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ABSTRACT

Meteorological model errors caused by imperfect parameterizations generally cannot be overcome simply

by optimizing initial and boundary conditions. However, advanced data assimilation methods are capable of

extracting significant information about parameterization behavior from the observations, and thus can be

used to estimate model parameters while they adjust the model state. Such parameters should be identifiable,

meaning that they must have a detectible impact on observable aspects of the model behavior, their individual

impacts should be a monotonic function of the parameter values, and the various impacts should be clearly

distinguishable from each other.

A sensitivity analysis is conducted for the parameters within the Asymmetrical Convective Model, version 2

(ACM2) planetary boundary layer (PBL) scheme in the Weather Research and Forecasting model in order to

determine the parameters most suited for estimation. A total of 10 candidate parameters are selected from

what is, in general, an infinite number of parameters, most being implicit or hidden. Multiple sets of model

simulations are performed to test the sensitivity of the simulations to these 10 particular ACM2 parameters

within their plausible physical bounds. The most identifiable parameters are found to govern the vertical

profile of local mixing within the unstable PBL, the minimum allowable diffusivity, the definition of the height

of the unstable PBL, and the Richardson number criterion used to determine the onset of turbulent mixing in

stable stratification. Differences in observability imply that the specific choice of parameters to be estimated

should depend upon the characteristics of the observations being assimilated.

1. Introduction: Parameters and parameter
estimation

Appropriate treatment of vertical mixing is an essen-

tial component of meteorological and air quality models.

Planetary boundary layer (PBL) schemes are used to

parameterize the vertical turbulent fluxes of heat, mo-

mentum, and constituents such as moisture within the

PBL as well as in the free atmosphere. The accuracy of

the PBL scheme is critical for forecasts of local thermally

and mechanically driven flows and air quality, and it also

affects forecasts of larger-scale meteorological phenom-

ena (Hacker and Snyder 2005). Errors and uncertainties

associated with PBL schemes remain one of the primary

sources of inaccuracies in model simulations (Pleim 2007b;

Hu et al. 2010a).

Parameter estimation offers a way to improve the accu-

racy of parameterizations such as PBL schemes. Parameter

estimation is a technique for determining the best value

of certain model parameters through data assimilation or

similar techniques. When applied to parameterizations

of meteorological processes, one hopes to identify opti-

mal parameter values within a given parameterization,
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with ‘‘optimal’’ defined over some appropriate domain

in space and time.

For the specific application of optimizing a PBL scheme,

the parameters to be estimated are not necessarily limited

to numerical constants that appear explicitly in the param-

eterization formulation. For example, one could create a

superparameterization, in which vertical mixing is com-

puted as a weighted average of the mixing produced by

various PBL schemes, and the weighting values would

be the targets of parameter estimation. Alternatively,

one could expand the set of estimable parameters within

a single parameterization to allow for structural changes

to the parameterization itself.

The set of possible parameters to be estimated is in-

finite. Consider a simple parameterization at grid point

i of yi in terms of xi:

y
i
5 Ax

i
. (1)

Structurally, this is a linear approximation. But one

may generalize it as a power series in which there are

infinite parameters:
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The assertion that (1) is an optimal parameterization

is equivalent to the assertion that all but one of the As

in (2)–(4) are optimally set equal to zero. In principle, all

of the As in (2)–(4), and other parameters besides, are

hidden or implicit parameters that are also candidates

for parameter estimation.

The optimization problem for parameter estimation

may be defined locally or globally. Global parameter es-

timation involves the search for a single parameter value

that performs best in all situations. Local parameter es-

timation allows for optimal parameters to be functions of

space and time, in keeping with the idea that optimal

parameters are likely to be flow or situation dependent.

For example, the exponent in the formulation of bound-

ary layer scaling of vertical eddy diffusivity [used in the

Yonsei University (YSU) and Asymmetrical Convective

Model, version 2 (ACM2) PBL schemes] is dependent on

stability (Troen and Mahrt 1986). Parameter estimation

permits not just optimization of a parameterization, but

optimal evolution of a parameterization.

Advanced data assimilation methods [e.g., variational

approaches and versions of the ensemble Kalman filter

(EnKF)] are capable of extracting from observations

significant information about the model parameters in

addition to the model state. They can be used to counter

model errors due to incorrect parameters by calibrating

those parameters simultaneously with the model state

during the analysis process. Parameter estimation using

data assimilation methods has been a common approach

to deal with model error associated with incorrect pa-

rameters (Navon 1997; Aksoy et al. 2006a,b; Zupanski

and Zupanski 2006; Tong and Xue 2008; Kondrashov

et al. 2008). In atmospheric sciences, variational data

assimilation methods are traditionally used for parameter

estimation. Only recently have ensemble-based schemes

emerged as a promising method for parameter estimation

(for a review, see Aksoy et al. 2006a).

The inverse problem of parameter estimation is es-

sentially a problem of mapping from the space of model

outputs (which is measurable) to the space of parameters.

