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ABSTRACT

This study examines the performance of ensemble and variational data assimilation systems for the

Weather Research and Forecasting (WRF) Model. These methods include an ensemble Kalman filter

(EnKF), an incremental four-dimensional variational data assimilation (4DVar) system, and a hybrid system

that uses a two-way coupling between the two approaches (E4DVar). The three methods are applied to

assimilate routinely collected data and field observations over a 10-day period that spans the life cycle of

Hurricane Karl (2010), including the pregenesis disturbance that preceded its development into a tropical

cyclone. In general, forecasts from the E4DVar analyses are found to produce smaller 48–72-h forecast errors

than the benchmark EnKF and 4DVar methods for all variables and verification methods tested in this study.

The improved representation of low- and midlevel moisture and vorticity in the E4DVar analyses leads to

more accurate track and intensity predictions by this system. In particular, E4DVar analyses provide per-

sistently more skillful genesis and rapid intensification forecasts than the EnKF and 4DVar methods during

cycling. The data assimilation experiments also expose additional benefits of the hybrid system in terms of

physical balance, computational cost, and the treatment of asynoptic observations near the beginning of the

assimilation window. These factors make it a practical data assimilation method for mesoscale analysis and

forecasting, and for tropical cyclone prediction.

1. Introduction

Data assimilation presents a means of combining ob-

servations with knowledge of atmospheric dynamics to

study the spatiotemporal evolution of weather systems.

Under a strict set of assumptions regarding the error

distributions for observed and modeled data, the en-

semble Kalman filter (EnKF) and incremental four-

dimensional variational data assimilation (4DVar)

methods have proven to be the most effective to this

date; see Lorenc (2003b), Kalnay et al. (2007), F. Zhang

et al. (2011), and Buehner et al. (2010a,b) for theoret-

ical and practical comparisons of these two approaches.

EnKF and 4DVar data assimilation methods are both

optimal for linear systems with Gaussian errors, but the

process by which each method produces an analysis is

quite different. The EnKF uses an ensemble forecast to

advance a flow-dependent background error covariance

matrix between data assimilation cycles, thus acting as an

approximation to the extended Kalman filter (Evensen

1994). 4DVar is a deterministic method that minimizes

a cost function with respect to increments from a back-

ground state vector that are adjusted to provide the best

fit to observations in a timewindow (Courtier et al. 1994).

The sensitivity of the state vector to future observations is

estimated using the adjoint of the forecast model and

observation operators. While this feature of 4DVar in-

troduces flow-dependent information into the state ap-

proximation, the scheme remains limited by the use of

a static error covariance matrix at the beginning of the

timewindow. Thismatrix is often based on climatological

information, and formulated to provide an efficient

minimization of the cost function (Lorenc 2003a).

A hybrid data assimilation system that uses a two-way

coupling between EnKF and 4DVar methods (denoted

E4DVar) was introduced by Zhang et al. (2009), and

tested over a month-long regional modeling experiment

with the Weather Research and Forecasting (WRF)

Model (Zhang and Zhang 2012; Zhang et al. 2013). The
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WRF-E4DVar system was found to outperform the

stand-alone EnKF and 4DVar methods on a relatively

coarse domain with a 90-km horizontal grid spacing. It

also proved to be less sensitive to sampling errors than

EnKF, given that a mix of static and ensemble co-

variance is used to quantify background errors. TheMet

Office has used a similar hybrid ensemble-4DVar data

assimilation system operationally since July 2011, and

achieved positive improvements over 4DVar on the

global scale (Clayton et al. 2013). Kuhl et al. (2013) also

show gains in forecast skill when ensemble information

is introduced into the 4DVar data assimilation system

used by the U.S. Naval Research Laboratory’s global

model.

Several advancements in efficiency for the WRF-

E4DVar system have allowed for its application at the

mesoscale since the studies of Zhang and Zhang (2012)

andZhang et al. (2013). In particular, amulti-incremental

hybrid 4DVar method for WRF now minimizes the cost

function using a reduced resolution for the tangent linear

and adjoint models and ensemble perturbations; see

Zhang et al. (2014, manuscript submitted to J. Atmos.

Oceanic Technol.) for details regarding additional effi-

ciency improvements in WRF-4DVar. The theoretical

benefits of E4DVar for regional-scale data assimilation

and modeling have motivated many of the recent im-

provements. These benefits include the ensemble evo-

lution of background errors between data assimilation

cycles, and the implicit evolution of background errors

through an observation time window via the tangent

linear and adjoint versions of the model (Zhang et al.

2009). Like 4DVar, the analyses rely on a full rank

climatological covariance matrix, except the ensemble

perturbations provide additional nonstationary, multi-

scale information regarding the background errors.

These two aspects of E4DVar make it a valuable tool

for applications in which large numbers of asynoptic

observations are available for constraining a dynamical

system that evolves at both long and short time scales.

Bearing in mind these factors, we introduce the tropical

cyclogenesis predictability problem as a suitable test

for the relatively new data assimilation system.

The formation of a self-sustained tropical cyclone

from a preexisting wave or synoptic-scale disturbance

is a multiscale process that poses major challenges for

our current state-of-the-art data assimilation systems

(Dunkerton et al. 2009; Fang and Zhang 2011). The

initialization of a model with accurate vertical vorticity

and divergence in the vicinity of the pregenesis cyclone,

along with an adequate amount of column moisture, are

crucial factors for simulating tropical cyclogenesis. These

elements of tropical disturbances have been well docu-

mented in numerous studies that investigate developing

tropical cyclones (e.g., Hendricks et al. 2004; Reasor et al.

2005; Montgomery et al. 2006; Halverson et al. 2007;

Sippel and Zhang 2008, 2010;Wang 2012; Torn and Cook

2013).

More recently, Poterjoy and Zhang (2014, hereafter

referred to as PZ14) applied a cycling EnKF data as-

similation system to study the genesis and predictability

of Hurricane Karl (2010), and examine the effectiveness

of field observations in improving analyses of the pre-

genesis disturbance. Dropsonde measurements that

were collected during the Pre-Depression Investigation

of Cloud-systems in the Tropics (PREDICT) field

campaign were found to be crucial for predicting Karl’s

genesis in the 30 h leading up to the event. The pre-

dictability of Karl in earlier simulations was limited by

initial-condition errors in the synoptic and mesoscale

vorticity and moisture fields, thus highlighting the need

for additional observations and more advanced data

assimilation methods.

