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ABSTRACT

Two four-dimensional hybrid data assimilation systems based on the Weather Research and Forecasting

(WRF) Model are applied over the life cycle of Hurricane Karl (2010). One method uses a mix of ensemble-

and climate-based background error covariance in a four-dimensional variational data assimilation (4DVar)

system that uses an adjoint model to assimilate observations over a time window (denoted E4DVar). The

second method approximates the function of linearized models in 4DVar with perturbations generated from

an ensemble forecast using the full nonlinear model (denoted 4DEnVar). Ensemble perturbations in

4DEnVar provide a four-dimensional covariance, which is combined with a static climate-based covariance

for performing the data assimilation. In cycling data assimilation experiments, analyses produced by both

methods provide more accurate intensity forecasts than E3DVar, owing mostly to a better representation of

moisture near the developing storm. Despite providing a computationally efficient alternative to E4DVar,

predictionsmade from 4DEnVar analyses are less accurate than E4DVar for the tested case study. Numerical

experiments using identical background error statistics in both schemes reveal differences in the mesoscale

structure of the developing storm, which are suspected to be responsible for this result. In particular,

4DEnVar analyses contain a less intense inner-core circulation and lower column relative humidity than

E4DVar at analysis times closest to Karl’s genesis, which lead to a persistent slow bias in intensifying the

storm. These results suggest errors introduced in the linearization of themodel for E4DVarmay be less severe

than errors introduced by the localization of time covariances. This study provides the first comparison of

hybrid E4DVar and 4DEnVar for a tropical cyclone application.

1. Introduction

Data assimilation approaches that combine strategies

from variational and ensemble Kalman filtering (EnKF)

methods are applied regularly for operational weather

forecasting and research. Applications include global

numerical weather prediction (e.g., Buehner 2005;

Buehner et al. 2010a,b; Bishop and Hodyss 2011; Clayton

et al. 2013; Kuhl et al. 2013; Wang et al. 2013; Wang and

Lei 2014; Lorenc et al. 2015) as well as regional analysis

and forecasting (e.g., Liu et al. 2009; Zhang and Zhang

2012; F. Zhang et al. 2013; Liu and Xiao 2013; Poterjoy

and Zhang 2014a, hereafter PZ14a; Gustafsson and

Bojarova 2014). One common result from these studies is

that variational data assimilation methods benefit from

using either an ensemble-based estimate of prior error

covariance in place of the climate-based static covariance,

or from a hybrid covariance that combines ensemble and

static background errors. This finding has been verified by

systematic comparisons of hybrid and nonhybrid data

assimilation systems as well (e.g., F. Zhang et al. 2013).

Among the ensemble-variational data assimilation

strategies listed above are four-dimensional (4D)

methods, which seek the maximum likelihood model
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solution, given a prior estimate of the model state or

background, a set of observations over a time window,

and the uncertainty of both quantities. The first opera-

tional use of 4D data assimilation for weather prediction

came in the form of incremental four-dimensional var-

iational data assimilation (4DVar; Courtier et al. 1994;

Rabier et al. 2000), which applies tangent linear and

adjoint versions of the forecast model to propagate in-

formation in time to assimilate observations displaced

over a window. This approach uses a model forecast

from the previous analysis as the background state, and

approximates the background uncertainty using a

climate-based error covariance (Parrish and Derber

1992). The tangent linear model propagates increments,

or differences between the control variable and a

background state, along a nonlinear trajectory to future

times, while the adjoint model propagates sensitivity

gradients backward from observation times to the be-

ginning of the window. The linear model operators

evolve the background error covariance implicitly in

time, thus providing a source of flow-dependent in-

formation for the state estimation (Lorenc 2003a).

When ensemble information is used in 4D data as-

similation systems, a choice emerges regarding how to

model the temporal covariances required for perform-

ing the state estimation. The EnKF, first proposed by

Evensen (1994), presents a means of propagating error

covariances forward in time without linearized model

operators. EnKFs rely on an ensemble of model fore-

casts to approximate the prior mean and error co-

variance, which are updated each time observations are

available. Algorithms that expand the EnKF to

include a time dimension include the ensemble Kalman

smoother (Evensen and van Leeuwen 2000) and

4DEnKF (Hunt et al. 2004). Likewise, ensemble 3DVar

data assimilation systems have been conceived by

Lorenc (2003b), Zupanski (2005), and Buehner (2005).

Extending these methods to 4D, Liu et al. (2008) in-

troduced the 4D-ensemble-variational (4DEnVar)

technique, which uses an ensemble of model trajecto-

ries to find the maximum likelihood solution. 4DEnVar

contains a number of qualities that make it a practical

alternative to 4DVar as a data assimilation method for

atmospheric models. Minimizing the 4DEnVar cost

function does not require the coding of tangent linear

and adjoint models, which is appealing for operational

centers and research institutions that do not currently

maintain a 4DVar system. An equally important factor

is the scalability of the algorithm on massively parallel

computing platforms; unlike 4DVar, 4DEnVar does not

require serial integrations of a tangent linear model and

its adjoint during each iteration of the cost function

minimization.

Despite the advantages 4DEnVar presents for

implementation, methods that use ensemble covariance

in 4DVar are found to be more accurate for global

numerical weather prediction models (Buehner et al.

2010b; Lorenc et al. 2015). One challenge for 4DEnVar

comes from the localization of 4D ensemble co-

variances; this problem is avoided in the 4DVar

framework because a full-rank localized covariance is

evolved implicitly in time by linearized models.1 The

lack of linear model operators in 4DEnVar also com-

plicates the process of evolving errors from the climate-

based static error covariance when a hybrid background

error covariance is used. How to model this covariance

component in an efficient manner remains an open re-

search question at the time of writing this manuscript.

Using a hybrid covariance in 4DVar, Poterjoy and

Zhang (2015) find that the ability of the tangent linear

and adjoint model to evolve temporal information

from a static covariance component is most advanta-

geous for treating model errors not accounted for by the

ensemble. The static covariance improves the analysis

in a manner similar to additive covariance inflation in

ensemble filters: It provides additional orthogonal di-

rections for errors to grow in the assimilation window,

but with the added advantage of remaining full rank.

Nevertheless, 4DEnVar may contain benefits for cer-

tain weather regimes that have not been realized in past

global modeling applications. For example, the linear-

ized model in 4DVar often contains simplified physics

to avoid strong nonlinearities in parameterization

schemes (Sun and Crook 1997; Honda et al. 2005;

Huang et al. 2009), which is avoided in 4DEnVar. Ev-

idence of 4DEnVar producing more accurate analyses

than ensemble implementations of 4DVar for regional-

scale modeling have been demonstrated by Gustafsson

and Bojarova (2014). At the same time, the 4D en-

semble introduces nonlinearities in the temporal evo-

lution of covariances, possibly leading to a poorly

conditioned minimization problem (J. Sun 2014, per-

sonal communication).

