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ABSTRACT

This study utilizes ensemble Kalman filter (EnKF) observing system simulation experiments (OSSEs) to

analyze the potential impact of assimilating radial velocity observations of hurricanes from the High-altitude

Imaging Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a new Doppler radar mounted on the

NASA Global Hawk unmanned airborne system that flies at roughly 19-km altitude and has the benefit of

a 25–30-h flight duration, which is 2–3 times that of conventional aircraft. This research is intended as a proof-

of-concept study for future assimilation of real HIWRAPdata. Themost important result from this research is

that HIWRAP data can potentially improve hurricane analyses and prediction. For example, by the end of

a 12-h assimilation period, the analysis error is much lower than that in deterministic forecasts. As a result,

subsequent forecasts initialized with the EnKF analyses also improve. Furthermore, analyses and forecasts

clearly benefit more from a 12-h assimilation period than for shorter periods, which highlights a benefit of the

Global Hawk’s potentially long on-station times.

1. Introduction

It has become increasingly evident over recent years

that ensemble Kalman filter (EnKF) assimilation of

high-resolution observations from tropical cyclones can

improve tropical cyclone analyses and forecasts. To this

end, Doppler velocity data (Zhao and Jin 2008; Zhang

et al. 2009, hereafter Z09; Zhang et al. 2011, hereafter

Z11; Weng and Zhang 2012, hereafter WZ12; Aksoy

et al. 2012; Dong and Xue 2013) have been particularly

helpful. Though Doppler data from coastal Weather

Surveillance Radar-1988 Doppler (WSR-88D) radars

can certainly benefit analyses, perhaps more useful are

data obtained from reconnaissance aircraft because

that data can improve prediction several days before

landfall. Among published studies, the results of Z11

best demonstrate the systematic advantage of assimi-

lating airborne Doppler velocity data. After assimi-

lating radial velocity observations from the National

Oceanic andAtmospheric Administration (NOAA)WP-

3D tail Doppler radar over a total of 61 missions from

14 tropical cyclones, they found a significant reduction

in forecast error relative to operational guidance. Their

deterministic track forecasts initialized with EnKF anal-

yses were as good as or better than those from opera-

tional models, and error in their intensity forecasts was

20%–40% lower than that in the official NHC forecast.

Even when ensemble data assimilation is used to ini-

tialize tropical cyclone vortices, difficulties still remain.

A common problem has been that many tropical cy-

clones are too far out over the ocean to reach with

current manned aircraft, which severely limits the in situ

observations that can be taken. Alternatively, even

when storms are within range, the typical on-station

time for radar-bearing aircraft is less than 6 h. As a re-

sult, there are often large gaps in aircraft-based data

even for storms that are relatively close to the United

States. Thus, the typically short duration of aircraft-

based radar observations may not be sufficient to ana-

lyze some tropical cyclones.

One potential solution to these difficulties has come

with the use of high-altitude, long-duration, unmanned
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aircraft systems (UASs). In 2010, the National Aero-

nautics and Space Administration (NASA) Genesis and

Rapid Intensification Processes (GRIP) experiment

used a Global Hawk UAS equipped with a Doppler

radar to study Atlantic hurricanes (Braun et al. 2013).

The Global Hawk is an ideal platform for observing

tropical cyclones because of its long flight duration (up

to 30 h), high altitude (.18 km), and ability to carry

large payloads. If deployed from the eastern United

States, the 20 000-km flight range allows the Global

Hawk to be on station over storms for 12–16 h in the

central Atlantic and 16–22 h in the western Atlantic

(Braun et al. 2013).