The current study compares EnKF, 4DVar, and

E4DVar data assimilation methods over the life cycle

of Karl, using the same observations and model setup

as PZ14. We use analyses and forecasts from cycling

data assimilation experiments to examine the genesis

and rapid intensification of Karl in more detail, and

evaluate the performance of the hybrid technique with

respect to the benchmark EnKF and 4DVar systems.

Unlike Zhang and Zhang (2012) and Zhang et al. (2013),

the current study focuses on a single weather event and

tests the data assimilation methods for a mesoscale

weather application.

The organization of this manuscript is as follows. Sec-

tion 2 describes the model and data assimilation systems,

as well as the design of the experiments.We present the

analysis and forecast results from each experiment in

sections 3 and 4, and compare analysis increments and

initial-condition balance in sections 5 and 6. The last

section provides a summary and conclusions.

2. Experiment setup

a. WRF Model and case study

This study uses theAdvancedResearchWRF, version

3.4.1 (Skamarock et al. 2008), with the same domain

configuration and physical parameterizations as PZ14 to

simulate the development of HurricaneKarl. Themodel

uses a 2513 226 parent domain (black box in Fig. 1) with

a spacing of 13.5 km, and a 253 3 253 storm-following

two-way nested domain with a spacing of 4.5 km. Both

domains have 35 vertical levels and a 5-hPa model top.

Cumulus convection is represented explicitly in both

domains, which was found to provide more accurate
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temperature and moisture fields than simulations with

parameterized convection in sensitivity experiments. The

model simulations span a 10-day period in which Karl

developed into a tropical cyclone and rapidly intensified

before decaying over land (Fig. 1). The first model fore-

casts in the data assimilation cycles are initialized at

0600 UTC 8 September, when the pre-Karl disturbance

formed from an area of disorganized convection on the

northern coast of South America (Stewart 2010). The

disturbance propagated westward for 6 days before

eventually forming a tropical depression at 1200 UTC

14 September.

Observations of Karl include routinely collected sur-

face and upper-air data from the National Oceanic and

Atmospheric Administration (NOAA) Meteorological

Assimilation Data Ingest System (MADIS), as well as

dropsonde measurements that were taken during two

field campaigns. The National Science Foundation (NSF)

PREDICT experiment collected data over a 5-day period

leading up to genesis (Montgomery et al. 2012). Likewise,

the National Aeronautics and Space Administration

(NASA) Genesis and Rapid Intensification Processes

(GRIP) experiment carried out three pregenesis flight

missions, followed by two missions during rapid inten-

sification (Braun et al. 2013). These dropsondes were

launched at altitudes between 150 and 200hPa, and span

a region that covers the inner 7.58 (;800km) of the storm

center, as indicated by the dropsonde locations in Fig. 1.

As in PZ14, only MADIS and PREDICT observations

are assimilated in this study. The GRIP observations are

used as an independent source of verification for the

analyses, but sounding measurements from all three

datasets are used for verifying forecasts.

b. EnKF

The EnKF data assimilation system used in this study

was developed by Meng and Zhang (2008a, b), and has

been applied since 2008 for the real-time analysis and

forecasts of Atlantic tropical cyclones (M. Zhang et al.

2011). It uses an ensemble of model simulations to ad-

vance an error distribution for the model state between

cycles (Evensen 1994; Houtekamer and Mitchell 1998).

Ensemble members are denoted by the vectors xfn,t for

n 5 1, 2, 3, . . . , N, which hold all prognostic variables

at time t. Assuming Gaussian errors, the EnKF uses the

ensemble-estimated mean xft and error covariance Pf
t to

approximate the mean analysis state vector:

xat 5 x
f
t 1P

f
tH

T
t (HtP

f
t H

T
t 1Rt)

21(yt 2Htx
f
t ) . (1)

In Eq. (1),Ht is the observation operator that transforms

model variables into observation space, Ht is a tangent

linear version ofHt, and yt is an observation state vector

with error covariance Rt. Data can be assimilated seri-

ally when observation errors are uncorrelated, in which

case the nonlinear Ht is used in place of Ht in Eq. (1).

We use the square root filter described in Whitaker and

Hamill (2002) to update the ensemble perturbations

around xat , and form an ensemble of analysis state vec-

tors xan,t for n 5 1, 2, 3, . . . , N.

FIG. 1. The location of the tropical weather system is indicated in black prior to genesis, blue during tropical storm intensity, and red during

hurricane intensity. Dropsonde locations from PREDICT and GRIP flight missions are indicated by the colored circles.
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Sampling errors in the ensemble-estimated background

error covariance are treated by applying a Gaspari and

Cohn (1999) fifth-order correlation function to remove

spurious correlations between distant model grid points.

For this study, we use a 60-member ensemble with hori-

zontal and vertical localization radii of 900 km and 15

model levels, respectively. We also inflate the analysis

covariance after each data assimilation cycle by relaxing

80% of the posterior perturbations back to the prior

perturbations, following the ‘‘covariance relaxation to the

prior’’ method of Zhang et al. (2004; i.e., only 20% of the

posterior perturbations comes from the EnKF update).

The inflation compensates for unknown errors that are

introduced during the prediction and data assimilation

steps of the cycling, which would lead to an underesti-

mation of the true background errors over time.

c. 4DVar

Version 3.4.1 of theWRF data assimilation (WRFDA)

package (Barker et al. 2012) is used to perform the

4DVar and E4DVar experiments in this study. The

4DVar method seeks a solution that minimizes the mis-

fit of a control variable to the background state xb0 at t5 0

(typically taken as a deterministic forecast from the pre-

vious cycle) and observations yt at times t5 0, 1, 2, . . . , t.

For incremental 4DVar, the minimization is carried out

with respect to increments dx0 from xb0 (Courtier et al.

1994). The function to minimize can be expressed as the

sumof background (Jb) andobservation (Jo) cost functions:

J(dx0)5 Jb(dx0)1 Jo(dx0)5
1

2
dxT0B

21dx0

1
1

2
�
t

t50

(HtMtdx0 2dt)
TR21

t (HtMtdx0 2 dt) ,

(2)

where B is the error covariance matrix for xb0, and Mt

represents an integration of the tangent linear model

from time 0 to t. HereMt is linearized about a nonlinear

forecast from the beginning of the assimilation window

to time t, denoted byMt(x
b
0), and uses simplified physical

parameterization schemes. The dt in Eq. (2) is the in-

novation at each time along the nonlinear forecast and

is given by the difference between observations and

Mt(x
b
0) projected into observation space:

dt 5 yt 2Ht[Mt(x
b
0)] . (3)

Though not shown, the 4DVar system used in this study

contains a third term in Eq. (2) that measures the fit to a

balanced state using a digital filter; see Eq. (5) of Huang

et al. (2009).