In a recent study by Poterjoy and Zhang (2014b), the

authors apply a coupled EnKF–4DVar (E4DVar) data

assimilation system to assimilate routinely collected

observations and field measurements taken during the

development and intensification of Hurricane Karl

(2010). Measurements assimilated during this study

were collected during the Pre-Depression Investigation

of Cloud-systems in the Tropics (PREDICT) field

1 See section 3 of Poterjoy and Zhang (2015) for a discussion on

the different localization strategies used by 4DEnVar

and E4DVar.
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campaign. Poterjoy and Zhang (2014b) provide a de-

tailed introduction into this application by discussing the

spatial and temporal frequency of observations, along

with their impact on synoptic and mesoscale processes

leading to Karl’s genesis and intensification in the

Weather Research and Forecasting (WRF) Model.

Poterjoy andZhang (2014b) also highlight the important

role of mesoscale processes in the evolving weather

event, which motivated PZ14a to test a newly developed

E4DVar system for generating analyses of Karl’s entire

life cycle.

The E4DVar method used in PZ14a incorporates a

hybrid ensemble/climate-based background error

covariance in a 4DVar system developed for theWRF

Model (Zhang et al. 2014). Each E4DVar data as-

similation cycle includes a hybrid update of the en-

semble mean state using 4DVar, and an EnKF update

of the ensemble perturbations. The authors find

E4DVar to produce a more accurate representation

of wind, temperature, and moisture near the pre-Karl

disturbance than similarly configured 4DVar and

EnKF data assimilation systems, which leads to better

predictions for the timing and location of genesis and

rapid intensification. In the current study, the authors

apply a coupled EnKF–4DEnVar system for the same

application to examine the effectiveness of a 4D-

ensemble data assimilation system that does not re-

quire linearized models. Results are compared with a

coupled EnKF–3DVar (E3DVar) data assimilation

system and the E4DVar method presented in PZ14a.

The purpose of this study is to examine E3DVar,

E4DVar, and 4DEnVar analyses for an application

where theoretical differences highlighted in Poterjoy

and Zhang (2015) may have a large impact on the

modeling of 4D covariances by E4DVar and 4DEnVar.

For this reason, the authors focus on a single well-

observed weather event. The goal of this evaluation

is to supplement future and existing studies that

provide more rigorous statistical comparisons of

adjoint- and ensemble-based 4D data assimilation

methods.

The organization of the manuscript is as follows. We

describe the model, data assimilation systems, and cy-

cling data assimilation setup in section 2. In section 3

we present a set of single-observation experiments us-

ing ensemble- and climate-based background error

covariance for observations displaced at multiple times

in the assimilation window. Sections 4 and 5 contain

results from cycling and noncycling data assimilation

experiments, respectively, where noncycling refers to

the use of the same background at each analysis time.

We provide our conclusions and a discussion in

section 6.

2. Experiment setup

a. WRF Model setup and case study

This study uses version 3.4.1 of the Advanced Re-

search WRFModel (Skamarock et al. 2008). The model

domain for ensemble forecasts has 2513 226 horizontal

grid points with a spacing of 13.5 km (see Fig. 1 of

PZ14a) and 35 vertical levels with a 5-mb (1mb = 1hPa)

upper boundary. Deterministic forecasts initialized from

each analysis use a 4.5-km spacing two-way nested do-

main of size 2533 253 that follows the storm with preset

moves. We use the following physical parameterization

schemes for unresolved processes in the model: Monin–

Obukhov similarity (Monin and Obukhov 1954) for the

surface layer, the Yonsei University planetary boundary

layer scheme (Noh et al. 2003), five-layer thermal dif-

fusion for surface layer physics, the Rapid Radiative

Transfer Model (RRTM; Mlawer et al. 1997) and

Dudhia (Dudhia 1989) radiation schemes, and the

WRF single-moment 6-class microphysics scheme (Hong

et al. 2004). Both domains represent cumulus convection

explicitly, which was found in offline sensitivity experi-

ments to providemore accurate temperature andmoisture

fields than simulations using parameterized convection for

this model setup and case study.

Each data assimilation method tested during this

study uses ensemble forecast data to estimate back-

ground errors. The initial ensemble of model states is

formed at 1800 UTC 7 September by adding random

perturbations generated from a month-long estimated

climatological background error covariance to the Na-

tional Centers for Environmental Prediction (NCEP)

Global Data Assimilation System (GDAS) analysis at

this time. Following a 12-h ensemble forecast, the first

data assimilation cycle occurs at 0600UTC 8 September,

and observations are assimilated every 6h. The data as-

similation systems are cycled over a period that includes

the days leading up to Karl’s development at 1200 UTC

14 September, as well as its initial intensification

on 15 September. Deterministic forecasts from each

cycle are run to 0000 UTC 18 September, which spans

the entire life cycle of Karl. Observations assimilated

during these experiments include regularly collected

surface and upper-air data from the National Oceanic

and Atmospheric Administration (NOAA) Meteoro-

logical Assimilation Data Ingest System (MADIS) and

dropsonde measurements taken during the PREDICT

field campaign (Montgomery et al. 2012). Observations

from the National Aeronautics and Space Administra-

tion (NASA) Genesis and Rapid Intensification Pro-

cesses (GRIP) campaign (Braun et al. 2013) are

combined with MADIS and PREDICT soundings to

verify deterministic forecasts from each method. See
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Poterjoy and Zhang (2014b) and Torn and Cook (2013)

for details regarding the impact of the PREDICT field

observations on analyses and forecasts for this event.

b. Hybrid 3DVar, 4DVar, and 4DEnVar

For the variational component of the data assimila-

tion, we use version 3.4.1 of the WRF data assimilation

(WRFDA) package (Huang et al. 2009; Barker et al.

2012). For a given observation time t, the variational

analysis comes from minimizing a cost function that

measures the misfit of a control variable to the back-

ground state xbt and observations yt. The minimization is

carried out with respect to increments dxt from xbt
(Courtier et al. 1994), and the cost function is expressed

as the sum of background (Jb) and observation (Jo)

terms. The incremental 3DVar cost function depends on

quantities valid at the data assimilation time, repre-

sented by time 0:

J(dx
0
)5 J

b
(dx

0
)1 J
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(dx

0
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1
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21dx
0

1
1

2
(H

0
dx

0
2 d

0
)TR21

0 (H
0
dx

0
2 d

0
) , (1)

where B and R0 are the background and observation

error covariance matrices, respectively. The quantity d0

is the innovation vector, which is given by the difference

between y0 and the background projected into obser-

vation space by the observation operator H0(x
b
0). Like-

wise, increments are projected into observation space

using the tangent linear version of H0, denoted by H0.