For the purposes of this study, we are most interested

in radial velocity (Vr) data from the High-Altitude Im-

aging Wind and Rain Airborne Profiler (HIWRAP;

Heymsfield et al. 2008), the Doppler radar flown on the

Global Hawk during GRIP (Braun et al. 2013). Since

HIWRAP is a new instrument with a different scanning

geometry than radars previously used for tropical cy-

clone analyses, nothing is known about the potential

usefulness of its data for assimilation purposes. Because

the Global Hawk flies at altitudes much higher than

operational aircraft, HIWRAP scans downward into

tropical cyclones with incidence angles of 308 and 408
(i.e., elevation angles of 2608 and 2508). This means

that the radar observes a relatively large component

along the vertical axis. Unfortunately, vertical velocity

tends to be small in scale, noisy, and weakly correlated

with other state variables (Poterjoy and Zhang 2011),

which might degrade analyses using HIWRAP data. In

an extreme example of a 08 incidence angle (observing

only vertical velocity), Vr would not be useful for hur-

ricane initialization. Thus, a significant motivation of

this study is to investigate whether the portion of hori-

zontal wind that HIWRAP observes is sufficient to

produce an accurate analysis.

There are several reasons why we have taken the

simulated-observation approach to these experiments.

First and foremost, HIWRAP was flown for the first

time during GRIP, and radial velocity data were not

available for assimilation tests when the experiments

herein were conducted. Second, key benefits of observ-

ing system simulation experiments (OSSEs) include the

ability to accurately characterize the error of the assim-

ilation system and to easily assess the benefits of

assimilating multiple types of observations or using dif-

ferent observation network configurations. Therefore, this

study will necessarily make use of simulated HIWRAP

observations to provide a proof-of-concept study for fu-

ture OSSEs and real-data assimilation studies.

The remainder of this study is organized as follows.

Section 2 describes the storm to be studied and the

methodology for the OSSEs. Section 3 examines EnKF

analyses as well as deterministic and ensemble forecasts

from those analyses. Section 4 explores various sensi-

tivities, and section 5 follows with the discussion and

conclusions.

2. Background and methods

The OSSEs herein will focus on Hurricane Karl, the

only GRIP hurricane for which adequate HIWRAP

data were gathered. The pre-Karl depression formed

from awestward-moving low pressure area in the central

Caribbean, and the system attained tropical storm

strength north of Honduras early on 15 September 2010.

Karl intensified fairly quickly to near-hurricane inten-

sity, making landfall on the Yucat�an Peninsula shortly

after 1200 UTC 15 September. The system weakened

only slightly as it moved across the peninsula, and the

inner core remained largely intact as it emerged over the

Bay of Campeche early on 16 September (Braun et al.

2013). Thereafter, the storm rapidly intensified to a

hurricane by 0000 UTC 17 September and to a major

hurricane by 1200 UTC that same day. Karl moved

westward across the Bay of Campeche, and it made

landfall just before 1800 UTC north of Veracruz, Mexico

(Fig. 1).

The period of Karl we have chosen to investigate

corresponds with unprecedented sampling of the storm

during GRIP (Braun et al. 2013). A U.S. Air Force

WC-130 arrived around 1100 UTC 16 September, and

thereafter up to five aircraft simultaneously monitored

Karl through 0800 UTC 17 September. The Global

Hawk arrived around 1800 UTC 16 September and

stayed over the storm for roughly 14 h, during which

time it overpassed the eye 20 times. From the standpoint

of data assimilation, this is an ideal period to study

FIG. 1. Domain setup for WRF along with the observed (black)

and realization (gray) tracks of Karl from 0000 UTC 16 Sep to

0000 UTC 18 Sep 2010.
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because of the abundance of data frommultiple sources.

Our eventual goal is to use extensive OSSEs and real-

data assimilation to compare the benefits of assimilating

different data types, including Vr from both HIWRAP

and the WP-3D tail Doppler radar.

a. Initial no data assimilation and truth simulations

All simulations herein use the Weather Research and

Forecasting model, version 3 (WRF V3.1.1). The do-

main setup, which is shown in Fig. 1, uses two-way nests

to achieve 3-km grid spacing over the Bay of Campeche

and surrounding terrain. Domain 2 is kept to the mini-

mum possible size to reduce the computation burden

associated with the large number of runs required for

this study. All model domains have 35 vertical layers,

and themodel top is set at 10 hPa.Model physics choices

include the Kain–Fritsch cumulus scheme (Kain and

Fritsch 1990, 1993) on the 27- and 9-km grids, and the

Yonsei State University scheme (Noh et al. 2003) for

planetary boundary layer (PBL) processes. To include

at least some representation of model error, simulations

to be regarded as realizations of the ‘‘truth’’ use the

Goddard microphysics with graupel (Tao and Simpson

1993), whereas the forecast model simulations use the

WRF single-moment 6-class microphysics with graupel

(Hong et al. 2004). Radiative processes are calculated

using the Rapid Radiative Transfer Model longwave

(Mlawer et al. 1997) and Dudhia shortwave (Dudhia

1989) schemes.