We use a 4DVar method that performs the cost func-

tion minimization (inner loop) in a lower resolution than

the forecast model, while calculating dt (outer loop) from

model states that are advanced by the full-resolution

model (Zhang et al. 2014, manuscript submitted to

J. Atmos. Oceanic Technol.). The inner loops in our cy-

cling experiments are performed using a 40.5-km grid

spacing, which reduces the computational cost of the

minimization by an order of magnitude in test cases. The

faster minimization comes from both the lower cost of

running the tangent linear and adjoint models and the

smaller number of iterations required to reach a user-

specified stopping criteria; in this study, we stop the

minimization at 1% of the initial gradient norm. The

outer loop is run using the same 13.5-km grid spacing that

is used by the parentmodel domain.Whilemultiple outer

loops can be beneficial when Ht and Mt are highly non-

linear (Courtier et al. 1994), we apply only one outer loop

during this study, owing to the computational cost of each

set of inner-loop iterations in 4DVar.

Our 4DVar experiments use the CV5 control variable

option in WRFDA, which transforms the prognostic

WRF Model variables into streamfunction, unbalanced

velocity potential, unbalanced temperature, unbalanced

surface pressure, and pseudo-relative humidity. We esti-

mate a domain-specific background error covariance for

these control variables using a set of 24- and 12-h forecast

differences that were generated over the previous month.

Sensitivity experiments were performed using 3DVar to

determine whether tuning the length scales and ampli-

tudes for the covariance matrix could make systematic

improvements (not shown). The performance benefits of

modifying these parameters were found to be too small to

warrant any deviations from the default settings.

d. E4DVar

An E4DVar data assimilation system is applied using

the same EnKF and 4DVar configurations described

above. As illustrated in Fig. 2, the method requires that

EnKF and 4DVar run separately with two coupling steps:

1) 4DVar uses xf0 as the background state (i.e., in place of

xb0) and introduces ensemble perturbations as an addi-

tional constraint in the cost function, and 2) the hybrid

4DVar solution replaces the posterior mean EnKF

analysis (Zhang et al. 2009).

To perform the hybrid variational analysis, dx0 is

separated into two terms:

dx05 dxc0 1
1

ffiffiffiffiffiffiffiffiffiffiffiffi

N2 1
p �

N

n51

(an+x
0f
n,0) , (4)

where the first and second terms represent the clima-

tological and ensemble components of the analysis

3350 MONTHLY WEATHER REV IEW VOLUME 142



increment, respectively [see Eq. (1) of Wang et al.

2008]. In the second term of Eq. (4), each an+x
0f
n,0 is

a Schur product between a weighting vector an and the

nth ensemble perturbation (here x0fn,0 [ xfn,0 2 xf0) in

model space. The hybrid variational cost function in-

cludes both the climatological and ensemble back-

ground information, which are weighted by the scalar

coefficients bc and be:

J(dxc0,a)5bcJb(dx
c
0)1beJe(a)1 Jo(dx

c
0,a)

5bc

1

2
dxcT0 B21dxc0 1be

1

2
aTA21a

1
1

2
�
t

t50

(HtMtdx02 dt)
TR21

t (HtMtdx02 dt)

(5)

In Eq. (5), dt is calculated with respect to a model tra-

jectory from xf0:

dt 5 yt 2Ht[Mt(x
f
0)] . (6)

The coefficients bc and be are chosen so that 80% of the

increments between each iteration of the minimization

come from the ensemble information.1 TheN weighting

vectors an are concatenated to form control variables a

for the ensemble perturbations in Eq. (5) (i.e., aT 5
[aT1 , a

T
2 , . . . , a

T
N]). These control variables are constrained

by A, which is a block-diagonal matrix that contains N

identical correlation matrices along the diagonal. As de-

scribed in Lorenc (2003b), the correlation matrices pre-

conditiona for covariance localization, thus increasing the

degrees of freedom during the minimization. See Wang

et al. (2007) for additional details regarding the formula-

tion of the hybrid cost function and its theoretical equiv-

alence to other proposed methods.

e. Experiment design

The EnKF, 4DVar, and E4DVar data assimilation

systems are cycled every 6 h from 0600UTC 8 September

to 0000 UTC 18 September. The first cycle starts from

12-h forecasts that are initialized from the 18 latitude–
longitude Global Data Assimilation System (GDAS)

analysis (NCEP/NWS/NOAA/DOC 2000, updated daily)

on 1800 UTC 7 September. GDAS data also provide

lateral boundary conditions and sea surface tempera-

tures for the parent domain during each cycle. For the

ensemble methods, perturbations are sampled from the

climatological covariancematrix and added to aGDAS

analysis to generate the initial set of model states; lateral

boundaries are perturbed in a similarmanner during each

cycle.

All nonradiance observations from MADIS are as-

similated at each cycle, along with PREDICT drop-

sondes between 1200 UTC 10 September and 1800 UTC

14 September. The MADIS observations include surface

data, routine soundings, profiler data, and cloud-tracked

winds from Geostationary Operational Environmental

Satellites (GOES). In the EnKF experiment, observa-

tions that are collected 63 h from the analysis time are

assumed to be valid at the middle of the observation

window. 4DVar and E4DVar, on the other hand, use 1-h

bins of observations for fitting a trajectory of data in the

window. As in PZ14, the beginning of the cycling period

corresponds to the first identification of the pre-Karl dis-

turbance by the National Hurricane Center (NHC), and

the last cycle occurs as Karl decays over the Mexican

coast. Data assimilation is performed on the 13.5-km

FIG. 2. Schematic of two-way coupled EnKF-4DVar data assimilation system.

1 These coefficients are not tuned in the current study—the

choice of weights comes from sensitivity tests performed in Zhang

and Zhang (2012) and Zhang et al. (2013).
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domain (Fig. 1) in all experiments. Deterministic fore-

casts, however, use a nested 4.5-km domain that is in-

terpolated from the parent domain at initialization.