Equation (1) is extended to 4DVar for observations

displaced temporally between t5 0 and t5 t:
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In (2), the control variable is the vector of increments at

the beginning of an assimilation window dx0, which re-

lates to increments at future times through the tangent

linear forecast model Mt.
2 The time displacement of

observations is also reflected in the 4DVar innovation

vector, which is given by

d
t
5 y

t
2H

t
[M

t
(xb0)] , (3)

where the background state at t5 0 is propagated for-

ward to the time of observations using the nonlinear

forecast modelMt. See X. Zhang et al. (2013) and Zhang

et al. (2014) for detailed descriptions of theWRF 4DVar

data assimilation system and the WRF tangent linear

model, respectively.

To include a hybrid covariance in the variational cost

function, dx0 is separated into two terms:

dx
0
5 dxc0 1

1
ffiffiffiffiffiffiffiffiffiffiffiffi

N2 1
p �

N

n51

(a
n
+x0fn,0). (4)

The first and second terms of (4) are the climatologi-

cal and ensemble contribution to the analysis incre-

ment, respectively (Wang et al. 2008b). Each an+x
0f
n,0

in the second term is a Schur product between the vec-

tor an and the nth ensemble perturbation, where

x0fn,0 [ xfn,0 2 xf0. Following Lorenc (2003b), the ensemble

information is introduced in the variational cost function

using an additional term for the ensemble background

information (Je):
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The a control variables in the second term on the right-

hand side of (5) store the weighting coefficients (an) for

each ensemble perturbation, which are constrained by

A; matrix A is block diagonal, and holds the correlations

used to localize the ensemble covariance. The climate

and ensemble background cost terms are weighted by

the scalar coefficients bc and be to determine the con-

tribution of the two background error covariances dur-

ing the minimization. The quantities bc and be are

chosen to satisfy (1/bc)1 (1/be)5 1, which guarantees

the weights assigned to the climate- and ensemble-based

covariance sum to unity3 (Wang et al. 2008b). Equation

(5) provides the cost function used in E4DVar experi-

ments for introducing ensemble information in 4DVar,

which reduces to E3DVar for t 5 0.

Using (4), theHtMtdx0 term in (5), which projects dx0
into observation space at future times, expands to

2 In practice, the cost function is preconditioned by replacing dx0
with Uv, where U is a square root of the background error co-

variance and v is the new control variable. For simplicity, this

substitution is not shown in the manuscript.

3We enforce this constraint for simplicity only. Bishop and

Satterfield (2013) show analytically that the optimal weighting

coefficients do not have to follow this constraint.
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To avoid the use of a tangent linear model, (6) can be

approximated as
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where Mt is neglected from the climate contribution

(first term on the right-hand side), and the propagation

of ensemble perturbations by Mt (second term on the

right-hand side) is replaced with perturbations from a

nonlinear ensemble forecast. The assumptions made in

the first and second terms in (7) are equivalent to those

made by 3DVar first guess at appropriate time (FGAT;

Fisher and Andersson 2001) and 4DEnVar (Liu et al.

2008, 2009), respectively. The hybrid 4DEnVar system

applied in this study minimizes (5) using the approxi-

mations made in (7) to incorporate static and ensemble

covariance in the cost function. Unlike Liu et al. (2008,

2009), ensemble perturbations are stored in model space

and projected into observation space using the tangent

linear observation operator.

c. Coupled data assimilation

The three data assimilation methods tested in this

study require the execution of both EnKF and varia-

tional data assimilation systems—which can be per-

formed simultaneously. From an ensemble forecast,

the members are separated into mean and perturba-

tions, which are introduced into the variational system

as the background state xb0 and perturbation vectors

x0fn,0, respectively. To estimate the analysis state at the

center of the window for E4DVar and 4DEnVar, we

propagate the sum of analysis increments and back-

ground state forward from the beginning of the

window.4 Assuming all observations displaced through

the assimilation window are valid at the analysis time

(center of the window), the EnKF estimates the pos-

terior perturbations, which are added to the maximum

likelihood solution found during the variational anal-

ysis. The posterior ensemble is then used to initialize

the ensemble forecast for the next data assimilation

cycle. This approach results in a two-way coupling of

ensemble and variational data assimilation methods

(Zhang et al. 2009) for E3DVar, E4DVar, and

4DEnVar.

d. Data assimilation configuration

For the 4D data assimilation experiments, observa-

tions are binned into 1-h intervals and assimilated over a

6-h period that spans 63 h from the analysis time.

Likewise, the E3DVar experiment assimilates all ob-

servations over the same period, but assumes all data are

valid at the same time.We also appliedE3DVar with 3-h

assimilation cycles (and a 3-h window), but results from

this experiment are omitted from the manuscript be-

cause no significant improvements were found over the

6-h configuration. All three methods use the same cli-

matological background error covariance, which is es-

timated over the previous month using 24- and 12-h

forecast differences (Parrish and Derber 1992). We use

the default covariance amplitudes and length scales for

the climatological errors, since tuning these parameters

yielded no significant change in performance. The en-

semble contains 60 members, and its covariance is lo-

calized in the variational and EnKF components using a

900-km horizontal radius of influence and 34 vertical

levels for vertical localization. Here, the variational

methods perform a model-space Gaussian localization

using a recursive filter (Wang et al. 2008a), while the

EnKF applies a Gaspari and Cohn (1999) localization

function directly in the Kalman gain matrix when as-

similating each observation.

Ensemble spread between data assimilation cycles is

maintained by inflating the posterior ensemble per-

turbations after each analysis using the ‘‘covariance

relaxation’’ technique described in Zhang et al.

(2004). This method uses 80% of the prior perturba-

tions and 20% of the posterior perturbations to update

the posterior ensemble members. The data assimila-

tion sensitivity to localization and inflation parameters

was explored in offline experiments before deciding

on the current configuration. Our choice of weighting

coefficients for the climate and ensemble background

cost terms come from results of sensitivity tests per-

formed in previous regional modeling studies (Zhang

and Zhang 2012; F. Zhang et al. 2013). The specified

weights translate into a hybrid configuration that uses

20% of the static covariance and 80% of the ensemble

covariance. Extensive tests of hybrid E4DVar and

4DEnVar in Poterjoy and Zhang (2015) using a low-

dimensional dynamical system show the methods

having a similar sensitivity to covariance localization

and inflation, window length, ensemble size, and

4Another option is to use increments from the middle of

the assimilation window. Section 4f of Poterjoy and Zhang

(2015) provides an explanation as to why the approach taken in

the current study is more accurate than the alternative method

when observations are spaced equally in time through the

assimilation window.
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hybrid weighting coefficients. As a result, the optimal

set of parameters for the two methods were found to

be near identical for almost all model and observing

system scenarios tested. While the parameter sensi-

tivity of both methods may not be as comparable for

complex applications, like tropical cyclogenesis in

WRF, this result provides a basis for using the same

parameter values for E4DVar and 4DEnVar, which is

done in the current study. Maintaining the same pa-

rameter values between experiments also allows for a

simpler interpretation of results. As applied in this

study, the only difference between these two methods

is the modeling of covariances via the tangent linear

and adjoint operators or an ensemble of model

trajectories.

