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ABSTRACT

Studies on the spontaneous emission of gravity waves from jets, both observational and numerical, have
emphasized that excitation of gravity waves occurred preferentially near regions of imbalance. Yet a
quantitative relation between the several large-scale diagnostics of imbalance and the excited waves is still
lacking.

The purpose of the present note is to investigate one possible way to relate quantitatively the gravity
waves to diagnostics of the large-scale flow that is exciting them. Scaling arguments are used to determine
how the large-scale flow may provide a forcing on the right-hand side of a wave equation describing the
linear dynamics of the excited waves. The residual of the nonlinear balance equation plays an important role
in this forcing.

1. Introduction

Gravity waves are of importance in the atmosphere
for vertical transfers of momentum toward the middle
atmosphere (Fritts and Alexander 2003). As subgrid-
scale phenomena, they are generally parameterized in
general circulation models, but their sources, in particu-
lar jets and fronts, remain insufficiently constrained
(Kim et al. 2003). A first attempt to parameterize jet/
front systems as sources of gravity waves was presented
by Charron and Manzini (2002), who simply related the
excitation of the gravity waves to regions of intense
frontogenesis. However, this was based on qualitative
arguments. A quantitative understanding of the mecha-
nisms generating gravity waves from jets and fronts is
still lacking.

Now, it has been repeatedly noted in both observa-
tional (Uccelini and Koch 1987; Plougonven et al. 2003)
and numerical studies (O’Sullivan and Dunkerton 1995;

Zhang et al. 2001; Zhang 2004) that inertia–gravity
waves (IGWs) appeared in the vicinity of unbalanced
regions. These regions can be obtained from the large-
scale flow, for instance from the European Centre for
Medium-Range Weather Forecasts (ECMWF) analyses
(Plougonven et al. 2003), using various diagnostics of
imbalance: the Lagrangian Rossby number (O’Sullivan
and Dunkerton 1995), the cross-stream Lagrangian
Rossby number (Koch and Dorian 1988), or the re-
sidual of the nonlinear balance equation (NBE; see
Zhang et al. 2001 and references therein). Yet, the use
of these large-scale diagnostics is only based on quali-
tative arguments: the evolution of the jet/front system
produces a region of imbalance that should undergo
“geostrophic” or “balance” (Zhang 2004) adjustment,
thereby producing gravity waves.

Following the ideas of Lighthill on sound generation
by turbulence (Lighthill 1952), Ford (1994a; Ford et al.
2000) suggested to rewrite the equations of motion in
such a way that we obtain a linear wave equation (for
waves in a fluid at rest) on the left-hand side and a
forcing due to nonlinear terms linked to the vortical
(balanced) motions on the right-hand side. It was
shown that this could provide an efficient way to pre-
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dict large-scale waves emitted in the far field (Ford
1994a,b; Plougonven and Zeitlin 2002). In a context
more comparable with the atmosphere, a similar ap-
proach was applied to the problem of IGWs excited by
2D frontogenesis by Reeder and Griffiths (1996). One
notable difference with the work of Ford (1994a) was
that the wave equation included the large-scale back-
ground flow of deformation and shear, which consider-
ably influenced the characteristics of the emitted waves.
Another example showing the importance of propaga-
tion for the characteristics of spontaneously emitted
gravity waves was given by Plougonven and Snyder
(2005). Recently, laboratory experiments (Williams et
al. 2005) have also suggested that the approach pro-
posed by Ford should be relevant for locating sources
of IGWs within a two-layer fluid.

In the present note, our motivation is to provide a
basis for a quantitative relationship between some di-
agnostic of imbalance and the amplitude of the IGWs
excited. We will use scaling arguments to identify can-
didates for what the wave equation and what the forc-
ing terms from the large-scale flow should be. In section
2 we will briefly discuss the issue of the time separation
between the balanced flow and the gravity waves. The
scaling of the equations will be presented in section 3.
A form for a wave equation and for the corresponding
forcing terms will be obtained in section 4. Conclusions
and perspectives are discussed in section 5.

2. Description of the different components of
motions

To obtain an equation for waves forced by the large-
scale, mostly balanced motions, it is necessary to sepa-
rate the flow into these two components. Below we
review three issues regarding this separation: the time-
scale separation, the difference between Eulerian and
Lagrangian time scales, and finally the separation of the
flow.

An essential feature of the dynamics of midlatitude
flows is the time-scale separation between the large-
scale balanced flow (a few days) and the inertia–gravity
waves (several hours; Gill 1982). This separation is part
of the reason why interactions between the two types of
motions are weak (Reznik et al. 2001; Ford et al. 2000,
2002; Saujani and Shepherd 2002). This time-scale sepa-
ration is not valid everywhere, as it breaks down locally
where the flow generates small scales, for example, in
regions of frontogenesis.