3. Analysis results

a. Storm evolution

This section compares the evolution of the tropical

weather system in each of the three cycling data assim-

ilation experiments between 1200 UTC 10 September

and 0000 UTC 18 September. The selected period spans

all PREDICT andGRIP flight missions, as well as Karl’s

rapid intensification and decay.We use the regionwithin

38 of the storm center to examine changes in the kine-

matic and thermodynamic structure of the tropical sys-

tem.As in PZ14 the pregenesis storm center is estimated

by finding the locations that maximize the azimuthal

mean winds within 38 of the 950- and 700-hPa centers,

and averaging the two estimates. For cases where maxi-

mum10-mwinds exceed tropical storm strength (18ms21),

a Barnes analysis (Barnes 1964) is performed using the

10-m, 850-hPa, and 700-hPa vorticity fields to find a

wind-based storm center.

Figure 3 summarizes the analysis results during this

period using mean 950- and 500-hPa vertical vorticity

(z), 950–500-hPa vortex displacement (tilt) and shear,

and 950–500-hPa column relative humidity (CRH; or

the ratio of vertically integrated water vapor to verti-

cally integrated saturation water vapor). No systematic

differences are found in the low- and midlevel mean z

(Figs. 3a,b) prior to Karl’s genesis, suggesting that the

three methods produce qualitatively similar system-

scale circulation strengths at these times. Nevertheless,

the E4DVar analyses contain the smallest tilt magni-

tudes and highest values of CRH in the two days before

genesis. Both of these factors are suggested to be im-

portant precursors to Karl’s development (Davis and

Ahijevych 2012; PZ14).

To compare the analyses between 0600 UTC

13 September and 12 UTC 14 September in more detail,

the filtered (L . 150km) 950- and 500-hPa z and 950–

500-hPa CRH in the E4DVar analyses are subtracted

from the filtered EnKF and 4DVar analyses (Fig. 4). The

z differences in Fig. 4 show that the EnKF and E4DVar

experiments produce similar vortex positions, whereas

the 4DVar experiment yields amore northerly track of the

disturbance; this conclusion follows from the large dipole

in the 4DVar-E4DVar z differences. Despite the similar

estimate of storm position between the two ensemble

methods, large differences in the magnitude and hori-

zontal structure of z emerge by the 0600 and 1200 UTC

14 September cycles. In particular, the E4DVar case

produces a more compact vortex in the hours preceding

genesis, despite using lower-resolution analysis incre-

ments than EnKF.

As indicated in Fig. 3e, the E4DVar data assimilation

leads to the highest values of saturation in the vicinity of

the developing tropical system. The shaded 950–500-hPa

CRHdifferences in Fig. 4 reveal the spatial extent towhich

this result is true. At 0600 UTC 13 September, both the

EnKF and 4DVar analyses have a dryer lower-to-middle

FIG. 3. Relative vorticity at (a) 950- and (b) 500-hPa, and the

950–500-hPa (c) tilt, (d) vertical shear, and (e) relative humidity

plotted every 6h for EnKF (blue), 4DVar (green), and E4DVar

(red) analyses between 1200UTC 10 Sep and 0000UTC 18 Sep. The

vertical gray dashed line indicates the 0600UTC 13 Sep time and the

black one indicates the true genesis time on 1800 UTC 14 Sep.
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troposphere than E4DVar for a region that spans the

inner 28 of the vortex. As low- and midlevel z increases

in the proceeding cycles, the EnKFexperiment converges

toward similar saturation values near the disturbance

center. Nevertheless, theEnKFmaintains a less saturated

environment near the disturbance throughout all cycles.

The comparison of CRH near the storm center in the

E4DVar and 4DVar cases is complicated by the displace-

ment of the system-scale vorticity centers in the analyses,

which produces a mix of positive and negative differences

in the center of the verification region. Despite this ambi-

guity, CRH values in the outer region of the disturbance

are clearly larger in the E4DVar analyses.

b. Verification with independent observations

Dropsondes that were collected during theGRIP field

campaign are used in this section to verify the EnKF,

4DVar, and E4DVar analyses. These observations were

taken directly before genesis (1800 UTC 12 September–

0000 UTC 14 September) and during a period of rapid

intensification (1800 UTC 16 September–1800 UTC

17 September, Fig. 1), but are not assimilated during the

experiments. All measurements that were collected

within 3 h of the analysis times are considered in this

verification; in total, 105 dropsondes are used to perform

the calculations. Similar to Davis and Ahijevych (2012),

we use stormmotion vectors to correct for the horizontal

displacement of dropsondes to compare values at syn-

optic times. In doing so, we useNHCbest track positions

before and after the verification time, to estimate the

translation speeds of dropsondes.

Figure 5 shows vertical profiles of analysis root-mean-

square deviations (RMSD), biases, and 95% confidence

intervals for the two statistics. While all three experi-

ments perform similarly for the meridional wind (y)

verification, systematic difference are found in the zonal

wind (u) analyses at these times (Figs. 5a,b). TheE4DVar

method produces the smallest u-wind RMSDs and biases

over most of the troposphere, followed in order by the

4DVar and EnKF analyses. The u-wind biases reflect

differences in the mean zonal winds, which likely in-

fluence the accuracy of track predictions (to be discussed

in section 4). Temperature (T) RMSDs in the lower tro-

posphere are comparable to the 1-K errors that are

assigned to sounding temperature observations during

the data assimilation (Fig. 5c); therefore, we cannot

identify any distinctions between the three analyses for

this variable.

From the previous section, Figs. 3e and 4 show that

E4DVar analyses contain more saturated air near the

tropical weather system in the days before and after

genesis. Likewise, the q verification in Fig. 5d shows that

E4DVar analyses have the smallest RMSDs and biases

FIG. 4. Differences between (left) EnKF andE4DVar and (right)

4DVar and E4DVar analyses. The plotted variables are the 950–

500-hPa relative humidity (shading), 950-hPa relative vorticity (black

contours), and 500-hPa relative vorticity (red contours). The rela-

tive vorticity values are filtered to remove wavelengths , 150km;

positive and negative differences are indicated by solid and dashed

lines, respectively: (from top to bottom) from 0600 UTC 13 Sep to

1200 UTC 14 Sep.
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at every altitude. This result confirms that the larger

CRH values found in the E4DVar analyses are more

representative of Karl’s truemoisture field at these times.

