical Research: Atmospheres, 119, 3063–3075. https://doi.org/10.1002/2013JD020686

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., et al. (2008). A description of the Advanced Research WRF Version 3.
Technical Report, National Center for Atmospheric Research.

Tao, S., Luo, S., & Zhang, H. (1986). The Qinghai‐Xizang PlateauMeteorological Experiment (Qxpmex) May–August 1979. Paper presented
at the Proceedings of International Symposium on the Qinghai‐Xizang Plateau and Mountain Meteorology, DOI: https://doi.org/
10.1007/978‐1‐935704‐19‐5_1.

Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., et al. (2005). The ERA‐40 re‐analysis. Quarterly
Journal of the Royal Meteorological Society, 131(612), 2961–3012. https://doi.org/10.1256/qj.04.176

10.1029/2019MS001665Journal of Advances in Modeling Earth Systems

HE ET AL. 2521



Wang, A., & Zeng, X. (2012). Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. Journal of
Geophysical Research, 117, D05102. https://doi.org/10.1029/2011JD016553

Weng, Y., & Zhang, F. (2012). Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection‐permitting
hurricane initialization and prediction: Katrina (2005). Monthly Weather Review, 140(3), 841–859. https://doi.org/10.1175/
2011MWR3602.1

Xu, X., Lu, C., Shi, X., & Gao, S. (2008). World water tower: An atmospheric perspective. Geophysical Research Letters, 35, L20815. https://
doi.org/10.1029/2008GL035867

Yang, E.‐G., & Kim, H. M. (2017). Evaluation of a regional reanalysis and ERA‐Interim over East Asia using in situ observations during
2013–14. Journal of Applied Meteorology and Climatology, 56(10), 2821–2844. https://doi.org/10.1175/JAMC‐D‐16‐0227.1

Yang, E.‐G., & Kim, H. M. (2019). Evaluation of short‐range precipitation reforecasts from East Asia regional reanalysis. Journal of
hydrometeorology, 20(2), 319–337. https://doi.org/10.1175/JHM‐D‐18‐0068.1

Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., & Chen, Y. (2014). Recent climate changes over the Tibetan Plateau and their impacts on energy
and water cycle: A review. Global Planetary Change, 112, 79–91. https://doi.org/10.1016/j.gloplacha.2013.12.001

Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., et al. (2019). Recent Third Pole's rapid warming accompanies cryospheric melt
and water cycle intensification and interactions between monsoon and environment: Multi‐disciplinary approach with observation,
modeling and analysis. Bulletin of the American Meteorological Society, 100(3), 423–444. https://doi.org/10.1175/BAMS‐D‐17‐0057.1

Ying, Y., & Zhang, F. (2018). Potentials in improving predictability of multiscale tropical weather systems evaluated through ensemble
assimilation of simulated satellite‐based observations. Journal of the Atmospheric Sciences, 75(5), 1675–1698. https://doi.org/10.1175/
JAS‐D‐17‐0245.1

Ying, Y., Zhang, F., & Anderson, J. L. (2018). On the selection of localization radius in ensemble filtering for multiscale quasigeostrophic
dynamics. Monthly Weather Review, 146(2), 543–560. https://doi.org/10.1175/MWR‐D‐17‐0336.1

Yue, Y., & Zhang, F. (2015). An adaptive covariance relaxation method for ensemble data assimilation. Quarterly Journal of the Royal
Meteorological Society, 141(692), 2898–2906.

Zhang, F., Meng, Z., & Aksoy, A. (2006). Tests of an ensemble Kalman filter for mesoscale and regional‐scale data assimilation. Part I:
Perfect model experiments. Monthly Weather Review, 134(2), 722–736. https://doi.org/10.1175/MWR3101.1

Zhang, F., Minamide, M., & Clothiaux, E. E. (2016). Potential impacts of assimilating all‐sky infrared satellite radiances from GOES‐R on
convection‐permitting analysis and prediction of tropical cyclones. Geophysical Research Letters, 43, 2954–2963. https://doi.org/10.1002/
2016GL068468