To reduce the computational cost of running the

tangent linear and adjoint models for the 4DVar com-

ponent of E4DVar, we perform the analyses using a

reduced 40.5-km resolution to minimize the cost func-

tion (Zhang et al. 2014). We also generate the back-

ground trajectory for calculating innovations and

linearizing the model and observation operators only

once for each cycle (i.e., we do not run multiple outer

loops). Because the 4DEnVar and E3DVar analysis

steps require less computing time, we make use of the

full-resolution 13.5-km grid for the minimization in

these experiments.

3. Single-observation experiments

E4DVar and 4DEnVar differ primarily in how each

method models background error covariance in the

assimilation window. In this section, we explore these

differences by assimilating synthetic observations and

comparing the resulting analysis increments. We apply

E4DVar and 4DEnVar using ensemble and static co-

variance to assimilate single observations displaced at

three different times in the assimilation window. The

comparison is performed for the 1200 UTC 13 Sep-

tember cycling time using the background (ensemble

forecast) from the cycling E4DVar experiment. This

cycle occurs 24 h prior to genesis, during a time in

which the low-level mesoscale vortex undergoes a

large increase in circulation (see discussion in section

4a). We create 850-mb temperature observations at 0,

3, and 6 h from the analysis time by taking temperature

values from a 6-h forecast from the beginning of the

assimilation window and adding a 1-K error. We then

assimilate the observations separately using E4DVar

and 4DEnVar (Fig. 1) to show potential temperature

(u) increments at the beginning of the assimilation

window associated with observations at times t 5 0,

t 53, and t 5 6 h. These experiments are performed

using 100% and 0% contributions of ensemble co-

variance to demonstrate how each method estimates

FIG. 1. The 850-mb u analysis increments after assimilating a single 850-mb temperature observation located at the3 in the domain. The

increments are generated using (top) 100% and (bottom) 0% ensemble background error covariances. Each panel contains increments

generated using either E4DVar or 4DEnVar for an observation at (left to right) t 5 0, t 5 3, and t 5 6 h in the assimilation window, as

indicated by the labels above each column. System-relative streamlines at 850mb are also overlaid for reference.
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time covariances from the ensemble and static co-

variance components.

E4DVar and 4DEnVar provide identical analysis in-

crements for observations at the beginning of the as-

similation window (t 5 0 h, Figs. 1a,f), but clear

differences emerge for observations placed at future

times. The u increments change sign over the window,

becoming negative for observations at t5 3 h and t5 6 h.

We suspect that uncertainty in vortex position contrib-

utes the most to this sign change: negative increments

produced from assimilating observations later in the

assimilation window contain increasingly larger scales,

which serve to correct track error inferred from future

observations. Nevertheless, intensity errors are also

large at this stage of the storm, which further compli-

cates the interpretation of these experiments. The in-

crements in the top row of Fig. 1, are produced using

ensemble covariance only. In this case, the differences

between increments for t. 0 h result from the following:

1) the unique localization strategies applied by the

methods—E4DVar localizes the ensemble covariance at

the beginning of the window, then propagates in-

formation forward using linearized models, whereas

4DEnVar performs the localization after estimating

time covariances; and 2) simplifications introduced in

the WRF tangent linear and adjoint models used for

E4DVar. For the application chosen to perform these

comparisons, the effects of using a different localization

strategy are accelerated by the rapid development of the

storm over the assimilation window. The sensitivity of

E4DVar and 4DEnVar to forecast error growth was

explored previously in Poterjoy and Zhang (2015) using

the 40-variable Lorenz (1996) system with varying de-

grees of model forcing. Results from this study show that

faster forecast error growth in the assimilation window

leads to a faster degradation of 4DEnVar analyses, be-

cause of the localization strategy used to remove spuri-

ous temporal correlations. This finding explains some of

the differences seen in the 100% ensemble covariance

cases plotted in the top row of Fig. 1. Likewise, the el-

evated forecast error growth rate for this application

may also accelerate the effects of errors introduced by

imperfect linearized models in 4DVar, which may de-

grade the accuracy of E4DVar increments in this

example.

In the other limiting case, where 0% of the ensemble

covariance is used, increments plotted in the bottom row

of Fig. 1 reflect the contribution of the static background

error covariance. TheE4DVar increments in this row (Figs.

1f,g,i) are identical to traditional implementations of

4DVar using a climate-based background covariance,

while the 4DEnVar increments (Figs. 1f,h,j) are iden-

tical to 3DVar-FGAT. As the observation is displaced

further in time, the structure of the E4DVar increments

becomes closer to the 100% ensemble covariance case

(i.e., a large area of negative u increments forms around

the developing storm). The result follows from the tan-

gent linear model and its adjoint having more time to

evolve flow-dependent information over the assimila-

tion window. Comparisons using hybrid covariance in

the two systems are omitted from Fig. 1, because the

resulting increments are a linear combination of the

100% and 0% ensemble cases described in this section

[cf. (4)].

4. Results from cycling experiments

a. Analysis storm structure

In this section, we compare E3DVar, E4DVar, and

4DEnVar analyses over a weeklong cycling period

between 0600 UTC 8 September and 0000 UTC 15

September, which spans the development and in-

tensification of Karl. For this comparison, we focus on

the kinematic and thermodynamic characteristics of

analyses in the vicinity of the storm. As described in

PZ14a, we estimate the pregenesis storm center by av-

eraging the 950- and 700-mb circulation centers, which

are designated as the positions that maximize the azi-

muthal mean winds within a 38 radius at each level. If a

tropical storm is present in the simulation (10-m winds

exceeding 18m s21), we perform a Barnes’s analysis

(Barnes 1964) using the 10-m, 850-mb, and 700-mb

vorticity fields to locate the storm center. Figures 2

and 3 summarize the evolution of the pregenesis dis-

turbance in each set of analyses by comparing the time

series of area-averaged quantities from 1200 UTC

9 September to 0000 UTC 15 September, following a

short spinup period between 0600 UTC 8 September

and 0600 UTC 9 September.

Figures 2a,b compare 950- and 500-mb relative vor-

ticity (z) values averaged within 38 of the storm center.