4. Forecast results

a. Verification with observations and GDAS analyses

This section investigates the short-range (0–72 h) de-

terministic forecast performance of the three methods

with respect to two data sources. We use sounding ob-

servations from the PREDICT and GRIP field cam-

paigns as well as conventional radiosonde data within

800km of the NHC best track center to estimate forecast

errors near the tropical weather system. Results from this

verification method are plotted in the top row of Fig. 6

and left column of Fig. 7. Likewise, analyses from the

GDAS system are used in a separate set of calculations to

verify forecast results in the near-storm environment.

This verification considers forecast data within 2500 km

of the best track data, and is shown in the bottom row of

Fig. 6 and right column of Fig. 7. GDAS analyses contain

more error sources than the dropsonde measurements,

which can be problematic when using these calculations

to evaluate forecast errors near the initialization time.

These errors, however, are a much smaller factor when

verifying forecasts with lead times greater than 24 h.

We summarize the forecast RMSDs to observations

and GDAS analyses using deterministic forecasts that are

initialized between 0600UTC 8 September and 0000UTC

15 September during the cycling period. The RMSDs

are averaged vertically from the surface to 200hPa then

temporally over each cycle to estimate a time series for u,

y, T, and q forecast errors (Fig. 6). Figure 7 shows vertical

profiles of the RMSDs at 24- and 72-h forecast lead times

to identify the altitudes at which the largest forecast

errors occur.

The time series verification with observations shows

similar short-range forecast performance between the

EnKF and E4DVar experiments; however, the E4DVar

case tends to predict T and q more accurately at lead

times greater than 24h (first row of Fig. 6). For thermo-

dynamic variables, Figs. 7e,g indicate that the E4DVar

system provides the largest gains in 72-h forecast per-

formance in the upper troposphere for T and in the lower

and midtroposphere for q. The 4DVar experiment per-

forms slightly worse than the two ensemble systems for

this verification, with the largest errors occurring below

500hPa for u, y, and q (first column of Fig. 7). Storm

position errors in the 4DVar analyses contribute to this

result, whichwill be discussed inmore detail in section 4b.

We use the verification with GDAS analyses to es-

timate synoptic-scale forecast errors near the tropical

storm. As in Figs. 6c,d, the ensemble methods provide

smaller RMSDs for thermodynamic variables than the

4DVar experiment at all lead times (Figs. 6g,h). Errors

in the 4DVar forecasts, relative to the EnKF and

E4DVar cases, are most substantial in the midlevel q

field (Fig. 7g). While the three experiments produce

comparable 24-h forecast RMSDs for wind variables, the

ensemble methods yield the lowest errors by 72 h for u

and y (Figs. 6e,f and Figs. 7b,d). The GDAS verification

shows that forecasts from the EnKF experiment pro-

duce the closest fit to analysis data in the first 6–24 h of

integration. The differences between these two cases,

however, may be within the margin of error for the

GDAS analyses. Results from the E4DVar experiment

are comparable to EnKF during this forecast range, but

contain smaller RMSDs by 48h. By 72h, the E4DVar

experiment produces the lowest mean forecast RMSDs

with respect to the verifying data, with the exception of

midlevel T (second column of Fig. 7).

FIG. 5. Vertical profiles of analysis bias (dashed) and analysis

RMSDs (solid) to GRIP observations for EnKF (blue), 4DVar

(green), and E4DVar (red): (a) u, (b) y, (c) T, and (d) q. The 95%

confidence interval for each metric is indicated by the region cov-

ered by thin dotted lines.
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One problematic aspect of the 4DVar simulations is

the persistently large 0–12-h forecast errors that occur in

both sets of verifications (Fig. 6). The decrease in T and

q RMSDs over the first 6 h suggest that imbalances in-

troduced during data assimilation may contribute to the

relatively large short-term forecast errors that are found

in this experiment. This result is verified in section 6, and

is assumed to have a nonnegligible contribution to

forecast errors at greater lead times.

b. Track and intensity

This section compares deterministic storm track and

intensity forecasts that are generated from the three cy-

cling data assimilation experiments. These forecasts start

from the respective analysis times and end shortly after

the second landfall of Karl on 0000 UTC 18 September.

Figure 8 shows verifications of track and intensity fore-

casts initialized between 0000 UTC 12 September and

00 UTC 15 September to compare the performance of

each method in predicting the genesis event during the

three days leading up to Karl’s formation. The 10-mwind

and position observations of the tropical cyclone are

provided from the NHC best track dataset, while the

pregenesis storm positions come from the wave-tracking

product described in Wang et al. (2012). For the forecast

cycles shown in this figure, all three methods capture the

correct westward propagation of the tropical system, as

well as the intensification (genesis) of Karl before its first

landfall over the Yucatan Peninsula. Nevertheless, the

data assimilation cycle and lead time at which an

FIG. 6. Deterministic forecast errors compared for EnKF (blue), 4DVar (green), and E4DVar (red). Mean RMSDs are calculated with

respect to (top) conventional soundings and field observations within 800 km of the NHC best track center and (bottom) GDAS data

within 2500 km of the NHC best track center. Values are averaged between the surface and 200hPa.
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accurate genesis prediction is made varies greatly be-

tween the three experiments.

Forecasts from the EnKF analyses begin to capture

the prelandfall genesis accurately on the 1200 UTC

13 September cycle, though the time at which genesis

occurs in these simulations is typically 18–24 h behind

the true genesis time of Karl (Figs. 8a,d). Forecasts from

the 4DVar analyses accurately produce the prelandfall

genesis event as early as the 1200 UTC 12 September

cycle, but have a similar time lag in the genesis event

(Figs. 8b,e). The error in genesis time for the 4DVar

forecasts becomes larger as the cycles progress, indicat-

ing a slow mesoscale evolution of the simulated vortex.

Forecasts from the E4DVar cycles also yield correct

genesis predictions starting from 1200UTC12 September;

these forecasts, however, simulate the timing for Karl’s

intensification much more accurately than the EnKF and

4DVar experiments. A comparison of intensity forecasts

between 14 and 17 September in Figs. 8d–f demonstrates

the extent to which the hybrid method outperforms the

benchmark assimilation methods for Karl’s genesis and

rapid intensification. In general, the superior intensity

forecasts from the E4DVar analyses come from the

improved timing of genesis in these simulations, which

leads to a more accurate prediction for the rapid in-

tensification event that follows. The E4DVar analyses

also provide the most accurate estimates of storm posi-

tion, as verified with track data (Figs. 8a–c). This factor,

combinedwith a better representation of the surrounding

environment (Figs. 6e–h), leads to the more accurate

track forecasts in this experiment.

