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Abstract  Local extreme rain usually resulted in disasters such as flash floods and landslides. Upon today, it is still one of the 
most difficult tasks for operational weather forecast centers to predict those events accurately. In this paper, we simulate an ex-
treme precipitation event with ensemble Kalman filter (EnKF) assimilation of Doppler radial-velocity observations, and ana-
lyze the uncertainties of the assimilation. The results demonstrate that, without assimilation radar data, neither a single initiali-
zation of deterministic forecast nor an ensemble forecast with adding perturbations or multiple physical parameterizations can 
predict the location of strong precipitation. However, forecast was significantly improved with assimilation of radar data, espe-
cially the location of the precipitation. The direct cause of the improvement is the buildup of a deep mesoscale convection sys-
tem with EnKF assimilation of radar data. Under a large scale background favorable for mesoscale convection, efficient per-
turbations of upstream mid-low level meridional wind and moisture are key factors for the assimilation and forecast. Uncer-
tainty still exists for the forecast of this case due to its limited predictability. Both the difference of large scale initial fields and 
the difference of analysis obtained from EnKF assimilation due to small amplitude of initial perturbations could have critical 
influences to the event's prediction. Forecast could be improved through more cycles of EnKF assimilation. Sensitivity tests 
also support that more accurate forecasts are expected through improving numerical models and observations. 

Keywords  EnKF, Doppler radar data, Local extreme rain, Predictability 

 

Citation:  Qiu X X, Zhang F Q. 2016. Prediction and predictability of a catastrophic local extreme precipitation event through cloud-resolving ensemble analy-
sis and forecasting with Doppler radar observations. Sci China Earth Sci, 59: 518–532, doi: 10.1007/s11430-015-5224-1  

 

 
 
1.  Introduction 

Local extreme rain usually resulted in disasters such as flash 
floods, landslides and urban waterlogging, causing great 
loss of human lives and properties. Despite of the strong 
demand for accurate forecast and early warning for these 
events from our community, it is still one of the most diffi-
cult tasks to make accurate forecast of these extreme events 

for operational forecast centers.  
Many previous studies showed local extreme rain is 

closely related to mesoscale or small scale weather system 
(Schumacher and Johnson, 2005, 2006; Zhang et al., 2014). 
Among all available observations, Doppler radar scanning is 
one of the most important ways for measurement of meso- 
and small-scale weather systems, thus effective assimilation 
of these Doppler radar observations has become a major 
research focus. After Snyder et al. (2003) first demonstrated 
the potential applications of ensemble Kalman filter (EnKF) 
assimilation of Doppler radar data, great progress has been 
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made with this approach on regional model data assimila-
tion. Dowell et al. (2004) started to use EnKF to assimilate 
real-time radar data, and successfully retrieved the wind and 
temperature fields. EnKF assimilation of radar data has also 
been used to improve the initial fields of the several numer-
ical models including but not limited to the ARPS model 
(Tong and Xue, 2005; Xue et al., 2006; Lan et al., 2010a, 
2010b), a three-dimension cloud model (Xu et al., 2006) 
and the WRF model (Aksoy et al., 2009, 2010; Min et al., 
2011). Experiments from these models proved positive im-
pacts of EnKF assimilation of radar data on numerical fore-
casts. EnKF is also successfully applied on assimilation of 
airborne radar observations (Zhang et al., 2009a; Weng and 
Zhang, 2012) that showed hurricane intensity forecast was 
significantly improved. For 2–4 days forecasts, the intensity 
of the storm can be improved by 25%–28% averaged over 
100 cases they studied (Zhang and Weng, 2015). All the 
above results suggested EnKF assimilation of radar obser-
vations can improve the initial fields for numerical models 
and ultimately improve the model performance. 

Besides the initial fields, performance of numerical mod-
els on forecasting local extreme rain also depends on intrin-
sic predictability of individual weather system. Zhang et al. 
(2006a) analyzed the predictability of an extreme rain event 
in the central US, their results showed the small errors of 
small scale initial fields will grow rapidly and cascade up-
scale, and finally impact forecast. Simulation of Mei-yu 
front precipitation has similar aspects. The growth rate of 
initial analysis error varies with its spatial scale (Bei and 
Zhang, 2007). Liu et al. (2009) divided the growth of initial 
error to amplitude growing, scale growing and amplitude 
re-growing. Initial errors from different variables also im-
pact differently on the heavy rain forecast. Zhu et al. (2009) 
found that heavy rainfall during pre-flood season of south-
ern China is more sensitive to the errors of initial tempera-
ture fields. When initial fields generated by EnKF analysis 
was used in numerical models, the difference of assimila-
tion will influence its predictability. Previous studies about 
the predictability mainly focus on extended-range precipita-
tion where data assimilation of radar observations was rare-
ly included. Very few studies have been carried out on 
small scale local extreme rain cases, and each of these cases 
has their own development mechanisms and background. In 
this paper, a local extreme rain case was studied. WRF 
model with EnKF assimilation of Doppler radar radial ve-
locity was conducted to simulate its mesoscale evolution, 
and analyze the predictability of this extreme case. We hope 
this paper will provide reference for future improvement of 
forecast on this kind of extreme cases.  