If one separates formally the two time scales using
standard multi-timescale expansions, a weak excitation
of gravity wave motions from jets and fronts cannot be
detected: indeed, forcing from the primary flow will

necessarily be slow, and hence cannot force a fast re-
sponse (Reznik et al. 2001; Zeitlin et al. 2003), unless
one precisely relaxes the assumption of time-scale sepa-
ration (Medvedev and Gavrilov 1995).

A second point to bear in mind regarding time scales
is the key role of the Lagrangian time scale: an evident
illustration is given by gravity waves in a steady flow
above a mountain ridge. Another illustration is the
transition from balanced to gravity wave motions
through the inertial critical layer in a vertical shear
(Plougonven et al. 2005).

Hence in our approach we will avoid separating time
scales rigidly between the primary and secondary flows
and will allow for the possibility that advection by the
primary flow matters for the secondary flow.

Now, the flow needs to be separated into two differ-
ent components. Splitting the flow into a balanced part
and an unbalanced part could be an evident choice, as
was discussed in Snyder et al. (1993). However, we pre-
fer to leave the precise definition of the separation
open: having in mind applications to parameterizations
in general circulation models (GCMs), we would rather
have a coarse-grained description of the full flow, which
is not fully balanced, and would like to estimate
smaller-scale elements of the flow.

3. Scaling separating the two components of the
flow

The primitive equations used are those for a fluid
that is adiabatic, inviscid, and hydrostatic within the
Boussinesq approximation and on the � plane (McWil-
liams and Gent 1980):

�tu*H � u*�u*H � fez � u*H � �H�* � 0, �1a�

�
g

�0
�* � �z�* � 0, �1b�

�t�* � u*��* � 0, and �1c�

� · u* � 0, �1d�

where * denotes dimensional variables, f � f0 � �y is
the Coriolis parameter, �0 is a reference potential tem-
perature, g is the gravitational acceleration, 	* is the
geopotential height, �* is potential temperature, and z
is a modified pressure coordinate (Hoskins and
Bretherton 1972), which we will refer to simply as
height. The subscript H indicates the horizontal com-
ponent of a vector and ez is the unit vertical vector. The
excited IGWs are known to be of rather low frequency
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(Plougonven et al. 2003), justifying the hydrostatic bal-
ance. The Boussinesq approximation is made, assuming
that this will be sufficient, in a first approach, to identify
the form of the wave equation and forcing terms that
interest us.

Now, the first two equations are rewritten in order to
have an equation for the divergence of the horizontal
wind, 
* � �xu* � �y�*, and one for the relative vor-
ticity 
* � �x�* � �yu*. Hence we obtain

�t�* � u*��* � u*x�u* � u*y��* � f�* � �u*

� �H�* � 0 and �2a�

�t�* � u*��* � u*x��* � u*y�u* � f�* � ��* � 0.

�2b�

It will be useful to rewrite some of the above terms as
follows:

u*x�u* � u*y��* � 2J ��*, u*� � �*2

� ��zu*H��w* and �3a�

u*x��* � u*y�u* � �*�* � �ez � �w*� · ��zu*H�, �3b�

where J is the Jacobian operator J(�, u) � �xuy � ux�y.
Now, we will consider that there are two types of mo-
tions: u* � u* � u*�. The “primary” flow (noted with
a bar: u*) is essentially balanced (nondivergent) and
large-scale. The “secondary” flow (noted with a prime:
u*�) is smaller in amplitude, is not balanced, and can
have smaller scales.

The primary fields are scaled taking into account that
their horizontal divergence is weak: u* and �* are of
order U, whereas w* is only of order �UH/L, with � K

1. The time scale is the advective time scale, of order
L/U. We will assume that �L/f � � and that the Rossby
and Burger numbers verify

	 �
U

fL
K 1 and

f2L2

N2H2 � 1. �4�

The secondary fields are smaller in amplitude than
the primary fields: the velocities u*� and �*� scale as
�U, with � K 1. The secondary fields can vary on
smaller scales, �L in the horizontal and �� in the ver-
tical, with � 
 1. From the polarization relations for
internal gravity waves, the geopotential anomaly scales
as �fU�L. Based on experience from numerical and
observational studies we expect the frequencies of ex-
cited gravity waves to be at the lower end of the fre-
quency spectrum for inertia–gravity waves. Hence their
time scale is scaled as f�1. Finally, as their horizon-
tal divergence is not particularly weak, w*� scales as
�UH/L.

Now, rewriting the equations with this separation
produces terms that can be grouped into

• terms that only involve the primary fields, noted A*
• terms that are linear in the secondary fields, noted L*
• terms that are quadratic in the secondary fields,

noted Q*

The scaling of all these terms will then indicate which
terms in L* need to be retained to build a wave equa-
tion and which terms in A* need to be retained to pro-
vide a forcing.