One advantage of the ensemble data assimilation

methods over 4DVar is their ability to produce prob-

abilistic forecasts. For example, consider the change

in deterministic forecast accuracy between 0600 UTC

13 September and 1200 UTC 13 September cycles in the

EnKF experiment. In PZ14, ensemble forecasts from

these two cycles revealed a large increase in the fore-

cast probability for genesis, which was not obtained in

a control experiment that omitted field observations

during data assimilation (cf. Figs. 10 and 11 of PZ14).

The PREDICT observations at this cycle were found to

increase the low- to midlevel circulation in the ensemble

analyses, which facilitated Karl’s development in the

simulations. Ensemble forecasts of storm track and

intensity are plotted in Fig. 9 to compare probabilistic

forecasts between the EnKF and E4DVar experiments

at 0600 UTC 13 September. As in PZ14, we define

developing members (red lines in Fig. 9) as forecasts that

produce maximum 10-m winds in excess of 18ms21

(tropical-storm strength) for three or more consecutive

3-h time stamps between 1800 UTC 14 September and

0000 UTC 16 September. The comparison shows a large

FIG. 7. Vertical profiles of deterministic forecast errors compared

for EnKF (blue), 4DVar (green), andE4DVar (red) at 6-h (dashed)

and 72-h (solid) lead times. Mean RMSDs are calculated with re-

spect to (left) sounding observations within 800kmof theNHCbest

track center and (right) GDAS data within 2500km of the NHC

best track center: (a),(b) u; (c),(d) y; (e),(f) T; and (g),(h) q.
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genesis probability in the E4DVar forecast (i.e., 53/60) at

a cycle inwhich only 22 of the 60EnKFmembers develop

a tropical storm before landfall. This result occurs despite

the fact that the ensemble mean analyses in the two ex-

periments contain comparable average 950-hPa z in the

cycles leading up to this time (Fig. 3a). Though not

shown, the E4DVar and EnKF ensemble analyses also

share similar magnitudes of low- to midlevel mean z.

While the EnKF ensemble analyses require an addi-

tional assimilation cycle to intensify the low-level vortex

in the model, a large majority of the E4DVar members

capture the intensification well before the 1200 UTC

13 September observations. A combination of factors

lead to a faster development of the low-level vortex in

the E4DVar forecasts, including a less significant dis-

placement between the 950- and 500-hPa vortex centers

(Fig. 3c), and amore saturated lower andmidtroposphere

near the disturbance (Fig. 3e).

c. Data assimilation at the time of genesis

The slow development of Karl in the 4DVar and EnKF

simulations is a persistent result in our experiments. A

PREDICT flight mission on 14 September collected de-

tailed observations of the storm near the time of genesis,

thus providing a fitting case study for examining this is-

sue. Using forecasts from the 1800 UTC 14 September

cycle, Fig. 10 compares the 18-h evolution of 950-hPa

positive z and 950–500-hPa CRH in a 4503 450km2 box

around the storm center. Maximum 10-m wind values

(Vmax) for each forecast time are indicated in the bottom-

left of each panel, and filtered (L. 150km) storm-relative

streamlines are plotted for reference. The storm in each

analysis has an intensity greater than or equal to a tropical

depression, but only the E4DVar case intensifies the low-

level vortex immediately after initialization. Despite

having the lowest wind speeds, the E4DVar analysis

contains a vortex that is more representative of a trop-

ical cyclone than the EnKF and 4DVar cases at this time

(e.g., the vortex maintains an annular ring of positive z

around a relatively dry center). The E4DVar vortex is

also embedded in a region of near saturated air, which

likely aids in the development of new convective cells

near the developing tropical cyclone. By 1200 UTC 15

September, the E4DVar simulation yields a Vmax of

30.2m s21, which is 9m s21 stronger than the other two

cases and more representative of the true hurricane in-

tensity at this time (the observedVmax5 28.1m s21 from

NHC best track data).

5. Analysis increments

This section presents a set of experiments that dem-

onstrate how each data assimilation system produces

increments near the pregenesis disturbance. We gener-

ate 4DVar and E4DVar analyses using the same ob-

servations and background field as the cycling EnKF

experiment at 1200 UTC 13 September. Observations at

this cycle include dropsondes from a PREDICT flight

mission that occurred 30 h before Karl’s intensification

into a tropical storm. The additional field data at this

cycle were found inPZ14 to increase the forecast accuracy

significantly in the EnKF experiment, which motivates

our choice of cycle time. We use the resulting analyses to

examine how each method produces increments, given

identical information regarding the atmosphere and

model state at this cycle (Fig. 11). In the four-dimensional

FIG. 8.Deterministic (top) track and (bottom) intensity forecasts from the (left) EnKF, (middle) 4DVar, and (right) E4DVar experiments.

Forecasts are colored according to initialization time and NHC best track data are plotted in black.
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data assimilation cases, the increments are taken to be the

difference between the analysis and background state at

the middle of the time window.

Clear differences exist between the EnKF and 4DVar

increments near the pregenesis disturbance, despite using

the same observations and background mean state. The

EnKF produces large vortex-scale updates to the wind

field at all levels to move the circulation center westward

(Figs. 11a,d). The 4DVar increments also act to move the

center of the circulation, but the resulting corrections

to z cover a larger area and have a smaller amplitude (Fig.

11e). To some extent, the E4DVar increments for kine-

matic variables resemble a combination of the EnKF and

4DVar increments. For example, the 950- and 500-hPa

filtered z and 850-hPa z increments in Figs. 11i,l have

characteristics of both the EnKF and 4DVar increments.

The ensemble-estimated covariance matrix contains

higher variances and shorter correlation length scales

near the center of the tropical disturbance, which differ

substantially from the month-long climatological errors

used by the 4DVar system. The correlation length scales

in the climatological covariance are most representative

of synoptic-scale errors. As a result, the mesoscale cir-

culation in the 4DVar experiment contains a northward

position bias that goes uncorrected during the earlier

cycles shown in Fig. 8c.