2.  Case description 

This extreme rain event occurred on June 30, 2013 (from 
00Z to 06Z, UTC) in the south of Anhui province, China. 

Figure 1 showed 6-h accumulated rainfall. “×” marks    
the location of Doppler radar (Huangshan station, 118.15°E, 
30.13°N, elevation 1841 m). Heavy rainfall is mainly lo-
cated to the east and south of the radar. The maximum rain-
fall observed at automatic weather station (AWS) is   
185.3 mm, heavy rainfall over 50 mm concentrated within 
an area of 0.5°×0.5°. This extreme rain event impacted only 
a very small region, however, because it occurred in the 
southern mountain area of Anhui, mountain flash flood and 
landslides are triggered and 12 casualties are recorded. Ac-
cording to the radar reflectivity map (figure not shown), at 
19Z June 29, weak precipitation echo can be noticed at 100 
km to the west of the radar and moved eastward. This weak 
precipitation echo approached to the radar location and ar-
rived around 00Z June 30. After that, the echo intensified 
and persisted around to the east and south of the radar sta-
tion which resulted in this extreme event.  

This case occurred in the northwest of western North Pa-
cific subtropical high. Synoptic configurations are showed 
in Figure 2. Southwest flow in the northwest of the subtro- 
pical high bring warm and moist air which builds up an un-
stable stratification, when combined with an eastward mov-
ing low level jet, creates a favorable condition for convec-
tion. More specifically, at 500 hPa, this region is to the right 
of the ridge where northwest winds dominated, strong ver-
tical wind shears provided a favorable condition for this 
extreme event. At 00Z June 30 (Figure 2(a)), a low level jet 
with wind speed over 14 m/s at 850 hPa is upstream of the 
extreme rain, and the extreme rain occurs in the exit region 
of the low level jet. Wind convergence is likely the trigger 
of this extreme rain. The core of the low level jet moved 
eastward along the edge of subtropical high. Upon 06Z 
(Figure 2(b)), the low level jet moved to the east of the ex-
treme rain. This region by this time is now at the entrance of 
the jet, which is no longer a favorable condition, heavy rain 
gradually dissipated.  
 

 

Figure 1  6-hour (00Z-06Z) observed rainfall on June 30, “×” represents 
the location of radar (Huangshan station).
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Figure 2  500 hPa geopotential heights and 850hPa wind (wind speed is shaded, unit m/s) at 00Z (a) and 06Z (b) on June 30. The square with thick line 
represents the extreme rain region. 

 

Figure 3  WRF model nested domains (terrain is shaded). The square 
with thick line represents the extreme rain region. 

3.  Assimilation system and experimental design  

3.1  Assimilation method and forecast model 

In this paper, we use the WRF-based EnKF system deve- 
loped at the Pennsylvania State University (PSU-EnKF) 
(Zhang et al., 2006b; Meng and Zhang, 2007, 2008a, 2008b; 
Zhang et al., 2009a) to assimilate Doppler radar data. The 
forecast model is WRFV3.6 (Skamarock et al., 2008). Three 
nested domains are used with horizontal resolutions are 9, 3 
and 1 km and grid points are 129×129, 262×262 and 
262×262 respectively (Figure 3). There are 35 vertical le- 
vels, and the top level is set to 50 hPa. We use 36 ensemble 
members for this study. We first use the WRFDA “cv3” 

option from background error covariance (Barker et al, 
2004) to generate the initial perturbations at 12Z June 29 for 
domain 1, and then use the WRF model to downscale the 
initial perturbations to domain 2 and domain 3. We assimi-
late observations at each model level hourly with assimila-
tion window from 18Z June 29 to 00Z June 30. To avoid far 
small dispersion of ensemble forecast, we use the inflation 
through relaxation method for background error covariance 
introduced in Zhang et al. (2004), and set the weight as 0.5. 
Multiple physical parameterization schemes have been used 
to represent the uncertainties of the model in previous stud-
ies (Meng and Zhang, 2007; Lan et al., 2010b); we follow 
previous approaches and use random combination of multi-
ple physical parameterization schemes in this study. After 
assimilation of observations at 00Z June 30, we use the 
EnKF ensemble mean analysis and analysis of individual 
ensemble members for 6-hour deterministic forecast (DF) 
and ensemble forecast (EF). For all the experiments, we use 
the same parameterization schemes for deterministic fore-
cast. The WSM6 scheme for microphysics (Hong et al., 
2004), the YSU scheme for boundary layer (Noh et al., 
2003) and the explicit scheme for cumulus parameteriza-
tions are used.  