The mapping in EnKF is realized through the covariance

between parameters and model outputs calculated from

the ensemble (i.e., EnKF adjusts parameters using obser-

vations based on the covariance between them). However

such mapping may fail under some conditions: (i) the

changes produced by parameter variations do not project

sufficiently strongly onto observation space, thus mea-

surement errors can lead to large changes in estimated

parameter values; (ii) the model output does not vary

smoothly with the parameter to be estimated, thus the

optimal parameter value may never be found; or (iii) var-

ious parameters have indistinguishable effects on model

output, thus the wrong parameters may be adjusted. Navon

(1997) groups all three conditions under the general term

of identifiability, while Zupanski and Zupanski (2006) refer

to (i) as observability and reserve the term identifiability

for (ii) and (iii). Here, we will refer to (i) as observability,

(ii) as simplicity, and (iii) as distinguishability. Thus,

successful parameter estimation requires that the set of

parameters to be estimated produce sufficiently large,

well-behaved, and unique sensitivities in model output.

The objective of our research program is to use EnKF

to estimate the optimal values of some fundamental

parameters in the ACM2 PBL scheme in the Weather

Research and Forecasting (WRF) model and improve

the simultaneous state estimation. As a necessary first

step (Tong and Xue 2008) in this program, this paper

reports on a detailed sensitivity analysis to identify the

best parameters to be estimated in ACM2. Such a sen-

sitivity analysis enables us to rank a subset of chosen

parameters according to their chances to be correctly
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identified in parameter estimation and help us understand

the EnKF results (estimation of both parameters and

state). Such a comprehensive sensitivity analysis is also

useful for understanding the characteristics and sources of

systematic errors of the ACM2 scheme and other similar

PBL schemes, and may facilitate future improvements in

PBL schemes of a similar type. The overall approach is

applicable to any complex parameterization scheme.

The paper is organized as follows. In section 2, the

ACM2 PBL scheme is briefly described and potentially

identifiable parameters in ACM2 are summarized. Sec-

tion 3 describes the model setup and diagnostic approach.

In section 4, model sensitivities to each parameter are

examined and related to physical causes. Section 5 dis-

cusses the numerical results in the context of parameter

identifiability, seeking to identify the best parameters

for parameter estimation. The paper concludes with a

brief summary.

2. Description of the ACM2 scheme and its
potentially identifiable parameters

The ACM2 PBL scheme (Pleim 2007a,b) includes an

eddy diffusion component in addition to the explicit

nonlocal transport of the original ACM1 scheme (Pleim

and Chang 1992). A weighting factor is used to govern

the portion of mixing due to local diffusion and nonlocal

transport. The inclusion of a local eddy diffusion com-

ponent leads to a more realistic representation of the

shape of the vertical profiles of model variables near the

surface (Pleim 2007a). For stable or neutral conditions,

the portion of mixing due to nonlocal transport is set to

zero, thus the ACM2 scheme transits to use pure local

eddy diffusion to handle vertical mixing. The potentially

identifiable parameters in ACM2 as implemented in WRF

version 3 are discussed in the following paragraphs. For

a full description of the ACM2 scheme and definitions of

all variables, see Pleim (2007a,b). We discuss here only

those formulas and variables that are essential for un-

derstanding the nature of the potentially identifiable pa-

rameters or that are different in the WRF implementation

of ACM2.

For the local vertical eddy diffusion, the maximum of

two methods of eddy diffusivity Kz calculation (i.e., a

PBL scaling form of Kz and a local formulation of Kz) is

applied. The PBL scaling form of Kz within the boundary

layer may be written [after Pleim (2007a), his Eq. (12)] as

K
z
(z) 5 k

u*
f

z(1� z/h)p, (5)

where k is the von Kármán constant (well known to

within about 10% and therefore not very adjustable), f

is the similarity profile function (with different symbols

for heat fh and momentum fm), z is the height above

ground level, and h is the height above ground level of

the top of the boundary layer (PBLH). The exponent p

is a hidden parameter; Eq. (12) of Pleim (2007a) uses

the value ‘‘2’’ rather than the symbol p. The value of

p partly determines the magnitude of the diffusivity,

with smaller values leading to stronger diffusivity, and

partly determines the level at which the diffusivity is

a maximum. When p 5 1, diffusivity peaks in the middle

of the boundary layer; the diffusivity maximum moves

progressively lower for larger values of p. Troen and

Mahrt (1986) consider values ranging from 1 to 3 for this

parameter.

In the ACM2 implementation in WRF, fm is used for

computing the friction velocity u
*
, but fh is used in (5) for

computing the vertical mixing coefficient Kz for momen-

tum as well as for temperature and mixing ratios. In earlier

tests, little difference was found in computing a separate

Kz for momentum.

The universal functions fh and fm have been the

subject of considerable research, and a variety of for-

mulations exist (Foken 2006). For unstable conditions,

a fairly general representation of the relationship be-

tween the two universal functions is

f
h

5 Pf2
m. (6)

Here P is a hidden parameter. The ACM2 scheme

uses P 5 1 (Pleim 2007a), but other values are possible

and affect the local value of the Prandtl number. Ac-

cording to Foken (2006), the physical range of P is small,

perhaps 0.95–1.35. A suitable range for P is 0.9–1.5.

For stable conditions, the profile functions of fh and

fm are given (Pleim 2007b) as

f
h

5 f
m

5 1 1 r
z

L
, (7)

while for very stable conditions (z/L . 1) they are

given as

f
h

5 f
m

5 r 1
z

L
. (8)

Pleim (2007b) uses 5 for the value of the hidden var-

iable r. According to Foken (2006), the presently ac-

cepted value is r 5 6, so it would be reasonable to allow

r to range from 4.5 to 7.