Increments to thermodynamic variables also reflect

major differences in the background error covariance and

control variables used by the three data assimilation

methods. While the EnKF increments act to decrease

950-hPa uy overmost of the subdomain plotted in Fig. 11b,

the 4DVar and E4DVar increments change sign from

negative to positive in the outer 28–38 of the vortex center
(Figs. 11f,j). Direct measurements of the thermodynamic

field are not available in the outer region of the circula-

tion on 13 September, owing to the lack of dropsonde

data away from the vortex center (Fig. 1). The incre-

ments in this region depend largely on cross correlations

between uy and distant values of wind, temperature, and

moisture variables near observations. These correlations

will vary between the EnKF andE4DVar analyses, owing

to the implicit use of time-dependent correlations in

the E4DVar assimilation window. Furthermore, the in-

novations are not equal between these two experiments:

observations are assumed to be valid at the same time in

EnKF, but they are binned into 1-h intervals and com-

pared to a model forecast from the background field

in E4DVar.

Increments to vertically integrated quantities, such as

CRH, reveal equally complex differences between the

three data assimilation systems. For the EnKF experi-

ment, Fig. 11c shows an increase in CRH in the northern

and southern portions of the storm, and a decrease on

the eastern side, which results in a largely asymmetric

distribution of near-saturated air in the analysis. The

corresponding 4DVar increments are smaller and less

organized around the low-level cyclone (Figs. 11g,k).

E4DVar increments to CRH are similar to the EnKF

FIG. 9. Ensemble (top) track and (bottom) intensity forecasts for the (left) EnKF and (right) E4DVar experiments.

Ensemble members are initialized at 0600 UTC 13 Sep and run to 0000 UTC 18 Sep. Developing members are red,

nondeveloping members are blue, and the best track data are black.
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results near the storm center, but contain less substantial

negative increments in the outer regions of the vortex.

While the 4DVar scheme uses a linearized model and its

adjoint to extract flow-dependent information from the

observations and model dynamics during the assimila-

tion window, the resulting increments at t 5 0 are

constrained by the climatological background error

covariance. Correlations between water vapor and the

model state variables are not included in the control

variable option that is used in this study, so uy and CRH

increments must come from updates to temperature

and pressure, or adjustments to specific humidity using

the linearized model operators.

Recall that the 4DVar andE4DVar cases use a 40.5-km

grid spacing inner loop for performing the analyses. In

a second E4DVar experiment, we examine the effects

of this approximation by repeating the E4DVar anal-

ysis using 13.5-km grid spacing for all stages of the data

assimilation (fourth row of Fig. 11). The E4DVar in-

crements that were generated using 13.5- and 40.5-km

inner loops contain subtle differences near the storm; in

particular, the CRH increments have opposite sign near

the vortex center. Nevertheless, these increments appear

to capture qualitatively similar synoptic andmeso-a-scale

features in the domain.

Similar to Thepáut et al. (1996), we examine the

structure functions that produce the four-dimensional

data assimilation increments by performing three sets of

single-observation experiments for 4DVar and E4DVar

and comparing the resulting analysis increments. These

experiments use an 850-hPa wind observation at the be-

ginning (t 5 0), middle (t 5 3), and end (t 5 6) of the

assimilation window, along with the same background

state that is used to produce Fig. 11. Each observation is

forced to yield a 1m s21 innovation in wind speed, but

at different times along the background trajectory.

FIG. 10. The 950-hPa relative vorticity (shaded every 43 1024 s21 from 13 1024 s21), 950–500-hPa CRHvalues. 90% (blue contours),

and filtered (L . 150 km) 950-hPa storm-relative streamlines (dashed black contours) plotted every 6 h from (left to right) 1800 UTC

14 Sep to 1200 UTC 15 Sep from forecasts initialized from (top) EnKF, (middle) 4DVar, and (bottom) E4DVar analyses on 1800 UTC

14 Sep.
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Figure 12 shows 850-hPa uy and z analysis increments,

along with storm-relative streamlines from the back-

ground. Unlike Fig. 11, the increments are taken as the

difference between the analysis and background state

vectors at the beginning, rather than the middle, of the

time window. Increments from an observation at t 5 0

provide detailed information regarding the structure of

the background error covariance used by the two meth-

ods, whereas the cases that assimilate observations at t5 3

and 6h reveal the effects of the tangent linear and adjoint

models.

The impact of the linear error propagation is more

apparent in the 4DVar case, owing to the use of a co-

variance matrix at t 5 0 that is independent of the

current forecast. For example, consider the 4DVar

analysis increments to uy in the first column of Fig. 12.

The increments from an observation at t5 0 (Fig. 12a)

depend entirely on the initial static covariance matrix.

These values fail to exceed 0.006K, which is smaller

than the minimum color scale in the figure. As the

observation window length increases, the uy increments

become larger and increasingly more asymmetric (first

column of Fig. 12). On the other hand, the E4DVar

structure functions change more gradually as the ob-

servation is moved to later times in the window. The

hybrid control variables use knowledge of past in-

formation to describe the background errors at t 5 0,

and therefore do not require a long time window to

develop flow-dependent features from the model dy-

namics. Differences in how 4DVar and E4DVar use the

linear model operators to perform this function are

better illustrated by the z increments in the second two

columns of Fig. 12. Here, the shape of the 4DVar in-

crements evolves from the largely isotropic form that is

expected from a 3DVar data assimilation system to the

southwest–northeast-oriented dipole that is found in

the E4DVar case. Likewise, the E4DVar structure

functions contain the same dipole orientation for all

three observations.

6. Balance

The second derivative of surface pressure ›2ps/›t
2 is

calculated at each time step during the first 12 h ofmodel

integration to estimate gravity wave activity following

model initialization. The 12-h forecast lead time that we

use for this comparison corresponds to the time inte-

gration that is required to run a forecast from the be-

ginning of the observation time window of the current

cycle to the end of the window in the proceeding cy-

cle. Similar to Houtekamer andMitchell (2005), we use

the domain root-mean-square (RMS) ›2ps/›t
2 to quan-

tify imbalance in the deterministic forecasts generated

during the data assimilation cycles. These calculations

are averaged over all cycles for the three methods and

compared in Fig. 13a.

The imbalance metric shows a large mass adjustment

over the first hour of integration, followed by a decrease

in gravity wave activity as the model approaches a more

balanced solution. RMS ›2ps/›t
2 is largest for the EnKF

and E4DVar cases over the first several time steps. This

result likely comes from the use of an ensemble mean

background field in these two cases. Being a deterministic

method, the 4DVar system uses a background field that is

a known solution to the model equations, whereas the

same does not have to be true for an ensemble mean.