3.2  Initial fields, boundary conditions and observations 

The initial and boundary condition data are obtained from 
the NCEP 1°×1° reanalysis data, including surface and 26 
vertical pressure levels (http://rda.ucar.edu/datasets/ 
ds083.2). We use the same method to produce perturbations 
for lateral boundaries and initial fields.  
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The observations assimilated with EnKF include regular 
surface observations and Doppler radar radial velocity data. 
The quality control and data thinning method from Zhang et 
al. (2009b) on radar data was applied. For each angle, dis-
crete data of 5 km resolution in the radial direction and 5 
degree resolution in the tangential direction was obtained. 
Observation error of radial velocity was set as 3 m/s for 
assimilation. The Successive Covariance Localization 
(SCL) technique of Zhang et al. (2009a) is also adopted for 
assimilation radar observations. As different localization 
radius of influence (ROI) is usually used for acquiring in-
formation of different scale weather systems from radar 
observations. A ROI of 405, 135 and 45 km was used to 
assimilate radar observations of 1/9, 2/9 and 6/9, respec-
tively. Ensemble square root filter (EnSRF, Whitaker and 
Hamill, 2002; Tippett et al., 2003) was used in the PSU- 
EnKF system, and observations assimilated with a random 
sequence were used in this paper.  

3.3  Experiments design 

The purpose of this study is to analyze the impact of EnKF 
assimilation of radar observations on the model forecast of 
this extreme event and assess its predictability. The follow-
ing six numerical experiments were conducted (Table 1). 
Figure 4 showed the flow chart of all these experiments. 
The results of experiments with assimilation of different 
elevation angles showed the deterministic forecast initia- 

lized from the analysis with assimilation of only the lowest 
two elevation angles (0.5 and 1.5) is the best among all the 
experiments, therefore this experiment was set as the con-
trol experiment (CNTL) for further comparison and discus-
sion. We will focus on analyzing the improvement of fore-
cast on this extreme rain due to assimilation of radar obser-
vations and evaluating its predictability. For comparison 
convenience, NoDA experiment is initialized with 12Z June 
29 NCEP FNL reanalysis data and WRF-DA generated ini-
tial perturbations for deterministic forecast and ensemble 
forecast respectively. The model is integrated to 06Z June 
30 without assimilation of any observations. Initialization 
with different perturbations and analysis at 12Z June 29, 
IP0.5 and CycDA experiments are used to analyze the im-
pacts on numerical model from initial conditions. We also 
conducted CNTL0.5 and CNTL0.1 experiments for as-
sessing the intrinsic predictability of this case. CNTL0.5 
and CNTL0.1 are experiments that the differences between 
ensemble members and ensemble mean were reduced to 1/2 
and 1/10, but the same ensemble mean field with CNTL 
experiment was used.  

4.  Results  

4.1  Impact of radar observations assimilation with 
EnKF 

First of all, we examine the analysis fields and deterministic  

Table 1  Summary of the experiments 

Experiments Description Purpose 

NoDA No data assimilation  
CNTL Assimilation the lowest two elevation angles Impact of EnKF assimilation of radar observations 
IP0.5 Same with CNTL, reduce the initial perturbation by 50% Influence of initial perturbation 

CycDA Initial perturbation and analysis from previous 24h EnKF EnKF cycling 
CNTL0.5 Reduce spread to 1/2 Intrinsic predictability 
CNTL0.1 Reduce spread to 1/10 Intrinsic predictability 

 

 

Figure 4  Flow chart of all the experiments. 
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forecast of the CNTL experiment. In general, EnKF analysis 
fields shall represent the best estimate of the state of the 
current atmosphere. It has the smallest analysis error com-
pared with all of the ensemble members. Deterministic 
forecast made from the initialized fields obtained with the 
EnKF analysis represents the maximum probability of the 
atmosphere evolution. Figure 5 shows comparison of com-
posite reflectivity between the observations and analysis of 
CNTL and NoDA experiments at 00Z June 30, as well as 
verification of 2 hours forecasts. At 00Z June 30 (Figure 
5(a), (b)), despite some small differences of reflectivity in 
detail, a northwest-southeast echo band can be found over 
the radar with EnKF assimilation of 6 hours radar observa-
tions, which is consistent with observations that a stronger 
echo to the north and a weaker echo to the south. At 02Z 
June 30 (Figure 5(d), (e)), deterministic forecast predicted 
the intensification trend of the echo to the south accurately. 
Though it also predicted the dissipated echo to the north 
which did not match the observations, compared with 
NoDA experiment (Figure 5(c), (f)), forecast improvement 
is obvious with EnKF assimilation of radar data. 