In all three experiments, the evolution of the low- and

midlevel circulation at the meso-a scale is qualitatively

consistent with the synopsis provided by Stewart (2010),

likely because of the large spatial and temporal extent of

in situ observations assimilated. The low-level circula-

tion increases on 11 September, followed by a decrease

between 11 and 13 September before strengthening until

Karl intensified into a tropical storm at 1800 UTC

14 September (indicated by the vertical dashed line in

Fig. 2). Meanwhile, the strength of the midlevel vortex

increases steadily throughout the entire cycling period

(Fig. 2b). The development of the 950-mb vortex be-

tween 13 and 15 September in the analyses coincides

with the alignment of the low- and midlevel circulation
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centers; this alignment is indicated by the time series of

the 950–500-mb tilt magnitude plotted in Fig. 2c. The

vortex alignment in the analyses leads to a reduction in

the local 950–500-mb vertical wind shear (Fig. 2d),

which we estimate from winds within 38 of the storm

center. The plotted shear magnitude takes into account

the environmental shear, as well as the effects of asym-

metries induced by the tilted vortex. Mechanisms that

can contribute to the alignment of a vortex in vertical

wind shear are discussed in Schecter et al. (2002), Nolan

and McGauley (2012), Rappin and Nolan (2012), and

Zhang and Tao (2013). Poterjoy and Zhang (2014b)

found vortex alignment to be an important factor in

determining when tropical cyclogenesis occurs in simu-

lations initialized from EnKF and 4DVar analyses of

this event, and noted the importance of dropsondes near

the pregenesis disturbance in capturing the low-level

development of the vortex with time.

With the exception of a faster vortex alignment in the

E4DVar analyses, the three data assimilation methods

yield qualitatively similar kinematic structure for meso-

a-scale features of the disturbance preceding genesis.

One notable distinction between analyses produced

from the 4D data assimilation methods and E3DVar

is the amount of near-saturated air surrounding the

FIG. 3. As in Fig. 2, but for 18-averaged quantities.FIG. 2. The 38 average (a) 950- and (b) 500-mb relative vorticity,

(c) 950–500-mb tilt and (d) vertical shear, and (e) 950–500-mb

column relative humidity plotted every 6 h for E4DVar (black),

4DEnVar (green), and E3DVar (red) analyses between 1200 UTC

9 Sep and 0000 UTC 15 Sep. The vertical black dashed line indi-

cates the timewhenKarl intensified into a tropical stormat 1800UTC

14 Sep.
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developing storm. Figure 2e compares the time series of

spatially averaged 950–500-mb column relative humid-

ity (CRH), which is defined as the ratio of vertically

integrated water vapor to vertically integrated satura-

tion water vapor. Over the cycling period examined

here, the E3DVar analyses remain 2%–8% (RH) drier

than E4DVar and 4DEnVar, which inhibits the gener-

ation of convectively induced vorticity anomalies in the

pregenesis disturbance, and decreases the likelihood of

genesis (Hendricks et al. 2004). The relatively low values

of CRH near the developing storm in E3DVar analyses

are comparable to EnKF and 4DVar analyses discussed

in Poterjoy andZhang (2014b) for Karl (see their Fig. 3).

In addition, verifications of deterministic forecasts in

section 4b show that E4DVar and 4DEnVar improve

the representation of thermodynamic variables over

E3DVar. These results suggest that the hybrid 4D data

assimilation methods capture moist processes related to

Karl’s genesis more accurately than the ensemble filters

and non-ensemble methods tested for this case study

(PZ14a; Poterjoy and Zhang 2014b).

Figure 3 compares the same quantities plotted in

Fig. 2, except values are averaged within 18 of the storm
center. Here, distinctions emerge with regard to the

inner core of the storm in each set of analyses. The

13–15 September assimilation cycles reveal a gradual

intensification of themidlevel vortex in the E4DVar and

4DEnVar data assimilation experiments (Fig. 3b); the

E3DVar analyses contain a similar increase in circula-

tion at these times, except the vortex remains much

weaker. Following the increase in circulation in the

middle troposphere, the low-level vortex intensifies

rapidly between 14 September and the end of the cycling

period on 15 September. The intensification of the

inner-core midlevel vortex in E4DVar and 4DEnVar

analyses follows a 24-h period of elevated CRH values.

These magnitudes agree with the 80% average relative

humidity threshold found in WRF simulations by Nolan

(2007) to be a precursor for genesis. Furthermore, the

cycle at which the initial intensification occurs in each

experiment is consistent with the rate at which the at-

mosphere approaches saturation in the volume used to

perform these calculations. The E4DVar experiment

produces elevated values of CRH earlier in the cycling

period and develops a mesoscale vortex faster than

E3DVar and 4DEnVar in the analyses.

b. Deterministic forecasts

Here we compare deterministic forecasts initialized

with the analyses described in section 4a. The prediction

accuracy in each experiment is quantified by comparing

forecasts with routine soundings and 234 total drop-

sonde measurements collected during PREDICT and

GRIP. We again focus on meteorological fields in the

vicinity of the storm by calculating forecast root-mean-

square differences (RMSDs) to observations within

800 km of the National Hurricane Center (NHC) best-

track center.5 This verification is performed for zonal

and meridional wind (u and y), temperature (T), and

water vapor mixing ratio (qy). We average the RMSDs

over the volume that spans the verification region be-

tween 950 and 200mb, and temporally over 28 cycles

between 0600 UTC 8 September and 0000 UTC

15 September. Results are plotted for forecast times

between 0 and 72h in Fig. 4, with vertical bars that in-

dicate the 99% confidence interval, assuming the sam-

ples of RMSDs are uncorrelated in time and distributed

normally. Figure 5 provides a more detailed overview of

forecast errors for 24- and 72-h lead times by showing

forecast bias and RMSDs averaged over 9 vertical col-

umns between 1000 and 200mb (observations within

50mb of each level are used). This figure also indicates

the number of verifying observations for each level on

the right-hand side of each plot.

The 0-h verification in Fig. 4 measures the fit of ob-

servations to the analysis. Because the verifying obser-

vations include data assimilated by all three schemes

(i.e., measurements from MADIS and PREDICT), a

component of the mean RMSDs at the initial time

comes from a model state that is dependent on the

verifying observations. For this reason, we omit an in-

terpretation of the analysis accuracy using the 0-h

RMSDs. The time series of errors beginning from 0h,

however, provides some evidence regarding imbalance

in the initial conditions for the two 4D methods, which

require a 3-h integration from the beginning of the as-

similation window. For example, theTRMSDs decrease

immediately after 0 h in the 4DEnVar experiments.