Nevertheless, the RMS ›2ps/›t
2 in EnKF and E4DVar

forecasts converge quickly to the 4DVar case by 1 h, as

most of the adjustments occur at small scales. Between 1

and 4h of integration, the pressure adjustment in the

EnKF simulations exhibits a large amount of variability

between cycles (Fig. 13b), owing to the presence of higher

RMS ›2ps/›t
2 values in cycles that contain a fully de-

veloped tropical cyclone (not shown). The imbalances at

these times are largely alleviated in the E4DVar scheme

by the four-dimensional assimilation of observations,

which place a stronger dynamical constraint on analyses.

Unlike the two ensemble experiments, forecasts from

4DVar analyses tend to undergo a long adjustment pe-

riod after the initial rapid decrease in RMS ›2ps/›t
2.

Several properties of the 4DVar scheme tested in this

study may introduce imbalances in the analyses. For

instance, applying a low-resolution domain for the cost

function minimization requires a down sampling of the

high-resolution model grid, which may cause high-

frequency signals to project onto larger scales when

estimating the low-resolution background state. The in-

novation vectors, as estimated from the high-resolution

trajectory, will also contain scales that are not resolved

by the low-resolution tangent linear and adjoint model

operators. Furthermore, analysis increments are inter-

polated from the low- to high-resolution grid and added

to the original background state after the inner loop,

which may introduce physically inconsistent meteoro-

logical fields near large gradients in the domain. A more

significant factor is the use of a month-long climatolog-

ical background error estimation in 4DVar, which is ex-

pected to be suboptimal for the assimilation of mesoscale

observations.

The process of generating a hybrid analysis with multi-

incremental 4DVar requires the same downsampling and

interpolation steps as the standard 4DVar. Despite these

sources of imbalance, RMS ›2ps/›t
2 decreases the fastest

in E4DVar forecasts (Fig. 13a). The use of an ensemble

mean background field in the coupled method may re-

duce the downsampling error described above; however,
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we suspect that the largest benefits come from the use of

ensemble perturbations in the cost function.

7. Conclusions

This study compares WRF-based EnKF and 4DVar

data assimilation methods with a two-way coupled

E4DVar scheme for amesoscaleweather application. The

three methods assimilate routinely collected observations

and field measurements before, during, and after the

genesis of Hurricane Karl, an Atlantic storm that was

targeted by the 2010 NSF-PREDICT and NASA-GRIP

field campaigns. Analyses and short-term (0–72 h) de-

terministic forecasts are verified using observations in

the vicinity of the tropical weather system and GDAS

analysis data in the near-storm environment. On average,

deterministic forecasts from the E4DVar mean analyses

are found to have smaller errors than the benchmark

FIG. 11. Analysis increments from (a)–(d) EnKF, (e)–(h) 4DVar, (i)–(l) E4DVar with a 40.5-km inner loop, and (m)–(p) E4DVar with

a 13.5-km inner loop; all three analyses use the same observations and background field at 1200 UTC 13 Sep. (left to right) Increments of

filtered (L. 150km) relative vorticity, 950-hPa uy, CRH, and 850-hPa (unfiltered) relative vorticity. System-relative streamlines from the

950- and 850-hPa altitudes are also overlaid in the second and last two columns, respectively.
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EnKF and 4DVar methods at lead times greater than

48 h for all verification methods and variables. Like-

wise, the EnKF analyses produce smaller analysis and

forecast errors than the 4DVar system in the vicinity

of the tropical disturbance. While 4DVar has several

theoretical and practical advantages over EnKF, its

reliance on a static background error covariance is

found to be a limitation for producing analyses at the

mesoscale.

The more accurate representation of wind and mois-

ture in the E4DVar analyses leads to large improvements

in Karl’s track and intensity forecasts over EnKF and

4DVar, as verified with NHC best track data. In the data

assimilation cycles preceding genesis, forecasts that are

initialized from the EnKF and 4DVar analyses typically

yield a 12–24-h delay in Karl’s initial intensification.

E4DVar initial conditions at the same cycles produce a

pregenesis disturbance that contains a higher concen-

tration of positive z near the large-scale vortex center,

as well as more saturated air between 950 and 500 hPa.

These factors lead to a shorter spinup of the tropical

storm in the model forecasts and a large improvement

in the timing of the genesis event.

In addition to reducing forecast errors over the

benchmark cases, the E4DVar method produces fewer

initial-condition imbalances than the stand-alone EnKF

and 4DVar systems. The improved balance comes from

the combined effects of using flow-dependent back-

ground error covariance and the four-dimensional as-

similation of asynchronous observations. The inclusion

of ensemble perturbations in the cost function via ex-

tended control variables also improves the conditioning

of the 4DVar minimization problem. Though not shown,

E4DVar required ;30% fewer iterations to reduce the

gradient to 1% of the original value in our experiments;

similar improvements in conditioning are also noted in

Wang et al. (2013) for an ensemble-3DVar hybrid system.

Analysis increments from the four-dimensional data

assimilation systems reveal complex relationships be-

tween the ensemble perturbations and the sensitivity

FIG. 12. Single-observation analysis increments from (first–third columns) 4DVar and (second–fourth columns) E4DVar. (first–second

columns) The 850-hPa uy increments and (third–fourth columns) 850-hPa relative vorticity increments for observations that are located at

(a)–(d) t 5 0, (e)–(h) t 5 3, and (i)–(l) t 5 6 h in the time window. System-relative streamlines at 850 hPa are also overlaid for reference.
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gradients provided from the adjoint model. In some

instances, the E4DVar analyses may have little in com-

monwith analyses produced by the component 4DVar or

EnKF methods (e.g., for variables that depend on mois-

ture). Single-observation experiments also show impor-

tant details regarding how the 4DVar and E4DVar

systems treat observations at different times in the as-

similation window. Observations that are located at the

beginning of the 4DVar window will be assimilated using

less flow-dependent information than observations near

the end of the window. This issue is alleviated inE4DVar,

owing to the use of ensemble information at the begin-

ning of the assimilation window. Given that E4DVar

does not require a long time window to evolve flow-

dependent analysis increments, this method may also

have large benefits for highly nonlinear applications that

limit the assimilation window length. Evidence is pro-

vided by the slower evolution of structure functions over

the 6-h time window in the E4DVar experiment than in

the 4DVar experiment (Fig. 12). Nevertheless, additional

research is required to understand the full potential of

using ensemble information in 4DVar, and the resulting

effects on minimization and optimal window length.
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