Figure 6 shows the 700 hPa wind analysis in different 
experiments. For CNTL, there is northwest-southeast me- 

ridional wind convergence zone which is collocated with an 
echo on the composite reflectivity map. This convergence 
zone remains in the area which is favorable for rainfall ac-
cumulation. Also, the positive vorticity advection near the 
exit of the low level jet probably is another favorable condi-
tion. As for the NoDA experiment, there is clear meridional 
wind convergence at the south and west of the radar station. 
The convergence at the south and west correspond to the 
current strong echo (Figure 6(c)) and future strong echo 
(Figure 6(f)), respectively. The results suggested that EnKF 
assimilation of radar radial velocity observation is benefi-
cial to improving the location information of the weather 
systems in the analysis fields.  

For the 6-hour rainfall forecast (Figure 7), without as-
similation of radar observations (Figure 7(a)), the forecasted 
rainfall location deviates to the south with 0.5 degree lati-
tude distance. It adjusts to the north (Figure 7(d)) with as-
similation of radar data, only 0.1 degree latitude south of the 
observed location. The predicted maximum rainfall from 
deterministic forecast is 179.3 mm, close to the observations 
(185.3 mm) (Figure 1). Ensemble forecast has similar im-
provement. For the NoDA experiment, (Figure 7(b), (d)), 
predicted rainfall from the ensemble mean is less than that 
in observations, the heaviest rainfall deviated to the south of   

 

 

Figure 5  Composite reflectivity at 00Z ((a)–(c)) and 02Z ((d)–(f)) on June 30. (a) and (d) are observations. (b) and (c) are CNTL and NoDA. (e) and (f) are 
2-hour deterministic forecast of CNTL and NoDA. 
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Figure 6  700 hPa meridional wind (shaded) and total wind fields (wind barbs, 4 m/s for each barb) at 00Z on June 30, 2013 for (a) CNTL (b) NoDA (c) 
CycDA and (d) IP0.5. 

 

Figure 7  6-hour (from 00Z to 06Z on June 30, 2013) accumulated rainfall from deterministic forecast ((a), (d)) and ensemble mean ((b), (e)). The probabil-
ity forecast for rainfall over 50 mm is showed in ((c), (f)). The top panel is for NoDA experiment, the bottom panel is for CNTL experiment.  
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the observations, with magnitude of less than 20 mm. Prob- 
ability forecast show less than 20% of members forecasted 
southern rainfall over 50 mm. Compared with NoDA, pre- 
dicted rainfall from CNTL (Figure 5(e), (f)) is more close to 
observations, with maximum rainfall of 60 mm, and nearly 
50% members forecasted heavy rainfall over 50 mm around 
the observed rainfall location. Therefore, ensemble forecast 
approach by adding turbulence in the large scale analysis 
fields failed to improve the forecast for this specific extreme 
case. However, with EnKF assimilation of radar radial ve-
locity observations, “ingesting” the high resolution infor-

mation from radar scanning, model forecast can be effi-
ciently improved. Figure 8 ((d)–(f)) shows rainfall forecast 
from ensemble members (6, 18, 20) whose forecasts are 
more close to observations. Compared with the NoDA ex-
periment (Figure 8(a)–(c)), rainfall forecasts of all these 
three members in CNTL are improved. Rainfall forecasts 
from all the ensemble members (figure not shown) suggest 
that, even with EnKF assimilation of radar observations, 
only few members can forecast the magnitude and location 
of the heavy rainfall correctly, uncertainties still exist for 
the prediction of this kind of extreme events. 

 
 

 

Figure 8  Comparison of 6-hour (00Z-06Z on June 30, 2013) forecasted rainfall from member 20, member 18 and member 6 in different experiments 
(NoDA, CycDA and IP0.5).  
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4.2  Analysis of prediction results through ensemble 
forecast  

Ensemble forecast not only can reflect the uncertainties of 
the forecast, the differences among the ensemble members 
can provide information for analyzing the factors critical for 
a successful prediction. With ensemble forecast results of 
the CNTL experiment, we followed previous studies (Sippel 
and Zhang, 2008, 2010; Sippel et al., 2011) to calculate the 
correlations between 6-hour domain-averaged rainfall and 
several meteorological parameters (from 36 ensemble 
members). The correlations with coefficients greater than 
0.3 and 0.4 are statistical significant with 95% and 99% 
confidence interval respectively. 