Two choices for the relative scales of the primary and
secondary motions will be considered (parameter �).
These imply different choices for the amplitude of the
secondary motions (parameter �):

1) The simplest choice corresponds to waves that have
spatial scales comparable to that of the primary
flow: � � 1. We then simply choose � � �, indicating
that the waves are one order of magnitude smaller
than the primary flow.

2) The second and more relevant choice describes
waves that have spatial scales smaller than those of
the primary flow: � � � K 1; such choice implies that
the spatial derivatives of the secondary fields scale
as 1/� times the derivatives of the primary field. As
we expect that the dominant terms in the equations
are still the ones associated to the primary flow, we
then have to choose � � �2. Hence for both choices
of relative scales we have �/� � �.

In the three subsections below, nondimensional vari-
ables will be denoted by the absence of a * superscript;
for example, u and u�.

a. Scaling of the divergence equation

When the divergence Eq. (2a) is rewritten with all
fields separated into a slow and a fast part, the scaling
then divides the equation into

	�1A 0,� � A 1,� � L1,� � 	A 2,� � 	L 2,� � 	2Q� � 0,

�5�

where the different groups of terms are

A 0,� � �� � �H�, A 1,� � 2J ��, u� � u, �6a�

L 1,� � �t�� � 	
�1uH��� � �� � �H��, �6b�

A 2,� � ��t � uH� � 	w�z�� � ��zuH��w � 	�
2
, �6c�

L 2,� � �x�uH � 	wez��u� � �y�uH � 	wez����

� u�x�u � u�y�� � 	
�1w�z�� � 	
u���

� 
u�, and �6d�

Q � � u���� � u�x�u� � u�y���. �6e�
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The leading order terms involving only the primary
fields (A0,
) are larger by an order of magnitude than
the leading order terms involving the secondary fields.
Nevertheless, it is reasonable to assume that their com-
bination, expressing geostrophic equilibrium, is one or-
der smaller than the individual terms.

Among the terms that are linear in the secondary
fields, the advective derivative involving the primary
horizontal velocity is present if � K 1. Hence, retaining
only leading-order terms to form an equation for the
secondary fields, and returning to dimensional vari-
ables, we obtain

D
�*� � f�*� � ��*� � �* � �H�* � �u*

� 2J ��*, u*� � �NBE, �7�

where �NBE is the residual of the nonlinear balance
equation (Zhang et al. 2000) and where we note

D
 � �t if 
 � 1 and �8a�

D
 � �t � u*H� if 
 � 	 K 1. �8b�

b. Scaling of the vorticity equation

Proceeding as above to scale the vorticity Eq. (2b),
the following is obtained:

A 1,� � L 1,� � 	A 2,� � 	L 2,� � 	2Q � � 0, �9�

where

A 1,� � �t� � uH�� � � � �, �10a�

L 1,� � �t�� � 	
�1uH��� � ��, �10b�

A 2,� � w�z� � � � � ��zuH��ez � �w�, �10c�

L 2,� � 	
�1w�z�� � 
u��� � 
�� � ux��� � uy�u�

� u�x�� � u�y�u, and �10d�

Q � � u���� � u�x��� � u�y�u�. �10e�

Again if we retain only leading-order terms, we obtain
in dimensional variables

D
�*� � f�*� � �A 1,�*

� ��t�* � u*��* � f�* � ��*. �11�

c. Scaling of the potential temperature equation

For the equation of the potential temperature, it is
preferable to isolate the background stratification. The
potential temperature field is thus written �* � �*(z) �
�* � �*�. From the scalings chosen above for the other
variables, and using hydrostaticity, it is found that �*�
will scale as � relative to �*. The following is then
obtained:

	��1A 0,� � L 1,� � �L 2,� � 	2Q � � 0, �12�

where

A 0,� � �t� � �uH� � 	w�z�� � w�z�, �13a�

L 1,� � �t�� � 	
�1uH��� � w��z�, and

�13b�

L 2,� � 	
�1w�z�� � u��, Q� � u����. �13c�

The scaling of the potential temperature Eq. (1c) dif-
fers from that of the other equations: whereas 
*� scaled
as ���1 � � of 
*, �*� scales as � of �*. As a result, �
appears in Eq. (12). In the case where the waves have
smaller scales than the primary fields we will assume, as
previously, that although the terms involving the pri-
mary fields (A0,�) are individually larger than the lead-
ing-order terms involving the secondary fields, their
combination is an order of magnitude smaller than the
individual terms. Retaining only the dominant terms,
we obtain in dimensional variables

D
�*� � w*��z�* � �A0,�*

� ���t � u*���* � w*�z�*.