Likewise, 4DEnVar produces the largest 0-h RMSDs

for u, y, and q, which we verified to be caused in part by

elevated gravity wave activity in the 3-h forecasts to the

analysis time (not shown). Previous studies using

4DEnVar in global models have encountered similar

issues related to balance because of the use of a dis-

continuous set of data to characterize the 4D prior sta-

tistics (e.g., Kleist and Ide 2015). Lorenc et al. (2015) and

Buehner et al. (2015) both found benefits using four-

dimensional incremental analysis update (4DIAU) to

control noise during initialization. The E4DVar system

used in this study uses a weak digital filter constraint

4DVar that penalizes high-frequency oscillations in the

5We use an 800-km radius around the best-track center for this

analysis because this region includes nearly all the PREDICT and

GRIP dropsondes at each verification time.
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cost function, but no such mechanism is available in the

WRF-4DEnVar system used in this study. PZ14a used

the digital filter constraint in their comparison of 4DVar

and E4DVar because of minor benefits exhibited by

4DVar with the additional cost function term. This

benefit occurs mostly because the increments produced

during inner-loop iterations depend largely on a clima-

tological covariance estimate, which represents back-

ground errors rather poorly for tropical cyclone

applications. These increments result in an elevated

level of imbalance, which can be dealt with using the

digital filter. Because this problem is partially alleviated

by the improved covariance estimates in E4DVar, the

role of this filter becomes less important. Offline tests

using E4DVar without the digital filter constraint show

no significant benefit of this additional cost function

term, so we use the same E4DVar experiment in PZ14a

and the current paper to maintain consistency between

the two studies. While repeating the E4DVar experi-

ment without the digital filter would provide a more

consistent comparison between themethods, we have no

reason to suspect the digital filter changes the major

results of this study.

We use short-term forecasts after 0 h to verify the

effectiveness of the data assimilation methods in pro-

ducing accurate predictions of state variables in the re-

gion surrounding the disturbance. From this verification,

the 4DEnVar and E3DVar experiments have compa-

rable predictive skill for u, y, andT out to 72h. Forecasts

from E4DVar analyses contain similar y RMSDs over

the same forecast range, but have significantly lower u

and T RMSDs than E3DVar and 4DEnVar for lead

times greater than 48h. The lower u and T RMSDs in

E4DVar forecasts are found mostly in the upper model

FIG. 4. Deterministic forecast RMSDs for E4DVar (black), 4DEnVar (green), and E3DVar (red) experiments.

Vertical lines (whiskers) indicate 99% confidence interval for the RMSDs: (a) u, (b) y, (c) T, and (d) q.
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FIG. 5. Vertical profiles of (left) 24-h and (right) 72-h deterministic fore-

cast bias (dashed lines) and RMSD (solid lines) for E4DVar (black),

4DEnVar (green), and E3DVar (red) experiments: (a),(b) u; (c),(d) y;

(e),(f) T; and (g),(h) q. Horizontal lines (whiskers) indicate 99% confidence

interval for the metrics; the numbers along the right-hand side of each plot

are the number of verifying observations.
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levels (Fig. 5), and coincide with lower biases than

E3DVar and 4DEnVar. On the other hand, E4DVar

produces the largest bias for y in low levels, despite

having RMSDs that are comparable to E3DVar and

4DEnVar for most model levels. Both 4D data assimi-

lation methods produce a more accurate representation

of moisture than E3DVar near the disturbance, which is

reflected in the significantly lowerRMSDs for qy starting

from 12h. Figures 5g,h indicate that most of the forecast

error in these experiments is due to a negative bias,

which is smaller for the E4DVar and 4DEnVar cases at

most levels. This result suggests that the elevated values

of CRH found near the disturbance in E4DVar and

4DEnVar analyses, compared to E3DVar in Figs. 2e and

3e, provide a better depiction of Karl’s pregenesis rela-

tive humidity field.

We also verify the predicted track and intensity of the

developing cyclone in deterministic forecasts. Here, the

performance of the data assimilation techniques de-

pends on how well each method captures features in

analyses that produce accurate predictions of the storm

track before and after genesis, as well as the correct

timing of genesis and rapid intensification in the simu-

lations. Figures 6 and 7 show deterministic track and

intensity (maximum 10-m wind speed) forecasts, ini-

tialized every 6h between 1800 UTC 12 September and

0000 UTC 15 September. Simulations are run through

the entire life cycle of Karl, thus providing insight into

the long-range forecast performance of the three data

assimilation methods. Black lines plotted in Figs. 6 and 7

represent the observed track and intensity, which are

taken from the NHC best-track dataset; pregenesis

storm positions come from the wave-tracking product

described in Wang et al. (2012). Table 1 also provides

the mean RMSEs, calculated from all deterministic

forecasts plotted in these figures at 0-, 6-, 12-, 24-, 48-,

and 96-h forecast lead times.

For forecasts initialized 3–4 days before genesis

(Fig. 6), the E4DVar forecasts propagate the pregenesis

wave westward, and produce accurate genesis pre-

dictions as early as 1200 UTC 12 September, 54 h before

Karl became a tropical storm. Forecasts from 4DEnVar

and E3DVar analyses fail to capture the correct trans-

lation speed and direction of the wave until 1800 UTC

FIG. 6. Deterministic (left) track and (right) intensity forecasts from (top) E4DVar, (middle) 4DEnVar, and (bottom) E3DVar ex-

periments between 1800 UTC 10 Sep and 1800 UTC 12 Sep. Forecasts are colored according to initialization time and NHC best-track

data are plotted in black.
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11 September, which coincides with the second

PREDICT flightmission. Likewise, none of the 4DEnVar

and E3DVar forecasts prior to 13 September capture

Karl’s genesis before making landfall on the Yucatan

Peninsula. Figure 7 compares the track and intensity

forecasts from the three experiments within two days

of Karl becoming a tropical storm. During this period,

all three experiments produce a persistent right-of-

track forecast bias, which also occurred in operational

hurricane model forecasts for this event (Stewart

2010). The variability in Karl’s track between data

assimilation cycles after 1800 UTC 11 September also

remains relatively low,which is consistent with operational

Global Forecast System forecasts—used in this study

for lateral boundary conditions. Nevertheless, the

E4DVar forecast errors are consistently smaller than

forecast errors from 4DEnVar and E3DVar analyses. In

addition to providing the most accurate track forecasts,

the E4DVar analyses produce superior forecasts for the

timing of Karl’s development, which leads to better

predictions of the storm’s rapid intensification over

the Bay of Campeche. The faster development of

Karl in E4DVar analyses—compared to 4DEnVar

and E3DVar—is demonstrated by the 18 averaged vor-

ticity comparisons in Figs. 3a,b. In the 4DEnVar and

E3DVar simulations, Karl’s development is delayed

FIG. 7. As in Fig. 6, but for forecasts initialized between 0000 UTC 13 Sep and 0000 UTC 15 Sep.

TABLE 1. Forecast track and intensity (maximum 10-m wind) errors averaged over all deterministic forecasts plotted in Figs. 6 and 7.

Track RMSE (km) Intensity RMSE (m s21)

E4DVar 4DEnVar E3DVar E4DVar 4DEnVar E3DVar

Lead time (h) 0 131.25 119.54 116.48 Lead time (h) 0 1.83 1.68 5.46

6 141.56 197.89 136.08 6 1.88 2.19 4.81

12 153.11 206.89 148.78 12 1.63 4.86 6.28

24 205.00 258.58 176.33 24 2.95 6.24 8.01

48 203.86 470.06 272.77 48 4.56 5.08 8.14

96 286.75 994.44 800.42 96 14.02 15.74 15.11
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until the weather system crosses the Yucatan Peninsula,

which leads to a persistent low bias in the intensity

forecasts (Fig. 7).