We firstly calculated the correlation between the 6-hour 
accumulated rainfall and the EnKF analysis fields at 00Z 
June 30 because rainfall is the direct result of previous state 
of the atmosphere. According to the analysis of correlation 
between rainfall and wind (figure not shown), there is posi-
tive correlation between rainfall and the mid-to-low level 
meridional/zonal wind to the west/south, and it is opposite 
for the high levels, which indicates the stronger the mid-low 
level/high level convergence/divergence and low-level jet, 
the larger probability of heavy rainfall after assimilation at 
00Z 30.  

To further verify the results of the correlation analysis, 
we categorize all the forecasts into “GOOD”, “WEAK” and 
“POOR” groups in terms of intensity and location predic-
tion from all the ensemble members. “GOOD” include 
those forecasts that both forecasted intensity and location 
are close to observations. “WEAK” include the forecasts 
with good forecasted location but less rainfall. “POOR” 
include those forecasts with both intensity and location 
forecasts are not close to observations. Figure 9 shows the 
mean rainfall forecasted by all these three groups. Little 
difference can be found between “GOOD” and “WEAK” 
for rainfall location. The differences of the composite wind 
fields at 700 hPa are similar among these three groups (Fig- 

ure 10(d)–(f)), all generally showing a cyclonic circulation. 
The wind field differences between “GOOD” and “POOR” 
at 300 hPa (Figure 10(a)) exhibit a strong divergence with 
southerly winds over 12 m/s. It shows a weak divergence 
between “GOOD” and “WEAK” (Figure 10(b)) while large 
scale difference can be noticed between “WEAK” and 
“POOR” (Figure 10(c)). The above results suggest there is 
small difference of low level convergence between 
“GOOD” and “WEAK”, but “GOOD” has stronger diver-
gence while “POOR” are weak for both low level conver-
gence and high level divergence.  

Vertical profile of composite reflectivity (Figure 11) 
shows the convection is still in the development phase at 
00Z June 30. There is little difference for thermodynamic 
structure between these three groups. They all have a con-
vectively unstable zone at mid-low levels. The area of high 
energy with pseudo equivalent potential temperature over 
352 K is convectively unstable below 900 hPa and turns to 
stable near 600 hPa. Due to development of convection, the 
high convectively unsytable areas almost connect to each 
other between the higher levels and lower levels. But for 
vertical velocity and reflectivity, there are significant dif-
ferences between these three groups. The vertical penetra-
tion of convection for “GOOD” is above 300 hPa, it is rela-
tively lower for “WEAK”, only reach 400 hPa, and it is 
even weaker for “POOR”, which only reaches near 500 hPa. 
Vertical penetration of convection represents the intensity 
of convection. At 00Z June 30, the differences of convec-
tion intensity in the initial analysis field probably are direct 
causes of later rainfall forecast differences. Under convec-
tively unstable condition, the ensemble members 
(“GOOD”) who have a deep vertical penetration of convec-
tion with convergence at lower levels and divergence at 
higher levels can produce better forecast of rainfall location 
and intensity.  

Figure 12 shows the domain averaged vertical velocity 
and reflectivity for the three groups. The maximum vertical   

 

 

Figure 9  Composite 6-hour (00Z-06Z on June 30, 2013) accumulated rainfall for all these three groups. 
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Figure 10  Difference of composite wind fields (shaded is wind speed) at 300 hPa (top) and 700 hPa (bottom) at 00Z June 30, 2013. 

 

Figure 11  Vertical profile of composite reflectivity (shaded), theta-se (contour) and meridional wind (vector) along 118.2°E at 00Z June 30 in CNTL ex-
periment. (a) GOOD-POOR (b) GOOD-WEAK (c) WEAK-POOR. 

velocity is near 400 hPa for all the three groups. However, 
the “GOOD” has the largest vertical velocity (25 cm/s), 
followed by “WEAK” group (15 cm/s). The “POOR” has 
the weakest vertical motion (5 cm/s). As for the domain 
averaged reflectivity, it is larger for “GOOD” than 
“WEAK” and “POOR” at all levels. The echo altitude for 
"GOOD" (15 dBz) is 8.6 km, much higher than “WEAK” 

(7.6 km) and “POOR” (6.1 km) 
As we know, mesoscale weather systems develop under 

favorable environmental conditions which are provided by 
large scale synoptic systems. A question can be raised that 
which factors have been changed after the assimilation of 
radar observations that finally lead to improved results. 
Based on correlation analysis of all the variables at 12Z 



 Qiu X X, et al.   Sci China Earth Sci   March (2016) Vol.59 No.3 527 

June 29 in domain 1 (D1), we found the correlation coeffi-
cients of mid-low level meridional wind, specific humidity 
and pseudo equivalent potential temperature can pass the 
95% confident test. The correlations coefficients with me-

ridional winds are showed in Figure 13(a). The area with 
correlation coefficients larger than 0.35 is in the Jiangxi 
Province which is upstream of the extreme rain region. The 
area with strong correlation to the 850 hPa specific humidi-  

 

 

Figure 12  Vertical profile of domain averaged (a) vertical velocity and (b) reflectivity at 00Z June 30 in CNTL experiment. 