Deterministic and ensemble experiments with no data

assimilation (NODA) were created with WRF in order

to establish benchmarks of forecast error for the OSSEs.

The deterministic forecast (hereafter NODA-DET; see

Table 1 for a full list of experiment nomenclature) was

created by integrating the Global Forecast System

(GFS) analysis from 0000 UTC 16 September forward

for 48 h. Lateral boundary conditions used for this sim-

ulation came from the 6-hourly GFS forecast files.

Meanwhile, a set of 31 initial and boundary condition

perturbations to the GFS analysis and forecast was used

to create an ensemble of forecast realizations. The ran-

dom large-scale differences from GFS were created by

implanting noise derived from National Centers for

Environmental Prediction (NCEP) background error

covariance statistics into the WRF variational data as-

similation system (e.g., Barker et al. 2004). This ap-

proach is commonly used to create ensembles in WRF,

both for data assimilation and ensemble sensitivity stud-

ies (e.g., Z09; Sippel and Zhang 2008). Model integra-

tion for all NODA forecasts commences at 0000 UTC

16 September, as Karl was exiting the Yucat�an Peninsula,

and lasts for 48h.

We assess assimilation from several different truth

simulations here to demonstrate the repeatability of the

results, particularly when the first-guess ensemble de-

livers poor error covariance. The initial and boundary

conditions for each truth simulation were chosen from

among the aforementioned 31 realizations, a selection

that was based mostly upon storm tracks in the initial

ensemble. The best scenario (hereafter TRUTH1) is

one in which the truth tracks near the center of the en-

velope (Fig. 2a) and yields an initial background error

TABLE 1. Descriptions of the various assimilation experiments along with a listing of subsequent deterministic and ensemble forecasts.

The parenthetical note for the forecasts in AOERR indicates the number of forecasts performed for each analysis time (i.e., with different

random error vectors).

Expt Description Deterministic Ensemble

NODA Forecast from GFS initial conditions at 0000 UTC

16 Sep 2010 with no subsequent assimilation

NODA-DET NODA1-ENS, NODA2-ENS,

and NODA3-ENS

CTRL1 Experiment with good first-guess error covariance

structure and assimilation from 12 to 24 h

CTRL1-DET CTRL1-ENS

CTRL2–3 Experiment with an alternate choices for the truth and

thus poor first-guess error covariance structure and

assimilation from 12 to 24 h

CTRL2-DET

and CTRL3-DET

CTRL2-ENS and CTRL3-ENS

VLEG Experiment with CTRL1 truth realization but

alternate choice for flight pattern with variable-length

legs and assimilation from 12 to 24 h

VLEG-DET VLEG-ENS

AOERR Experiments exactly as in CTRL1, but with different

random error applied to raw observations

AOERR-DET (10) AOERR-ENS (3)

FLTRW Experiment exactly as in CTRL1, but observations

where w/Vr . 0.25 are rejected

No forecast No forecast

MIX05 Experiment exactly as in CTRL1, but with a 5 0.5

instead of 0.8

No forecast No forecast

P3GEO Experiment with CTRL1 truth realization, but with the

P3 tail Doppler radar geometry instead of the

HIWRAP geometry

No forecast No forecast
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covariance field that produces generally accurate anal-

ysis increments. Undesirable scenarios (hereafter

TRUTH2 and TRUTH3) occur when the truth moves

along the edge of the ensemble envelope (Figs. 2b,c) so

that the initial background error covariance field can

yield highly inaccurate increments.

The method for selecting the truth simulations ne-

cessitates three slightly different NODA ensembles

(hereafter NODA1-ENS, NODA2-ENS, and NODA3-

ENS). Each ensemble comprises the remaining 30 reali-

zations not used to create its respective truth simulation.