�14�

The forcing term here describes the conservation of the
potential temperature for the primary fields. Hence, for
definitions of the primary field, which respect the con-
servation of potential temperature, the contribution of
this term disappears.

4. Forcing of gravity waves by the large-scale flow

Following scaling arguments, an equation that is lin-
ear in the secondary fields and forced by terms from the
primary field has been obtained for the divergence [Eq.
(7)], for the vorticity [Eq. (11)], and for the potential
temperature [Eq. (14)]. These can now be combined to
obtain a wave equation for the vertical velocity w*� that
is forced by terms from the primary flow.

If we consider the case where the waves have scales
comparable with those of the primary flow (� � 1), the
linear operators on the rhs of Eqs. (7), (11), and (14)
have only constant coefficients. Hence, the standard
equation for hydrostatic inertia–gravity waves in a fluid
at rest can be obtained (taking �z[D� (7) � f (11)]) using
Eqs. (1b), (1d), and (14).

If we consider the case where the waves have smaller
spatial scales than the primary flow (� � �), then the rhs
of Eqs. (7), (11), and (14) contain coefficients that vary
in time and space. However, the spatial and temporal
derivatives of uH or � will be smaller than those of the
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secondary fields, so we will neglect the derivatives of
(uH) or � and retain only the terms involving derivatives
of the secondary fields.

Hence in both cases the wave equation can be written
in dimensional variables:

��D

2 � f2��zz � N2�H�w*� � �D
�z�NBE � f�zA 1,�*

�
g

�0
�HA 0,�*, �15a�

with �NBE � �* � �H�* � �u*

� 2J ��*, u*�, �15b�

A 1,�* � ��t � uH*���* � f�*

� ��*, and �15c�

A 0,�* � ��t � u*���* � w*�z�*,

�15d�

with D� as defined in Eqs. (8) and N2 � g��1
0 d�*/dz.

The first term in the forcing consists in derivatives of
the residual of the nonlinear balance equation. Previ-
ous numerical studies on the generation of inertia–
gravity waves from baroclinic waves (Zhang 2004;
Wang and Zhang 2007) have already shown qualita-
tively the relevance of this residual to spontaneously
generated gravity waves: the residual has a maximum in
the region where and at the time when gravity waves
are generated. The above analysis provides a first quan-
titative justification for relating a diagnostic from the
large-scale flow (involving the NBE residual) to the
location and amplitudes of excited gravity waves.

It is not simply the residual of the nonlinear balance
equation that appears as a forcing but the Lagrangian
derivative of its vertical gradient. This will emphasize
regions of strong vertical gradient of the residual and
also regions where strong variations are seen along
fluid trajectories. Our analysis further indicates addi-
tional terms that may play a role in the forcing of the
gravity waves. These additional terms are residuals
from the vorticity and from the potential temperature
equation. The relative importance of the three terms, in
practice, will need to be assessed in numerical simula-
tions and case studies. Note, however, that in the case
where the waves have smaller scales than the back-
ground flow, Eq. (15a) is more delicate to justify rigor-
ously as the spatial derivatives of the terms on the left
are greater than those on the right. Nevertheless, the
above provides a guide for the forcing terms. To verify
quantitatively the relevance of these forcing terms, nu-
merical simulations of gravity wave generation in dif-
ferent baroclinic life cycles are underway (Wang and

Zhang 2007; Plougonven and Snyder 2007). Further
analysis of these different simulations will reveal
whether the amplitudes of the excited gravity waves
correlate in a systematic manner with the above forcing
terms.

5. Conclusions and perspectives

The motivation of this note was to identify a diag-
nostic obtained from the large-scale flow that can be
used quantitatively as an indicator of excitation of in-
ertia–gravity waves (IGWs). The flow was described as
a superposition of two types of motions: a primary flow
that is essentially large-scale and balanced (nondiver-
gent) and a secondary flow that is unbalanced and has
smaller scales. Based on previous experience showing
the key role that the residual of the nonlinear balance
equation (NBE) could play (Zhang et al. 2001; Zhang
2004), it was chosen to use the divergence and the vor-
ticity equations as the basic equation for the horizontal
flow. Using scaling arguments, a wave equation, Eq.
(15a), with forcing terms given by the primary flow was
obtained in section 4.

Two cases were distinguished, depending on whether
the waves had smaller spatial scales than the primary
flow or not. If they did, the obtained equations were
changed by replacing the time derivatives with
Lagrangian derivatives taking into account the advec-
tion by the horizontal component of the primary flow.

Note that we have left open the definition of the
separation of the flow. We have merely identified, using
scaling arguments guided by observational and numeri-
cal experience, the form that the wave equation and its
forcing terms should take. Work is underway to con-
firm the relevance of the above diagnostic by compar-
ing systematically its amplitude and that of the excited
gravity waves in different baroclinic life cycles.
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