 

Figure 13  Correlations between 6-hour rainfall and (a) meridional wind (b) specific humidity (c) 850 hPa theta-se at 12Z June 29 in CNTL experiment. 
The differences between 850 hPa wind fields from three groups (GOOD, WEAK, POOR) are also showed as (d) GOOD-POOR (e) GOOD-WEAK and (f) 
WEAK-POOR.  
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ty is in the northeast of Jiangxi Province (Figure 13(b)) 
where is also upstream of the extreme rain region. The cor-
relation between precipitation and the 850hPa temperature 
or zonal wind is small, and cannot pass 95% confidential 
test (figure not shown). Because pseudo equivalent potential 
temperature itself is dependent on temperature and specific 
humidity, its correlation coefficients pattern is similar to 
that of specific humidity (Figure 13(c)). The above results 
suggest the magnitude of meridional wind, specific humidi-
ty are key factors impacting the rainfall location and inten-
sity. The difference of 850 hPa wind fields between the 
three groups (Figure 13(d)–(f)) showed the most significant 
differences are in an area centered at the heavy rainfall lo-
cation, with correlation coefficients over 0.35, where south-
erly wind was found in the wind difference  between 
“GOOD” and “POOR” group (Figure 13(d)), and south-
westerly in the wind difference between “WEAK” and 
“POOR” (Figure 13(f)). The results further proved the close 
relationship between rainfall and upstream meridional wind 
strength. Low-level jet is the major carrier for energy and 
moisture transportation. The stronger the meridional wind, 
the more beneficial for forming a convective unstable area 
in the northeast of the low-level jet. Under the same merid-
ional wind, the stronger the zonal wind, the more negative 
impact on forming that convective unstable area, like the 
samples in the “WEAK” group (Figure 13(e)). 

Because of the differences of the upstream wind fields, 
after 6-hour evolution (at 18Z June 29), significant differ-
ences of dynamic and thermodynamic conditions appeared 
among the members in the three groups. Figure 14 showed 
the vertical profile of wind fields along 30N for “GOOD” 
members (Figure 14(a)). Southwesterly flow locates below 
600 hPa, corresponding to a high energy area with pseudo 
equivalent potential temperature over 350 K, the area ex-
tending eastward to rainfall region, forming a convective 
unstable stratification, providing favorable conditions for 
the extreme rain. Compared with “GOOD” members, the 
samples in “POOR” have lower pseudo equivalent potential 
temperature below 600 hPa with a difference of 3–6 K 
(Figure 14(b)), and with a weaker convective instability and 
less unstable energy, and a weak southwest low-level jet, 
which is not favorable for deep convection. “WEAK” and 
“GOOD” are similar, but the pseudo equivalent potential 
temperature is 2 k lower than that in “GOOD” in the 
mid-low level (Figure 14(c)) and higher above 600 hPa, 
which indicates less favorable for convection development 
than “GOOD”. Based on all the results above, the upstream 
meridional wind at mid-low level is the key factor for 
downstream extreme rainfall. Large scale synoptic condi-
tion with strong meridional wind at mid-to-low level can 
provide a favorable environment for heavy rain. With EnKF 
assimilation of radar observations, a deep convective system  

 

 

Figure 14  Vertical profile of averaged horizontal wind (vector) and theta-se (contour in (a) and shading for (b), (c) and (d)) along 30N (Line AB in Figure 
11(d)) between GOOD and other groups at 18Z June 29 in CNTL experiment.  
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can be built up by "ingesting" high resolution information 
which is necessary for accurately forecast the extreme rain 
events like this special case.   

However, even with very favorable convective unstable 
conditions, extreme rain cannot be predicted without assim-
ilation of radar observations (Figure 8(a)–(c)), therefore, the 
initial perturbations that can represents the uncertainties of 
upstream mid-low level meridional wind is the key factors 
for EnKF assimilation of observations and followed rainfall 
forecast. 