The local formulation of Kz in the ACM2 scheme

takes several forms depending on the value of the local

Richardson number Ri:

Ri . Rc: K
z

5 K
zo

, (9)
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c
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Here we have corrected transcription errors in Pleim

[2007b, his Eqs. (4) and (5)] and written a generalized

form for (11) and (13). The ACM2 value of j is 25 (not

0.25 as stated in Pleim 2007b), but this parameter, arising

only in cases of absolute instability, is not expected to be

observable. The local Richardson number Ri includes

the effects of moisture and is compared to a critical

Richardson number Rc for identification of the stability

regime. The ACM2 value for Rc is 0.25, with a plausible

range of values from 0.2 to 1.0. The parameter l is the

asymptotic value of the turbulent length scale. It is set to

80 m in the ACM2 scheme, but is not well constrained

and may be taken to vary from 40 to 120 m.

The current WRF (3.1) implementation of the ACM2

scheme has Kzo 5 KyDz, which, in the context of (13),

means that hidden parameter V 5 1. In this implemen-

tation Ky depends on vertical resolution. A previous im-

plementation has Kzo 5 Kc, which corresponds to V 5 0.

The formulation in (13) allows parameter estimation of

V to determine which of the two formulations is most

appropriate. ACM2 has Ky 5 0.001. It is sufficiently

poorly known that it is plausible to allow it to range over

an order of magnitude or more. Parameter estimation

of Kc is probably not possible when Ky and V are being

estimated because of distinguishability issues.

A weighting factor of fconv is used to control the por-

tion of mixing due to the nonlocal transport (Pleim

2007a):

f
conv

5 1 1
1

k0.1a

u*
w*

f
h

f2
m

 !�1

. (14)

Here w
*

is the conventional convective velocity scale.

The adjustable constant is 0.1a, and observations of the

vertical profile of temperature should directly affect the

proper value of 0.1a. The full plausible range of 0.1a is

between 0 and infinity, with 0 corresponding to fully

local mixing and infinity corresponding to fully nonlocal

mixing. The latter situation reduces to the ACM1 scheme

(Pleim and Chang 1992). In ACM2, 0.1a 5 0.72. The

fraction of similarity functions in (14) reduces to P, but in

our tests we keep the value of this fraction at 1 in (14).

Thus, all variations in the specified fraction of nonlocal

mixing are subsumed into parameter 0.1a.

The ACM2 scheme is sensitive to the diagnosed height

of the top of the boundary layer (h, also known as PBLH).

PBLH is involved in the calculation of both local and

nonlocal mixing. The height of the PBL top h is diagnosed

as the level at which the bulk Richardson number, cal-

culated from the ground up under stable conditions and

from the top of the convectively unstable layer under

unstable conditions, equals a critical Richardson num-

ber Ricrit. The designation of stable versus unstable

conditions depends upon h, the Monin–Obukhov length,

and the lapse rate between the lowest two model levels.

The top of the convectively unstable layer is identified

where the potential temperature equals the potential

temperature of a buoyant plume originating from the

surface. In general, a larger Ricrit corresponds to a larger

h and greater exchange between the free atmosphere

and the PBL. In ACM2 the value of Ricrit is set to 0.25.

The plausible range of values of Ricrit is 0.2–1.2, corre-

sponding on the low end to an assumption of a finite

amount of time for turbulence to develop in the face of

instability and on the high end to turbulence producing

a stable profile rather than a neutral one. Note that

the parameter Ricrit is a criterion for a bulk Richardson

number and is used only in the definition of h, while Rc,

appearing in (9)–(11), is a criterion for a local Richardson

number and is used to determine the stability regime.

Thus, it is not inconsistent to allow Ricrit and Rc to vary

independently.

The potential temperature of a buoyant plume (used

in PBLH calculations above) is (Pleim 2007a)

u
s
5 u

y
(z

1
) 1 b

(w9u9
y
)

0

(u3
*

1 0.6w3
*

)1/3
. (15)

The first term on the right-hand side is the virtual

potential temperature of the lowest model layer, and the

numerator is the surface heat flux (Pleim 2007a). The

excess virtual temperature is sensitive to the scaling

factor b for the heat flux, with larger values of b corre-

sponding to larger excess buoyancy. Holtslag and Boville

(1993) use b 5 8.5, and this value is adopted in ACM2,

but as the thickness of the lowest model layer decreases

the magnitude of the excess buoyancy relative to the

lowest model layer should also decrease. Thus, b could

potentially be much smaller than 8.5, and a plausible

range would be from 0 to 10. As b becomes small, so

does the height of the top of the PBL, h.
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Table 1 summarized the complete list of potentially

identifiable parameters discussed above. Together, the

set of parameters affects unstable and stable mixing

and has the potential to significantly alter the perfor-

mance of the ACM2 scheme. The next step is to run an

ensemble of simulations with these variables chosen

within their full plausible range and to determine exper-

imentally the nature of the sensitivity of the WRF scheme

to each of these parameters. Then, a final decision may be

made on which parameters to estimate through data

assimilation.

3. Experimental design

Three model domains are run with one-way nesting.

Figure 1 shows the domain configuration. The grid spac-

ings are 108, 36, and 12 km, respectively. The coarse

domain covers North and Central America, the second

covers the contiguous United States and most of the Gulf

of Mexico, and the inner covers Texas and adjacent areas.