Zhang, F., Snyder, C., & Sun, J. (2004). Impacts of initial estimate and observation availability on convective‐scale data assimilation with an
ensemble Kalman filter. Monthly Weather Review, 132(5), 1238–1253. https://doi.org/10.1175/1520‐0493(2004)132<1238:IOIEAO>2.0.
CO;2

Zhang, F., & Weng, Y. (2015). Predicting hurricane intensity and associated hazards: A five‐year real‐time forecast experiment with
assimilation of airborne Doppler radar observations. Bulletin of the American Meteorological Society, 96(1), 25–33. https://doi.org/
10.1175/BAMS‐D‐13‐00231.1

Zhang, F., Weng, Y., Gamache, J. F., & Marks, F. D. (2011). Performance of convection‐permitting hurricane initialization and prediction
during 2008–2010 with ensemble data assimilation of inner‐core airborne Doppler radar observations. Geophysical Research Letters, 38,
L15810. https://doi.org/10.1029/2011GL048469

Zhang, F., Weng, Y., Sippel, J. A., Meng, Z., & Bishop, C. H. (2009). Cloud‐resolving hurricane initialization and prediction through
assimilation of Doppler radar observations with an ensemble Kalman filter.MonthlyWeather Review, 137(7), 2105–2125. https://doi.org/
10.1175/2009MWR2645.1

Zhang, F., Zhang, M., & Poterjoy, J. (2013). E3DVar: Coupling an ensemble Kalman filter with three‐dimensional variational data
assimilation in a limited‐area weather prediction model and comparison to E4DVar.Monthly Weather Review, 141(3), 900–917. https://
doi.org/10.1175/MWR‐D‐12‐00075.1

Zhang, M., & Zhang, F. (2012). E4DVar: Coupling an ensemble Kalman filter with four‐dimensional variational data assimilation in a
limited‐area weather prediction model. Monthly Weather Review, 140(2), 587–600. https://doi.org/10.1175/MWR‐D‐11‐00023.1

Zhang, M., Zhang, F., Huang, X.‐Y., & Zhang, X. (2011). Intercomparison of an ensemble Kalman filter with three‐and four‐dimensional
variational data assimilation methods in a limited‐area model over the month of June 2003. Monthly Weather Review, 139(2), 566–572.
https://doi.org/10.1175/2010MWR3610.1

Zhang, Q., Pan, Y., Wang, S., Xu, J., & Tang, J. (2017). High‐resolution regional reanalysis in China: Evaluation of 1 year period experi-
ments. Journal of Geophysical Research: Atmospheres, 122, 10,801–10,819. https://doi.org/10.1002/2017JD027476

Zhang, R., Jiang, D., Zhang, Z., & Yu, E. (2015). The impact of regional uplift of the Tibetan Plateau on the Asian monsoon climate.
Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 137–150. https://doi.org/10.1016/j.palaeo.2014.10.030

Zhang, R., Koike, T., Xu, X., Ma, Y., & Yang, K. (2012). A China‐Japan cooperative JICA atmospheric observing network over the Tibetan
Plateau (JICA/Tibet Project): An overviews. Journal of the Meteorological Society of Japan. Ser. II, 90, 1–16.

Zhang, Y., Zhang, F., & Stensrud, D. J. (2018). Assimilating all‐sky infrared radiances from GOES‐16 ABI using an ensemble Kalman filter
for convection‐allowing severe thunderstorms prediction. Monthly Weather Review, 146(10), 3363–3381. https://doi.org/10.1175/MWR‐
D‐18‐0062.1

Zhao, P., Xu, X., Chen, F., Guo, X., Zheng, X., Liu, L., et al. (2018). The third atmospheric scientific experiment for enderstanding the
Earth–Atmosphere coupled system over the Tibetan Plateau and its effects. Bulletin of the American Meteorological Society, 99(4),
757–776. https://doi.org/10.1175/BAMS‐D‐16‐0050.1

Zhou, X., Yang, K., & Wang, Y. (2018). Implementation of a turbulent orographic form drag scheme in WRF and its application to the
Tibetan Plateau. Climate dynamics, 50(7‐8), 2443–2455. https://doi.org/10.1007/s00382‐017‐3677‐y

10.1029/2019MS001665Journal of Advances in Modeling Earth Systems

HE ET AL. 2522