4.3  Sensitivity experiments  

4.3.1  Different amplitude of initial perturbations experi-
ments 

As we can learn from above analysis, the rainfall forecast is 
closely related to initial perturbations. To examine the im-
pact of the initial perturbation on rain forecast, we reduce 
the initial perturbations of the CNTL ensemble by 50% 
(IP0.5) and carry out the same EnKF analysis and forecast. 
Figure 15(a) shows result of deterministic forecast. The 
heaviest rainfall is located at far south of the domain, simi-
lar to the forecasted rainfall location from NoDA (Figure 
7(a)). A new center of rainfall can be noticed to the south-
east of radar the position of which with weaker intensity is  

close to that in the CNTL experiment (Figure 5(d)). Ensem-
ble forecasts (Figure 15(b), (c)) show 30%–40% members 
forecasted over 50mm rainfall in the south of Anhui Prov-
ince. Though it is better than the NoDA experiment, it is as 
good as the CNTL experiment for rain location forecast. 
Analysis of 700 hPa wind fields at 00Z June 30 (Figure 
6(d)) demonstrates better analyzed of meridional wind con-
vergence compared with the NoDA experiment, with the 
convergence area adjusted northward, but still much differ-
ent from analysis of CNTL. IP0.5 experiment suggests 
smaller initial perturbations possibly result in too small of 
the ensemble spread and background error covariance, the 
“ingesting” observational information decrease in the anal-
ysis, it will decrease the observation impacts on the rainfall 
forecast, which results the rainfall forecasts of IP0.5 are 
between NoDA and CNTL. For the mesoscale (convective 
scale) ensemble forecast, the results of NoDA and IP0.5 
experiments support that (1) it is not enough by just adding 
perturbations for large scale initialization, and (2) the am-
plitude of initial perturbation is crucial even with the EnKF 
assimilation of radar observations.  

4.3.2  EnKF cycle assimilation experiments  

Previous studies showed the background error covariance is 
“flow-dependent", the analysis fields of which is more close  

 

 

Figure 15  6-hour (from 00Z to 06Z on June 30, 2013) accumulated rainfall from deterministic forecast ((a), (d)) and ensemble mean ((b), (e)). The proba-
bility forecast for rainfall over 50mm is showed in ((c), (f)). The top panel is for IP0.5 experiment, the bottom panel is for CycDA experiment.  
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to real state of the atmosphere (Meng and Zhang, 2008a). In 
order to test if the forecast is improved with EnKF generat-
ing initial analysis fields and perturbations, we design the 
cycling EnKF assimilation experiment (CycDA). The initial 
analysis fields and perturbations at 12Z June 29 are all from 
EnKF results for D1 24 hours before. This analysis assimi-
lated surface and radiosonde observations at 00Z, 06Z and 
12Z. The radiosonde observations at 06Z are intensive ob-
servations conducted by China Meteorological Administra-
tion (CMA). The center of the heavy rain from deterministic 
forecast of CycDA (Figure 15(d)) is to the south and north-
east of the radar. The location forecast is closer to observa-
tion than the CNTL experiment, and the magnitude forecast 
of rain is comparable with the CNTL experiment. At 00Z 
June 30, the meridional wind convergence zone at 700 hPa 
(Figure 6(c)) for CycDA and CNTL is similar in the ensem-
ble forecasts. The forecasted ensemble mean rainfall (Figure 
15(e)) and the 50mm probability forecast are both superior 
to the CNTL experiment. In general, the results of CycDA 
experiment are similar with the CNTL experiment, except 
for better rainfall location forecast. This experiment on the 
one hand suggested the sensitivity of the forecast to the ini-
tial analysis fields and perturbations, on the other hand, 
proved the capability of EnKF cycling assimilation for im-
proving the forecast. The uncertainties of forecasts from  

above experiments raise the question of predictability about 
this kind of events. Whether or not the forecast for this kind 
of event can be improved, needs to be answered with the 
analysis of intrinsic predictability for the case. 

4.4  Predictability analysis 

Intrinsic predictability is used to evaluate the limit of fore-
cast by the inevitable tiny error of initial fields (Lorenz, 
1969). Under the limit, no matter how small the errors of 
initial fields are, large uncertainties exist for future forecast. 
(e.g. Zhang et al. 2006a; Zhang and Sippel, 2009b; 
Melhauser and Zhang, 2012). To approach the subject, two 
more experiments were designed based on the CNTL ex-
periment. Specifically, the difference between the ensemble 
members and ensemble mean was reduced to 1/2 
(CNTL0.5) and 1/10 (CNTL0.1) of CNTL experiment at 
00Z June 30. Then the 6-hour forecasts of these two exper-
iments were compared with CNTL. Figure 16 shows the 
ensemble mean of forecasted rainfall and probability of 
rainfall over 50mm. We can find the ensemble mean of 
rainfall increase from 60mm to 80mm and probability of 
rainfall over 50mm increases from 50% to 80% for 
CNTL0.5, indicating the ensemble forecast is close to the 
deterministic forecast (Figure 7(d)). For CNTL0.1 experi- 