For example, after the selection of the TRUTH1 initial

and boundary conditions, NODA1-ENSwas created with

the remaining 30 members. Though the NODA ensem-

bles differ by one member, the effect is barely notice-

able in Fig. 2, and the ensemble mean for each is almost

identical.

In addition to having different tracks, the three

truth cyclones also vary in structure and intensity. The

TRUTH1 storm evolves most similarly to Hurricane

Karl in the sense that it rapidly intensifies from roughly

10 to 60m s21 over the 48-h forecast period (Fig. 2g).

The storm is fairly asymmetric during the first 36 h

(Figs. 3a,c), but it becomes more symmetric as it ap-

proaches and exceeds the category-3 threshold (Figs. 2g

and 3e). Figure 3a shows that the cyclone has an organized

inner core (i.e., at least a partial ring of convection around

the center and an associated near-center wind maximum)

by 24h, and by 48h it has a symmetric eyewall and rain-

free eye (Fig. 3e). Meanwhile, the storm in TRUTH2 in-

tensifies at a slightly slower pace during the first 18h, but

it briefly exceeds the TRUTH1 intensity after a period

of accelerated intensification from 18 to 30 h (Fig. 2h).

This intensification abruptly halts at 30 h, presumably

due to interaction with land, though it does not make

landfall until after 36 h (Figs. 2e,h and 4c). Although

the TRUTH2 cyclone is much more asymmetric than

that in TRUTH1, it does manage to establish an inner

core with some convection wrapping around the center

(Figs. 4a,c). Finally, the TRUTH3 cyclone evolves some-

what differently than the first two. It intensifies at a

slower rate (Figs. 2f,i) and takes longer to establish an

FIG. 2. (left) TRUTH1, (middle) TRUTH2, and (right) TRUTH3 realizations along with their respective NODA ensemble and de-

terministic forecasts of (a)–(c) track, (d)–(f) minimum SLP, (g)–(i) maximum 10-m wind speed beginning at 0000 UTC 16 Sep. NODA-

DET data are shown every 3 h.
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organized inner core (Fig. 5a). It also has a broader

circulation than the first two truth realizations (Figs. 3–

5c), which could help explain its slower intensification

rate. The storm strengthens more quickly from 30 to

48 h, which coincides with the establishment of an inner

core (Fig. 5c), though it never exceeds category-1 inten-

sity. Although the system is strongly asymmetric through

36h, it rapidly organizes thereafter and becomes more

symmetric than the stronger TRUTH1 storm by the

time of its landfall (Figs. 3e and 5e).

The NODA deterministic forecast, which is shown in

Figs. 2 and 6, is associated with varying degrees of error

depending on the version of the truth being considered.

NODA-DET’s track error for TRUTH1 is small, though

FIG. 3. (left) TRUTH1 realization and (right) final CTRL1 analysis and CTRL1-DET forecast of SLP (con-

toured every 8 hPa up to 988 hPa and every 4 hPa thereafter), 10-m winds [see (f) inset for reference vector],

and reflectivity at 1-km altitude (shaded every 5 dBZ) at (a),(b) 24; (c),(d) 36; and (e),(f) 48 h from a base time of

0000 UTC 16 Sep.
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there is a consistent south-of-track bias (Fig. 2a). The

forecast intensity is generally less than that in TRUTH1

(Figs. 2d,g), and the intensity error magnitude occa-

sionally exceeds that of operational forecasts with sim-

ilar lead times (Cangialosi and Franklin 2011). This is

particularly true toward the end of the forecast, when

NODA-DET underestimates the maximum winds by

more than 10m s21. The structure of the NODA-DET

storm (Fig. 6) is similar to that in TRUTH1 (Fig. 3),

though the NODA-DET inner core does not have as

much convection wrapping around the center. Mean-

while, the track error for both TRUTH2 and TRUTH3

is quite large (Figs. 2b,c). Though the NODA-DET in-

tensity forecast for TRUTH2 is initially accurate (Figs.