All model domains have 43 vertical layers, and the model

top is set at 50 hPa. The lowest model eta levels are at

1.000, 0.996, 0.990, 0.980, 0.970, 0.960, 0.950, 0.940, 0.930,

TABLE 1. Potentially identifiable ACM2 parameters

Parameter name ACM2 value Plausible range Role of parameter

p 2 1–3 Structure of local mixing within PBL

P Prandtl No. 1 0.9–1.5 Nominal ratio of momentum/heat diffusion

0.1a 0.72 0–large Controls proportion of nonlocal mixing

Ricrit Critical Richardson No. 0.25 0.2–1.2 Affects calculation of height of PBL

b 8.5 0–10 Controls excess buoyancy of surface plumes

r 5 4.5–7 Affects stable mixing in dimensionless profile

Rc Critical Richardson No. 0.25 0.2–1.0 Governs flow dependence of stable turbulence

l 80 m 40–120 m Asymptotic value of turbulent length scale

V 1 0–1 Formulation for Kzo

Ky 0.001 0.0003–0.006 Proportional to minimum Kz as function of

layer thickness

FIG. 1. Domain configuration and correlation between surface temperature and Ky at 0000 CST

31 Aug 2006 over the no-precipitation area in domain 3.
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0.920, 0.910, 0.895, 0.880, 0.865, 0.850, 0.825, and 0.800.

All model domains use Dudhia shortwave radiation

(Dudhia 1989), Rapid Radiative Transfer Model

(RRTM) longwave radiation (Mlawer et al. 1997),

the WRF Single-Moment 6-Class Microphysics scheme

(WSM6; Hong et al. 2004), the Noah land surface scheme

(Chen and Dudhia 2001), the ACM2 PBL scheme, and

the Monin–Obukhov surface layer scheme. The Na-

tional Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS) operational analyses and

forecasts are used for initial and boundary conditions.

The model start time is 0000 UTC 30 August 2006

(1800 CST 29 August) and the model run length is 48 h.

During this period, a ridge of high surface pressure ex-

tended southward into northeast Texas. Winds were

generally northerly in eastern Texas and southerly in

western Texas, with a weak sea-breeze circulation near

the coast and a southerly Great Plains low-level jet over

the Texas Panhandle during the second night. Skies were

mostly clear, except for daytime boundary layer cumulus

and clouds associated with some west Texas thunder-

storms. The period falls within an air quality field program

known as the Second Texas Air Quality Study (TexAQS

II), and high concentrations of ozone were observed in

eastern Texas on both days (Parrish et al. 2009).

Two sets of deterministic simulations are conducted

to test the model sensitivities to 10 parameters in the

ACM2 scheme listed in Table 1. In one set, all param-

eters are set to their default except for one parameter,

which is assigned one of five values (evenly distributed

within its specified range). A total of 50 WRF model runs

are performed in this set, called the single-parameter set.

In the other set, all potentially identifiable parameters are

assigned random values within their range of variability.

A total of 50 WRF model runs are performed in this set,

called the multiparameter set.

The EnKF does not know about physical constraints

on model parameters. In order that these parameter

sensitivity simulations are as similar as possible to our

future parameter estimation simulations, a technique is

developed and implemented that constrains the model

parameters to lie within the physically realistic ranges

specified in Table 1. For each model parameter x, we

create a normal parameter y. Each normal parameter y

is related to x by

y 5 tan p
x�A

B�A
� 1

2

� �� �
, (16)

x 5 A 1 0.5 1
arctan(y)

p

� �
(B�A). (17)

With this formulation, y varies from 1/2 infinity while

x varies within the range [A:B]. Parameter estimation

will be performed on y, and y will be transformed to x

prior to its use in ACM2. In the multiparameter simu-

lations, 50 pseudorandom values drawn from a normal

distribution with mean 0 and 1 standard deviation are

generated for each normal parameter y. Those 50 pseu-

dorandom values are then transformed to the specific

range of each parameter using (17). The transformation

has been designed such that these initial pseudorandom

values, when transformed into model parameters, popu-

late about 70% of the specified ranges of those parame-

ters with a fairly flat distribution (Fig. 2).

Alterations to the PBL parameterization produce both

direct impacts on the vertical structure of model variables

and indirect impacts on the evolution of meteorological

phenomena such as moist convection or sea breezes.

Surface-based moist convection, for example, is sensitive

to PBL parameterization schemes, and the consequences

of PBL-scheme-induced differences in simulated con-

vection can propagate upscale to affect larger phenom-

ena (Jankow et al. 2005; Nielsen-Gammon et al. 2005).

Such convection would in turn alter the boundary layer

characteristics beyond what was produced directly by the

PBL scheme. Likewise, the intensity, timing, and inland

penetration of simulated sea breezes are sometimes, but

not always, affected by the boundary layer structures

generated by different PBL schemes (Miao et al. 2009;

Zhong et al. 2007). While indirect impacts such as these

are observable and would contribute to the performance

of parameter estimation, they are also likely to be situa-

tion specific and, in the case of moist convection, highly

nonlinear. For moist convection in particular, the model

response to changes in parameters may be quite erratic

and thereby violate the simplicity requirement.