 

 

Figure 16  Comparison of rainfall of ensemble mean and probability of rainfall over 50mm at 00Z June 30, 2013 for CNTL0.5 and CNTL0.1. 
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ment, ensemble forecast almost identical to the determinis-
tic forecast. The probability forecast increases to over 95%. 
Therefore, if the analysis of ensemble forecast is assumed to 
be the real state of the atmosphere, the forecasts will con-
verge to deterministic forecast if the initial errors decrease, 
which indicates forecast is possibly not constrained by in-
trinsic predictability for 3–6 h forecasts for this case. Fur-
ther improvement of forecasts can be expected by improv-
ing our numerical models, reducing the model uncertainties 
or providing more reliable observations by updating our 
observation networks. However, it is not clear what the 
forecast would be if we reduce the initial error to less than 
10% of estimated error, and more future studies are needed 
for this topic.  

5.  Discussions and summary  

In this paper, the WRF model was used to simulate a local 
extreme rain event occurred in the south of Anhui Province 
on June 30, 2013. The impact of EnKF assimilation of 
Doppler radar radial velocity data on WRF model forecast 
was analyzed. Multiple sensitivity tests have been conduct-
ed to evaluate the predictability of this extreme case with or 
without the assimilation of radar observations. We have 
following conclusions： 

(1) Without EnKF assimilation of radar observations, 
neither deterministic forecast with single set of initial fields 
nor ensemble forecast with initial perturbations or multiple 
physics can predict the location of heavy rain accurately. 
With assimilation, the model continuously “ingests” high 
resolution observations of this weather system during the 
forecast, building up and adjusting the mesoscale convec-
tive system responsible for the extreme rain. As a result, 
both the deterministic forecast and the ensemble forecast 
can be improved, especially for the location forecast of the 
extreme rain.  

(2) Whether or not a deep mesoscale convective system 
can be built up after data assimilation is the key to produce 
an accurate forecast later. The amplitude of the new 
mesoscale convective system is related to the large scale 
initial fields. Under an unstable large scale environment 
with high available convective energy, the upstream merid-
ional wind convergence and moisture conditions at mid-low 
levels are key factors that impact the forecasts. The stronger 
upstream meridional wind, the more abundant moisture, 
which creates favorable convective unstable conditions for 
mesoscale convective system, and an extreme rain is more 
likely to happen. For the upstream area, initial perturbations 
of meridional wind and moisture in the mid-low levels are 
critical components for EnKF assimilation and the follow-
ing forecast. 

(3) Sensitivity tests showed predictability of this case is 
sensitive to realistic initial condition uncertainties. Simula-
tion results are sensitive to EnKF generating analysis fields 

which might be quite different due to different large scale 
initial conditions and the amplitudes of the initial perturba-
tions. If we reduce initial perturbation of CNTL experiment 
by 50%, the results will be between CNTL and NoDA. 
Forecasts initialized by EnKF generating analysis are more 
close to observations. Cycling EnKF could improve the 
short-range forecasts for this kind of extreme rain. 

(4) This event probably is not constrained by the intrinsic 
predictability at the 3–6 h lead time. With the current 
state-of-art EnKF assimilation method, further improvement 
of forecasts can be expected by improving our numerical 
models, reducing the model uncertainties or providing more 
reliable observations by updating our observation networks.  

In order to analyze the predictability of this case, the ex-
periment with the best result is set as the control experi-
ment. This experiment only assimilates the lowest elevation 
angles radar radial velocity observations. Theoretically, the 
initial condition should be more close to reality when as-
similate all the available angles of radar observations. While 
in this case, the deterministic forecast with assimilation all 
the angles of radar observations are not as good as the con-
trol experiment. Statistically, forecast error covariance in 
deterministic forecast is the most optimal, but it probably 
does not reflect the reality. The forecast of ensemble mem-
ber 6, 18 and 20 (figure not shown) are very close to the 
control experiment (Figure 8(d)–(f)), which is also support 
the uncertainty of the forecast. For such kind of case, en-
semble forecast is superior to single deterministic forecast. 
Regarding to the dynamic factors responsible for this ex-
treme rain, in addition to the low-level jet and convergence 
zone mentioned previously, complex terrain possibly also 
plays a role in this event. We will conduct some other sensi-
tivity experiments in the future studies. Because EnKF as-
similation requires continuous multiple time observations, 
which is not available for the sudden local extreme rain 
event, it can only apply to some specific cases. The case 
discussed in this paper is very special—it happened on the 
edge of subtropical high with complex terrain and the radar 
is located at an elevation of 1800 m (near 850 hPa). There-
fore, analysis of more cases are needed to verify the results 
from this paper. 
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