2e,h), it becomes poor after about 30 h because of the

large track error and concomitant difference in landfall

time. Finally, the evolution of the TRUTH3 intensity

(Figs. 2c,f) and structure (Fig. 5) are also different from

the NODA-DET simulation. The NODA storm be-

comes organized much more quickly, and it exhibits

FIG. 4. As in Fig. 3, but for (left) TRUTH2 and (right) the CTRL2 analysis and CTRL2-DET forecast.
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a consistently positive intensity bias that is equal to or

larger than operational forecast error.

In addition to the aforementioned intentional error of

the NODA-ENS tracks, there is also a varying degree of

error associated with the ensemble intensity forecasts.

Though NODA-DET exhibits a fairly good represen-

tation of TRUTH1, the NODA1-ENS intensity forecast

for TRUTH1 is poor (Figs. 2d,g). This is particularly true

after 30h, when the truth storm traverses the edge of the

ensemble intensity envelope. The TRUTH2 intensity is

initially nearer the center of the NODA2-ENS envelope

(Figs. 2e,h), but the ensemble intensity forecast becomes

poorer with time. Just before 24 h, the TRUTH2 storm

intensifies rather quickly so that it is more intense than

most NODA2-ENS members, but after 30 h it becomes

weaker than most members because of its much earlier

landfall. Conversely, the ensemble intensity forecast for

TRUTH3 starts off poorly, but by 48h the TRUTH3

storm lies roughly in the middle of the NODA3-ENS

intensity envelope (Figs. 2f,i).

FIG. 5. As in Fig. 3, but for (left) TRUTH3 and (right) the CTRL3 analysis and CTRL3-DET forecast.
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b. Simulated observations

Simulated Vr observations for most experiments were

gathered from the truth realizations along a butterfly

pattern similar to that shown with the solid black lines in

Fig. 7. The Global Hawk ground-relative speed of

170m s21 (330 kt) was assumed, and center-crossing

transects were made sufficiently long (360km) to observe

most of the precipitating region in the simulated storms.

Figure 8a more clearly demonstrates this method by

superposing a 1-h flight segment upon reflectivity at

1 km from the 19-h model output time in TRUTH1.

Observations were taken in instantaneous conical scans

from 12 to 24 h,1 an on-station time that is slightly less

than that for Karl (i.e., 14 h), but is a much longer period

than is possible with operational aircraft. In addition, for

each assimilation cycle, observations for an entire hour

were gathered from a single time rather than over the

1-h period. This method bypasses the real-data assimi-

lation problems associated with storm movement as ob-

servations are collected.

The simulated radar geometry for most experiments is

similar to that found with HIWRAP, but some simpli-

fications have been made in gathering the observations.

We assumed a 19-km radar altitude and constant radar

elevation angle of 2508 (Fig. 8b), which is consistent

with the Global Hawk altitude and the HIWRAP Ku-

band geometry (G. Heymsfeld 2011, personal commu-

nication). Though not demonstrated in Fig. 8b, the

height of the simulated radar beam accounts for Earth’s

curvature and beam refraction using Eq. (3.12) of

FIG. 6. As in Fig. 3, but for NODA-DET.

FIG. 7. A comparison of the flight pattern used in VLEGwith those

used in the CTRL (black lines only) experiments.

1 This period for assimilation was chosen to overlap with the

actual Global Hawk flight over Karl in order to facilitate com-

parison with forthcoming real-data experiments; however, assimi-

lation here begins approximately 6 h earlier than in reality to allow

for longer postassimilation forecasts before landfall.
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FIG. 8. Schematics showing the method for gathering data and data distribution. (a) A sample 1-h flight track at

19 h superposed upon 1-km reflectivity. (b) An illustration of the 3D distribution of a single simulated scan. (c) The

track of the cyclone from 12 to 24 h superposed upon the location of all data points with data points color coded by

the hour they were assimilated. (d) The average vertical distribution of observations. (e) A zoomed in view of the

track in (a) showing individual radial velocity observations that are strongly (red), moderately (yellow), and

weakly (green) affected by vertical velocity, as well as those that are generally unaffected (black). Length scales are

provided for reference.
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Reinhart (1997). Beamwidth was not accounted for.