With only a single case and a limited number of en-

semble members, we focus our evaluation on the direct

FIG. 2. Probability distribution of an arbitrary parameter allowed

to vary from A 5 5 to B 57, when transformed from a standard

normal distribution using (16).
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impacts, as revealed through horizontal averages across

the inner domain in areas free of simulated precipitation

(Fig. 1). Such horizontally averaged impacts should be

qualitatively consistent from case to case. This strategy

excludes locations under the immediate influence of moist

convection and averages across locally driven mesoscale

circulations such as sea breezes and mountain–valley

breezes. The horizontal extent of the inner domain in-

cludes a wide range of geographical conditions, from the

Gulf of Mexico to the Sierra Madre Oriental. In addition

to all portions of domain 3 without precipitation, two

other horizontal averages are computed. The first is that

portion of the precipitation-free domain over the Gulf of

Mexico, and the second is that portion of the domain

covering eastern Texas, which is mostly precipitation free.

Model output intercomparison and diagnosis are car-

ried out on the inner domain (with a resolution of 12 km).

For each model parameter and each averaging area, tem-

perature, moisture, and wind speed are diagnosed. Plots of

model variables as a function of parameter values address

the issue of simplicity, with a linear relationship between

variables and parameter values being ideal. Standard de-

viation computed from the single-parameter output, is

a measure of the magnitude of the variability in the model

output associated with a particular parameter. A small

standard deviation for a particular parameter means a

change of that parameter across its plausible range of

uncertainty is manifested by only small changes in the

measurable model output variables. Such a parameter

would not be observable. Correlation computed from the

multiparameter output indicates to what extent variations

in a particular parameter control the model output vari-

able and suggests whether the impact of the parameter is

distinguishable from the impacts of other parameters.

The EnKF adjusts parameters using covariance in-

formation, that is, correlation multiplied by the variances

of parameter and model outputs. A small correlation

between the measurable output variable and a particular

parameter results in a small Kalman gain and little impact

on parameter values through assimilation of observations.

Correlation was also used as a diagnostic by Hacker and

Snyder (2005) to examine the efficacy of assimilating

some specific observations using EnKF.

4. Sensitivity analysis

Figures 3–4 show output related to temperature:

standard deviation (Fig. 3) and correlation (Fig. 4). Both

figures depict the lowest 3000 m to more clearly show

shallow boundary layer impacts. All quantities are com-

puted and displayed in model space; the area-mean heights

of the model levels are provided along the y axis. Above

3000 m (not shown), the variability of temperature is

largest near the model top where both stratification

and vertical grid spacing are very large. The variability

emerges first for V and Ky, both of which affect vertical

mixing in highly stable situations such as are normally

found in the stratosphere.

In the lower troposphere, the parameters produce

particular sensitivity patterns associated with their role

in the ACM2 vertical mixing scheme. The first five pa-

rameters (i.e., p, P, 0.1a, Ricrit, and b) show differing

amplitudes but broadly similar patterns in their sensi-

tivities in Fig. 3. The overall patterns (first row) of these

five parameters are driven primarily by sensitivities over

land, as indicated by the similar patterns (and stronger

signal) over eastern Texas (third row) and dissimilar

patterns over water (second row). Sensitivities over land

during the first day are weaker than those during the

second day but share a similar diurnal pattern, while

sensitivities over water evolve steadily during this epi-

sode. Among the five, P and 0.1a show weaker sensi-

tivities. The five parameters all show repeated clawlike

regions of large sensitivity over land centered around

2000 m during afternoon and evening but that first ap-

pear at 1000 m. This maximum sensitivity area corre-

sponds to the entrainment zone at the top of daytime

PBL and the evening residual layer.

The middle panel shows sensitivity over the north-

western Gulf of Mexico. Because the PBL over the Gulf

of Mexico tends to be weakly unstable, the pattern of

sensitivity is similar to that over land during daytime, but

without the diurnal cycle. The maximum positive sen-

sitivity increases from 500 to over 1000 m during the

course of the simulation, implying that the marine PBL

is similarly growing. Ordinarily the marine PBL is fairly

stable in height around 500–600 m in the northwest Gulf

area, so this rise in PBL depth may indicate a short-

coming of the model. However, the winds were offshore

during most of the 2-day period, so it is possible that the

increase of PBL depth is real and is a response to off-

shore advection of a deeper continental PBL.

The similar pattern seen with p, P, 0.1a, Ricrit, and

b means changes of them alter the vertical mixing in

similar regions during daytime. The parameter p de-

termines the value of the local eddy vertical mixing co-

efficient within the convective PBL, with larger p leading

to smaller vertical mixing. Weak vertical mixing, in-

cluding reduced heat transport from the surface to the

atmosphere and reduced entrainment at the top of the

PBL, should produce a cooler PBL. Meanwhile, the re-

duced PBL height and reduced mixing from below should

have a warming effect in the thin layer of air at the top

of the PBL and the bottom of the free troposphere,

sometimes called the entrainment layer. Being thin, the

temperature sensitivity here can be much larger than

3406 M O N T H L Y W E A T H E R R E V I E W VOLUME 138



FIG. 3. Time–height sections of standard deviation of horizontally averaged potential temperature with respect to vertical mixing

parameters (see column labels) over the whole inner domain, the water portion, and eastern TX (see row labels) in single-parameter

model runs. Grid points with precipitation are not included in the calculations. Calculations are performed in model eta coordinates and

labeled according to average altitude of the eta surfaces. The bottom corresponds to the eta surface adjoining the ground or water.