5. Results from noncycling experiments

For the experiments analyzed in section 4, the mean

and covariance from a given data assimilation cycle is

propagated forward to the next cycle and used to define

the new prior error distribution. The cycling causes

errors to accumulate between analyses because of

deficiencies in how each method estimates posterior

quantities. One negative outcome of the cumulative

errors is that each method may respond differently to

random noise introduced by sampling errors in the prior

ensemble statistics and observation errors, thus affecting

the outcome of the results presented in section 4. The

impact of cumulative errors during cycling can be es-

pecially large for tropical cyclogenesis cases, where the

underlying dynamics are very sensitive to small-scale

initial condition errors in kinematic and thermodynamic

variables such as vorticity and humidity (e.g., Sippel and

Zhang 2008, 2010; Zhang and Tao 2013; Munsell et al.

2013). To remove differences due to cumulative errors

introduced by the data assimilation system and obser-

vation noise, we perform a new set of analyses and

forecasts using the same prior ensemble in the three

data assimilation systems. For these experiments, each

method uses forecast members from the cycling E4DVar

experiment discussed in section 4. We generate new

analyses and deterministic forecasts for 10 cycles between

1800 UTC 12 September and 0000 UTC 15 September,

which covers 48h before Karl’s genesis, as well as its

initial intensification on 15 September. Results from

these experiments depend exclusively on each method’s

unique data assimilation strategy, which allows for an

investigation into possible systematic differences in the

three methods.

We also performed experiments using a hybrid con-

figuration of 4DEnVar that does not include the

climate-based background error covariance B in the

hybrid cost function (denoted 4DEnVar-ep). Instead,

we introduce B by replacing the ensemble forecast

perturbations at the beginning of the window with hy-

brid perturbations:

x0fn,0 )
1

bcx
0s
n,0 1

1

bex
0f
n,0, (8)

where each x0sn,0 is drawn randomly from N(0, B). This

approach allows 4DEnVar to evolve perturbations from

the static contribution of the background error co-

variance in the assimilation window to approximate the

time evolution of B. Poterjoy and Zhang (2015) dem-

onstrate advantages of this application of 4DEnVar for

cases when substantial model error is present in the

forecast system. Representing B with hybrid perturba-

tions has a similar effect as additive inflation because

it allows forecast errors to grow in new orthogonal

directions during the assimilation window. One dis-

advantage, however, is that the method introduces ad-

ditional sampling error during the data assimilation

because of the replacement of a full rank B with an

ensemble representation.

Deterministic track and intensity forecasts initialized

from each of the four hybrid analyses are plotted in

Fig. 8, along with forecasts from the background mean

state used to perform each analysis (denoted control

throughout this section). When no data are assimilated

to improve the background state, the forecasts generate

persistently accurate track forecasts, but contain a slow

bias in the intensification of Karl (Figs. 8a,b). Forecasts

from 4DEnVar and E3DVar analyses in these experi-

ments show improvements over the cycling cases dis-

cussed in section 4, which include the removal of a

northward track bias and the prediction of Karl’s genesis

before making landfall on the Yucatan Peninsula (cf.

Figs. 7 and 8). Nevertheless, these forecasts contain a

slow bias for the timing of genesis that is similar to the

delayed intensification found in the control simulations

(Fig. 8b). The 4DEnVar-ep case yields marginal im-

provements over 4DEnVar, including more accurate

intensity predictions in forecasts generated at earlier

analysis times, but the advantages become negligible for

analyses close to the genesis time. The E4DVar analyses

produce a larger reduction in the intensity bias over the

control, demonstrating additional skill over the other

methods in forecasting Karl’s evolution. Furthermore,

the E3DVar and 4DEnVar analyses produce a larger

amount of variability in track forecasts between data

assimilation cycles compared to theE4DVar and control

simulations. The increased variability in track is partly

due to the higher magnitude and variance of analysis

increments generated over these cycles (see discussion

at the end of this section).

To summarize differences in the four sets of analyses,

we again compare time series of 18-averaged 950- and

500-mb z, vortex tilt, shear, and 950–500-mb CRH near

the storm center. These quantities are plotted for each

assimilation cycle between 1800 UTC 12 September and

0000 UTC 15 September in Fig. 9, along with values

from the control state, or priormean used to perform the

data assimilation. The time series show the low- and

midlevel circulation in the 4DEnVar and E4DVar ana-

lyses being comparable to the prior mean for most cycles

of the experiment. 4DEnVar-ep tends to produce a
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FIG. 8. Deterministic (left) track and (right) intensity forecasts from (a),(b) control; (c),(d) E4DVar; (e),(f) 4DEnVar; (g),(h) 4DEnVar-ep;

and (i),(j) E3DVar analyses using same background between 1800 UTC 12 Sep and 0000 UTC 15 Sep. Forecasts are colored according to

initialization time and NHC best-track data are plotted in black.
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stronger low-level vortex between 13 and 14 September,

which likely causes the faster intensification of Karl in

these cycles compared to 4DEnVar. Likewise, E3DVar

produces the weakest 950- and 500-mb circulation from

14 September onward, which is consistent with analyses

from the cycling data assimilation experiments (see

Figs. 3a,b). Another result that is consistent with the

cycling experiments is the persistently higher values of

CRH in the E4DVar analyses compared to analyses

produced by 4DEnVar and E3DVar (Fig. 9e). These

experiments confirm that the higher values of saturation

found in the E4DVar analyses, compared to the other

experiments, come mostly from the use of a tangent

linear model and its adjoint to model temporal co-

variances. Another factor leading to differences in these

results is the microphysics schemes used by the non-

linear and tangent linear models: 4DEnVar uses the

nonlinear WRF Model with single-moment 6-class mi-

crophysics to approximate covariances, while E4DVar

uses a simplified large-scale condensation microphysics

scheme in the tangent linear and adjoint models.

4DEnVar-ep also produces conditions that are more

favorable for genesis than 4DEnVar, including a de-

crease in vortex tilt and increase in mean z and CRH

near the storm center at some cycles. Nevertheless, the

column of air in the vicinity of the 4DEnVar-ep vortex

remains consistently less saturated than the E4DVar

case, which is one reason why Karl’s intensification rate

in forecasts contains a slow bias that is similar to the

4DEnVar experiment at most cycles.

The time series of analysis quantities in Fig. 9 show

differing magnitudes for analysis increments generated

by each method during the 10 cycles examined in this

section. To compare the evolution of these increments

with time, Fig. 10 shows the mean squared difference

between the control simulations and forecasts generated

from each analysis; values are plotted for the 850-mb

z (left column) and CRH (right column) from 0 to 72h.