Instead, simulated radial velocities were calculated by

linearly interpolating u, y, andwwind components in the

truth simulations. As shown in Fig. 8b, Vr observations

on the conical surface are spaced approximately 3 km

radially and 2 km azimuthally. Observations were only

gathered for points below 16-km altitude where atten-

uated reflectivity exceeded 10 dBZ, and they were stored

along with the calculated range, elevation angle, azi-

muth, and radar location (i.e., the observation format

is exactly as in Z11 and WZ12). This setup allows for

roughly 1500–2000 observations per hour in conical

scans that are spaced approximately 28 km apart (e.g.,

Figs. 8c,e). Though this number is orders of magnitude

less than the number of raw observations available from

HIWRAP, it is consistent with the number of observa-

tions assimilated in recent studies that have assimilated

Vr (e.g., Z11 and WZ12). Finally, no consideration was

given to particle fall speed, and a normally distributed,

unbiased error with 3m s21 standard deviation was

added to the simulated observations.

c. EnKF setup

This study uses the same EnKF setup as in Z09 and

WZ12. The NODA ensembles provided the initial en-

semble covariance and boundary conditions, and all

experiments used a spinup time of 12 h before begin-

ning assimilation. Forecast covariance for subsequent

hourly analyses was obtained by integrating EnKF

perturbations from the previous analysis forward. To

control filter divergence resulting from sampling and

model error, the covariance relaxation of Zhang et al.

[2004, their Eq. (5)] was used to inflate the covariance

at updated grid points via a weighted average of the

prior and posterior perturbations. Here, except for

when otherwise noted, all experiments use a weight a

of 0.8, which means 80% of the prior perturbations

were used.

Covariance was localized with the Z09 successive co-

variance localization (SCL) procedure, which uses the

Gaspari and Cohn (1999) fifth-order correlation func-

tion with a varying radius of influence (ROI). In par-

ticular, the EnKF assimilated 1/9 of observations onto all

domains with a horizontal ROI of 1215 km. Meanwhile,

an additional 2/9 of observations were ingested into do-

mains 2 and 3 with a horizontal ROI of 405 km, and on

domain 3 the EnKF assimilated the remaining 6/9 of

observations with a 135-km horizontal ROI. Further-

more, all domains utilized a 35-point vertical ROI (i.e.,

distance in terms of model vertical layers). The ROIs

and percentage of observations assimilated into each

domain are the same as in WZ12 and Z11 (Z09 used

slightly different fractions but the same ROIs).

The EnKF observation operator is also the same as

that utilized in the aforementioned studies. Using the

previously calculated azimuth, elevation, and range

data, innovations were computed for each Vr observa-

tion with the same linear interpolation and corrections

for beam height that were used to create the observa-

tions. Note that the operator is thus perfect and not

a source of error here.

Finally, using the above information and an assump-

tion of 3m s21 observation error, the EnKF provided

hourly updates to the three wind components (u, y, and

w), temperature T, water vapor mixing ratio, cloud wa-

ter mixing ratio, rainwater mixing ratio, perturbation

geopotential, and perturbation column dry airmass. Our

past experience has shown that updating ice-related

variables does not improve the EnKF analysis, so they

are not updated here. For more detailed information on

the EnKF analysis procedure, please see Z09.

d. Description of experiments

In general, the experiments herein can be classified

as those relating to the three control runs (CTRL1–3)

and sensitivity experiments (see Table 1). In the CTRL

experiments, Vr observations from the three truths

were assimilated from 12 to 24 h (i.e., 13 cycles). A

number of sensitivity experiments that are derived

from TRUTH1 and discussed in section 4 assess the

sensitivity to observation error (AOERR), choice of

flight pattern leg length (VLEG), removal of observa-

tions with strong vertical velocity (FLTRW), covari-

ance mixing coefficient (MIX05), and radar geometry

(P3GEO). In addition, deterministic and ensemble fore-

casts corresponding to the CTRL, VLEG, and AOERR

analyses will be used to assess forecast improvement

gained from data assimilation.