Maximum values are labeled when they exceed 0.2 K.
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within the well-mixed portion of the daytime PBL where

thermodynamic changes are spread over a larger depth.

The negative correlation between p and temperature

within the daytime PBL and the positive correlation at

the top of the PBL (Fig. 4) are consistent with smaller

mixing caused by larger p. Figure 5a shows the overall

effect on the vertical temperature profile when p alone is

allowed to vary. The variability of temperature in the

FIG. 4. Time–height sections of correlation of horizontally averaged potential temperature with respect to vertical mixing parameters

(see column labels) over the whole inner domain, the water portion, and eastern TX (see row labels) from multiparameter runs. Organized

as in Fig. 3.
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daytime PBL associated with p (Fig. 3) is the largest among

all the parameters. The standard deviation of tempera-

ture in the PBL is as high as 0.68C at the top of the PBL

over eastern Texas. This means that the parameter p

plays the most important role in controlling the vertical

mixing during the daytime.

The Ricrit is the threshold value for detecting the top

of PBL, and b represents the excess buoyancy of surface-

based parcels. Both of them are used to determine the

PBLH under convective conditions. Larger values of them

lead to higher PBLH, causing stronger local and nonlocal

mixing. Thus, their correlation with temperature is op-

posite that of p in the PBL: negative at the top of the

PBL and positive within the daytime PBL. The Ricrit

tends to produce a larger sensitivity (Fig. 3) than b, and

Ricrit also affects low-level temperatures at night. Fig-

ures 5b,c confirm that larger values of Ricrit and b are

associated with deeper PBLs.

The parameter 0.1a is used to determine the portion of

mixing due to nonlocal transport (i.e., fconv). Larger fconv

leads to lower temperatures in the lower part of the PBL

and higher temperature in the upper part (Pleim 2007a).

Altering 0.1a would have the same effect since the rela-

tionship is monotonic between 0.1a and fconv. Such an

effect is seen in the positive correlation of 0.1a with tem-

perature in the upper PBL and negative correlation in the

FIG. 5. Mean profile over eastern Texas at (top) 1300 CST 30 Aug 2006 and (bottom) 0600 CST 30 Aug 2006 due to different parameter

values from single-parameter runs for the parameters giving the largest sensitivities.
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lower PBL (Fig. 4). The vertical correlation dipole is

shallower than with those parameters discussed previously,

which involve major sensitivities at and above the top of

the PBL.

The parameter P also has a somewhat different vertical

profile of sensitivity. It determines the relative magni-

tudes of mixing of heat and constituents versus momen-

tum, with larger P leading to smaller mixing of heat

relative to momentum. The correlation between P and

temperature is negative within most of the daytime PBL,

but positive at the ground and in the entrainment zone.

Of the other five parameters, only Rc and Ky have sig-

nificant impacts on temperature. Both have their largest

effects at night, with positive correlations with surface

temperatures and negative correlations with tempera-

tures at 300–400 m during the nighttime. This is consistent

with larger values of both parameters leading to stronger

vertical mixing. An effect similar in sign but smaller in

magnitude is found with Ricrit for nighttime temperature.

The largest sensitivity (standard deviation of 0.48C) of

nighttime temperature is associated with Ky.

The lower row of Fig. 5 shows the mean profile over

eastern Texas at 0600 CST 30 August due to different

parameter values for the three parameters that give the

largest sensitivity during nighttime (i.e., Ky, Ricrit, and

Rc) from single-parameter runs. These profiles demon-

strate their similar functions during nighttime. The sur-

face temperatures almost linearly depend on these

parameters. The effects of Ricrit, and Rc are limited to

the vicinity of the PBL while Ky also affects the mixing in

the upper troposphere.

Figures 6–7 show the sensitivities and correlations re-

lated to water vapor mixing ratio. As with potential tem-

perature, the largest sensitivities are found within the

boundary layer, particularly in the entrainment zone at the

top of the boundary layer. Sensitivities to moisture tend to

be largest over the water portion of the domain. The cor-

relations with mixing ratio also retain their sign from

daytime to nighttime, probably because latent heat fluxes

are upward from the surface throughout the diurnal cycle

while the sensible heat flux changes sign over land from

daytime to nighttime. Following the first growth of the

convective boundary layer, the correlations with mixing

ratio change very little with time. In general, the same

parameters are important for both potential temperature

and mixing ratio, except that Ky’s impact on mixing ratio is

much smaller than that of some of the other parameters.

The sign of the mixing ratio correlations during day-

time is almost uniformly opposite in sign to the potential

temperature correlations. This is consistent with varia-

tions of the PBL parameters controlling the vertical

growth of the PBL and entrainment from the free tropo-

sphere. Air parcels entrained from the free troposphere

tend to bring with them relatively high values of potential

temperature and relatively low values of mixing ratio.

The mixing variations in the upper troposphere due to

changes in Ky lead to different vertical distribution of

both temperature and water vapor, then to different

cloud patterns, and thus different shortwave radiation

amounts. Thus, the mixing variation due to Ky in the

upper troposphere causes a complicated nonlinear feed-

back throughout the atmosphere. Unlike other parame-

ters (e.g., p, Ricrit, and b) whose sensitivity on the second

day is similar to that on the first, Ky has different sensi-

tivity during daytime of the second day due to the cloud

effects. The correlation between Ky and temperature in

the lower troposphere shown in Fig. 4 on the second day

cannot be explained by the direct local impacts of Ky.