The increments are separated according to wavelength

(L) using high- and low-pass filters, then binned to re-

flect increments at the system scale (L . 150km), in-

termediate scale (50 , L , 150km), and convective

scale (L , 50km). The mean squared increments are

averaged spatially over a 2000 3 2000km2 region near

the storm location, and then averaged over the 10

forecasts in this sample (solid lines in Fig. 10). Likewise,

dashed lines in Fig. 10 show the standard deviation of

the mean squared increments.

On average, E4DVar produces the smallest z analysis

increments for all three sets of filtered data. At the

system scale, the average squared z differences between

E4DVar and control simulations is less than half the

values found in the other data assimilation experiments

at the analysis time. The E4DVar increments grow at a

faster rate, and approach the same magnitude as in-

crements from the other experiments by 36h (Fig. 10a).

A similar result occurs for the intermediate- and

convective-scale z field (Figs. 10b,c), except the rate at

which the increments reach saturation is increased

for the smaller scales. The growth of CRH increments

with time is consistent with the z increments for

the intermediate and convective scales because of the

relationship between moist processes and the in-

tensification of the storm. The system-scale CRH in-

crements, however, have negative or zero growth during

the first 6 h of the 4DEnVar-ep and E3DVar forecasts,

suggesting that portions of the moisture and tem-

perature increments made by these data assimilation

FIG. 9. As in Fig. 3, but for experiments using the same background.
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methods do not persist through the forecast period. Both

of these experiments also exhibit higher variance in the

mean squared CRH increments at the initial time,

suggesting a possible overfitting of the observations.

E3DVar produces larger analysis increments because

the assimilated observations are binned over a longer

time window, thus leading to more substantial in-

novations. Likewise, 4DEnVar-ep produces larger

analysis increments than the standard cost function form

of 4DEnVar because the static component of the

background error covariance is able to grow over the

assimilation window via the hybrid ensemble perturba-

tions. The increase in background error variance in

4DEnVar-ep leads to larger analysis increments from

this method. The E4DVar and 4DEnVar experiments

yield system-scale analysis increments to CRH that

have a similar magnitude, and exhibit a log-linear

increase with time. Nevertheless, the E4DVar incre-

ments (for all wavelengths) approach a larger mean and

variance by 24h in the forecast period because of the faster

intensification rate of the storm in these simulations.

6. Conclusions

This study uses three ensemble-variational hybrid

data assimilation methods to generate analyses and

forecasts for Hurricane Karl, an Atlantic storm targeted

during the PREDICT and GRIP field campaigns. Three

variational schemes are coupled with an EnKF data

assimilation system, which generates posterior ensem-

ble perturbations that are added to the hybrid varia-

tional analysis during each data assimilation cycle.

The methods include hybrid E3DVar and E4DVar,

as well as a hybrid 4DEnVar scheme that combines

FIG. 10. Mean squared (left) 950-mb vorticity and (right) 950–500-mbCRH increments averaged every 3 h from 0 to 72 h in the forecast

period for (solid black) E4DVar, (solid green) 4DEnVar, and (solid blue) 4DEnVar-ep with standard deviations (dashed lines). In-

crements are separated by wavelength according to (a),(b) L . 150 km; (c),(d) 50 km , L , 150 km; and (e),(f) L , 50 km.
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3DVar-FGATwith temporal covariances estimated from

an ensemble of model trajectories. Hybrid E4DVar and

4DEnVar apply two different strategies for assimilating

observations over a time window: E4DVar uses linear-

ized models to propagate implicitly in time a climate-

based covariance and a localized ensemble covariance

from the beginning of the assimilation window, while

4DEnVar uses a static climate-based covariance and

localized covariances from a previously run ensemble

forecast through the assimilation window. E4DVar has

the advantage of propagating a full-rank hybrid back-

ground error covariance in time, while 4DEnVar bene-

fits from using the full nonlinear model to estimate

temporal covariances and is more computationally effi-

cient to run on large parallel computing platforms. To the

best of our knowledge, this study presents the first

comparison of these two ensemble 4D data assimilation

techniques for a tropical cyclone application.

The data assimilation systems are cycled over a

weeklong period to assimilate routinely collected ob-

servations and dropsonde measurements from the

PREDICT field campaign. The cycling period spans

4 days leading up to Karl’s genesis, as well as its initial

intensification, and deterministic forecasts from each

hybrid analysis are run over the entire life cycle of

the storm. The meso-a-scale vortex in the E3DVar,

E4DVar and 4DEnVar analyses contains qualitatively

similar kinematic structure throughout the cycling pe-

riod, including comparable low- and midlevel circula-

tion strength and tilt. The two 4D data assimilation

systems, however, produce values of column saturation

that are more favorable for genesis. Elevated relative

humidity values found near the developing storm in

E4DVar and 4DEnVar analyses coincide with a faster

strengthening of the mid- and low-level mesoscale vor-

tex in the analyses. The circulation region near the

pregenesis disturbance approaches saturation faster in

the E4DVar experiment than in the 4DEnVar experi-

ment, which coincides with earlier genesis times in

forecasts. This factor leads to more accurate predictions

for Karl’s formation before making its first landfall over

the Yucatan Peninsula.

To remove the effects of errors that accumulate

during successive data assimilation cycles, the three

methods are compared using the same background en-

semble in the variational analyses. These experiments

are performed over a period that spans the pregenesis

phase of Karl’s development and initial intensification,

revealing systematic differences in the mesoscale struc-

ture of the storm. Analyses produced from these ex-

periments show a stronger circulation in the low-level

(950mb) vortex in the E3DVar and 4DEnVar cases,

compared to E4DVar. Nevertheless, E4DVar analyses

contain the highest values of column relative humidity

in a deep layer near the disturbance center, which con-

tributes to faster rates of intensification in forecasts.

E4DVar also produces systematically smaller analysis

increments than E3DVar and 4DEnVar, which grow

faster in time during the first 0–12h of the forecast pe-

riod. This result suggests E4DVar targets different dy-

namical instabilities during 4D data assimilation than

4DEnVar, thus reflecting differences in how covariance

is modeled by the two methods.

The current study highlights several differences be-

tween hybrid E4DVar and 4DEnVar for a weather ap-

plication where mesoscale processes play an important

role in the system’s development. Additional data as-

similation experiments and a more idealized model

setup are necessary to fully explore some of the findings

in this study. In particular, the modeling of covariances

related to moist processes appears to be a major dif-

ference between E4DVar and 4DEnVar. We hypothe-

size that E4DVar may provide better estimates of

temperature and moisture covariances because of its

superior localization strategy. E4DVar may also benefit

from using a simple linearized microphysics scheme,

which improves the conditioning of the minimiza-

tion problem. This study motivates further testing of

E4DVar and 4DEnVar using a diverse set of case

studies to gain a more comprehensive understanding of

the advantages and deficiencies of these methods for

mesoscale data assimilation.
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