Since l and V also affect mixing in the free troposphere,

their correlations with PBL meteorology parameters are

also complicated by cloud effects.

Figures 8–9 show the sensitivities and correlations

related to wind speed. Wind sensitivities tend to have

the same signs and relative magnitudes as the potential

temperature sensitivities, since both potential tempera-

ture and wind speed tend to increase upward and are

affected in similar ways by vertical mixing. The same

parameters are associated with large sensitivities with

both wind and temperature (i.e., p and Ricrit for daytime,

Rc and Ky for nighttime). One notable difference be-

tween the temperature and wind sensitivities is that the

wind sensitivities tend to have more ‘‘noise,’’ with rapid

variations of sensitivity that are not consistent from day

to day. So temperature sensitivities are more systematic

than wind sensitivities. Another difference worth men-

tioning is that Rc shows the largest sensitivity for night-

time wind speed (standard deviation of 0.52 m s21) and

highly correlates with nighttime wind speed (up to 0.95).

It is more important to nighttime wind speed than Ky and

dominates over other parameters.

5. Identifiability assessment

The three dimensions of identifiability are observ-

ability, simplicity, and distinguishability. All three of

these dimensions will in general be sensitive to the

specific observations available for assimilation, but two

parameters can be discarded immediately without con-

sideration of the observation network. The parameter r

has low sensitivities at all levels and times over its ex-

pected range, and thus will be much less observable than

the other parameters. The parameter b has moderate

sensitivities, but the correlation patterns closely match

those of p. Thus, b and p are not distinguishable, and b,

having weaker sensitivities, should be discarded.
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Among the remaining eight parameters, some are

more important during daytime while others are more

important during nighttime. Because most parameter cor-

relations have substantial vertical structure, which varies

from parameter to parameter, observations of profiles

of temperature, moisture, and wind in the PBL would al-

low for much greater distinguishability than surface ob-

servations alone. The most common source for observed

FIG. 6. Time–height sections of standard deviation of horizontally averaged water vapor mixing ratio with respect to vertical mixing

parameters (see column labels) over the whole inner domain, the water portion, and eastern TX (see row labels) in single-parameter

model runs. Grid points with precipitation are not included in the calculations. Maximum values are labeled when they exceed 0.4 g kg21.
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temperature, moisture, and wind profiles are rawin-

sondes, but in the central and eastern United States the

rawinsonde launch times are not at the times of maxi-

mum sensitivity. The efficacy of assimilating rawinsonde

data to adjust parameters may be largely confined to

effects caused by mixing ratio observations, since mixing

ratio sensitivities are relatively uniform throughout the

diurnal cycle.

FIG. 7. Time–height sections of correlation of horizontally averaged water vapor mixing ratio with respect to vertical mixing parameters

(see column labels) over the whole inner domain, the water portion, and eastern TX (see row labels) from multiparameter runs. Organized

as in Fig. 6.
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Unlike rawinsonde observations, radar wind pro-

filer observations are effectively continuous and, when

coupled with the Radio-Acoustic Sounding Systems

(RASS), provide virtual temperature profiles as well.

At night, the greatest wind sensitivity and highest cor-

relation within boundary layer profiler range is with Rc

(Fig. 8). The standard deviation of wind speed is ap-

proximately 0.52 m s21 at the level of the nighttime

FIG. 8. Time–height sections of standard deviation of horizontally averaged wind speed with respect to vertical mixing parameters (see

column labels) over the whole inner domain, the water portion, and eastern TX (see row labels) in single-parameter model runs. Grid

points with precipitation are not included in the calculations. Maximum values are labeled when they exceed 0.4 m s21.
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low-level jet over eastern Texas. Sensitivity to Rc

during the daytime is very weak. The parameter Ky is

associated with somewhat lower sensitivities and much

weaker correlations and might not be distinguishable

from Rc at night, but Ky also has substantial sensitiv-

ities during the day.

For daytime sensitivity, the most identifiable param-

eter is p. Wind speed has a large negative correlation

FIG. 9. Time–height sections of correlation of horizontally averaged wind speed with respect to vertical mixing parameters (see column

labels) over the whole inner domain, the water portion, and eastern TX (see row labels) from multiparameter runs. Organized as in Fig. 8.
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with p within the daytime PBL and a very large positive

correlation at the top of the daytime PBL. Wind speed

also has substantial sensitivity to Ricrit, and its sensitivity

in late afternoon and evening is distinguishable from p.

Other parameters, albeit with weaker sensitivities, are

distinguishable because of their vertical profiles. Large

values of 0.1a increase the daytime wind speed in the

lowest 200 m and in the entrainment zone and decrease

it within the upper half of the PBL. The sensitivity to P is

weak, but the correlations have a unique structure, with

the same sign in the PBL as in the entrainment zone.

Thus, in order of likely applicability for parameter

estimation through assimilating wind profiler data, the

most identifiable parameters are Rc, and p, followed by

Ky, 0.1a, Ricrit, and P. The exact number of parameters

to be retained depends on the characteristics of the

observation network.

If only surface observations are to be assimilated into

the numerical model, the mixing parameters to be esti-

mated should be those that produce large sensitivities at

the surface. For wind speed, the largest parameter im-

pacts are associated with Ky (Fig. 8), with negative cor-

relations at night and positive correlations during the day.

Distinguishable from Ky are p, with substantial correla-

tions (positive) during daytime only; Ricrit, with peaks in

sensitivity just before dawn and late in the afternoon; and

Rc, with sensitivity confined to the nighttime. For surface

temperature, Ky and Ricrit both produce large sensitivities

at night, with somewhat overlapping temperature pat-

terns. In contrast, p produces substantial sensitivities

during the daytime only. So if surface observations are

to be assimilated, the best parameters to be estimated

should be Ky and p, followed by Ricrit.

So far, only the distinguishability and observability di-

mensions of identifiability have been explicitly considered.

To address simplicity, Fig. 10 shows domain-averaged

surface temperature anomalies for those parameters with

the strongest surface temperature identifiability. The right

column shows results from single-parameter runs; for the

most part, the mean temperatures vary smoothly as the

parameter values change, implying a single optimal pa-

rameter value for a given surface temperature. Over land,

p shows an irregular variation of mean temperature at

lower p values, but the output from the multiparameter

runs presents a larger number of realizations and suggests

that the temperature dependence on p would be expected

to be monotonic and positive over land, negative over

water. The Ricrit is more troubling; over land the single-

parameter runs suggest a local temperature minimum at

Ricrit 5 0.4, and the multiparameter runs likewise suggest

that temperature may be warmer for both large and small

values of Ricrit. Different values of Ricrit would provide

equally good matches to surface temperature. Thus, if

limited to surface observations, Ricrit may not be identifi-

able because of a lack of simplicity. Further investigation is

needed to determine whether Ricrit would be identifiable

through induced variations of temporal behavior of tem-

perature or through wind variations.

6. Conclusions

Simulations of PBL meteorology may be biased because

of the uncertainties in PBL parameterization schemes.

Estimation of the optimal values for the parameters used

in PBL schemes may allow significant improvements in the

representation of vertical mixing within and above the

PBL. For parameter estimation to be successful, the pa-

rameters must be identifiable, meaning that they must

have a detectible impact on verifiable aspects of the model

behavior, the impact must be a simple function of the

parameter values, and the impact must be clearly distin-

guishable from impacts caused by other parameter varia-

tions. In this study, 10 parameters in the ACM2 PBL

scheme amenable to parameter estimation are first iden-

tified. Plausible physical bounds for each parameter are

given based on previous theory or observations.

Multiple sets of model simulations were performed to

test the sensitivity of the WRF model to the 10 ACM2

parameters in their plausible physical bounds. The pa-

rameter p (the exponent in the formulation of boundary

layer scaling vertical eddy diffusivity) is shown to play the

most important role in controlling the vertical mixing

during the daytime among the 10 parameters tested.

Changes in p within its plausible range cause variations

of more than 18C within and just above the daytime PBL.

The parameter Ricrit (the threshold value for detecting the

top of PBL) is shown to cause the second largest vari-

ability of temperature in the daytime PBL. The minimum

value of eddy diffusivity Ky is shown to cause the largest

variations of temperature (;0.88C) in nighttime PBL,

followed by Rc (a critical Richardson number that defines

the onset of turbulence). Because of the similarity of

processes affecting the profiles of potential temperature,

moisture, and wind speed, the parameters that cause the

largest variability of temperature also cause largest vari-

ability of moisture and wind speed, except that Rc

causes the largest variability of wind speed (.1 m s21)

during nighttime around the level of the nighttime low-

level jet.

All of the examined ACM2 parameters affect the

vertical profiles of temperature, moisture, and wind

speed. Thus, profiler-type observations contain the best

information about those parameters. Assimilating radar

wind profiler data with RASS with enough frequency

would have the best chance of successfully calibrating

those parameters and improving the simultaneous state
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FIG. 10. Scatterplots showing domain-averaged (excluding regions with precipitation) values of temperature

at 1700 CST 31 Aug 2006 as a function of parameter values (green). (left) Results are from multiparameter

simulations; (right) results are from single-parameter simulations. Averages restricted to precipitation-free

ocean (red) and land (blue) are also shown. Parameters are (top) p, (middle) Ricrit, and (bottom) Ky.
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estimation. If such data are assimilated, the two most

identifiable parameters are Rc and p. If no profile data

are available and only surface observations are to be

assimilated, the two most identifiable parameters are Ky

and p. These results pertain only to direct impacts of the

parameters; to the extent that changes in PBL structure

affect moist convection and other observable aspects of

the atmosphere, the amenability of certain parameters

to parameter estimation may be quite different from the

circumstances presented here.

The sensitivity results reported here were determined

from model runs covering a particular geographical area

during a particular time interval. As can be seen from

comparison of the sensitivities over land and over water,

the absolute sensitivities will depend upon the meteoro-

logical and geographical circumstances. However, because

the greatest sensitivities are associated with the same pa-

rameters whether over land or over water, the relative im-

portance of particular parameters appears to be robust to

the meteorological and geographical setting. The absolute

and relative sensitivities also depend directly upon the

chosen plausible ranges for each parameter; changes in

such ranges would produce corresponding absolute and

relative changes in the sensitivities.

The initial results of parameter estimation data as-

similation experiments using ACM2 in WRF, with Rc

and p as the adjustable parameters, are reported in Hu

et al. (2010b).
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