3. CTRL analyses and forecasts

This section presents the results of assimilating all

hourly Vr observations from 12 to 24 h in the three truth

scenarios. In addition, ensemble and deterministic fore-

casts initialized from the EnKF analyses are also assessed

in a subjective sense.

a. Analysis comparison with NODA forecasts

An important point to recognize from Fig. 9, which

shows the 12–24-h evolution of intensity and track in the

NODA and CTRL experiments, is that the NODA-

DET forecast of the point intensity metrics during this

period is at times very good. This is particularly true

for TRUTH2 (Figs. 9e,h), where the difference between

the NODA-DET and actual intensity is much less than

typical best-track analysis error for a category 1 with
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aircraft reconnaissance [roughly 5m s21 for maximum

winds and 4 hPa for minimum sea level pressure (SLP);

Landsea and Franklin (2013)]. Meanwhile, compared to

TRUTH1, NODA-DET is on average too weak by

roughly 4 hPa in terms of minimum SLP (Fig. 9d) and

4m s21 in terms of maximum 10-m winds (Fig. 9g). This

again is approximately commensurate with operational

forecast error, though the NODA-DETwind error peaks

around 9ms21 at 21h. Finally, intensity forecast error for

TRUTH3 is initially very low, though by the end of the

assimilation period it is roughly double that of opera-

tional forecasts.

In general, Fig. 9 shows that the EnKF posterior mean

analyses are better than the NODA-DET forecasts in

terms of point intensity and location metrics. With

roughly 2–3ms21 and 1–2hPa average error inmaximum

wind andminimumSLP, respectively, CTRL1 (Figs. 9d,g)

and CTRL3 (Figs. 9f,i) better represent the point in-

tensity metrics than does NODA-DET. Meanwhile, the

CTRL1 analysis clearly corrects the south-of-track bias

from NODA-DET (Fig. 9a), resulting in a track that is

very close to TRUTH1. The correction for the CTRL2

and CTRL3 tracks (Figs. 9b,c) is even larger, with sig-

nificant improvements to both position and trajectory.

The only exception to the improvement in point metrics

is that the CTRL2 intensity analysis is slightly worse

than NODA-DET (Figs. 9e,h), but this inferior perfor-

mance is not particularly surprising considering the very

small NODA intensity errors for TRUTH2. Average

analysis errors for CTRL2 are about 3.5m s21 for max-

imum wind and 3.5 hPa for minimum SLP, which is only

slightly worse than in CTRL1 and CTRL3.

The EnKF posterior perturbations are shown in Fig. 9,

though the perturbation distributions of minimum SLP

and maximum wind are not necessarily expected to be

centered upon the truth or posterior mean for Eulerian

assimilation. If the location of the storm center were the

same in all members, then the mean of the minima or

FIG. 9. Truth evolution, NODA deterministic forecasts, and EnKF analyses of (a)–(c) track, (d)–(f) minimum SLP (hPa), and (g)–(i)

maximum 10-m wind (m s21) for the (left) TRUTH1, (middle) TRUTH2, and (right) TRUTH3 scenarios during the assimilation period.

The thick cyan line denotes the truth, circles represent NODA forecasts from Fig. 2 (large black, deterministic; small blue, ensemble), the

thick red line shows the EnKF posterior, and the thin black lines denote EnKF perturbations. The NODA-DET data are shown every 3 h.
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maxima intensitymetrics in eachmemberwould roughly

equal the posterior mean value and be distributed

around the truth (assuming the assimilation is performing

well). As it is, there is always some degree of position

spread (Figs. 9a–c) so that the wind and pressure fields

near the center have very large ensemble variance. Since

posterior perturbations add up to nearly zero, at any

given point in the inner core it is likely that a few

memberswill havewind speeds (surface pressure) greater

(lower) than the maximum (minimum) in the posterior

mean. At other near-center grid points, particularly for

the noisier wind fields, it is possible or even likely that

other members will have a higher intensity than the

maximum in the posterior mean. When this is considered

over a number grid points, it is inevitable that many

members have maximum winds greater than the poste-

rior mean, while somewhat fewer members should have

a lower minimum pressure than the mean. This pattern is

clearly seen in Fig. 9, and it is similar to that seen in Fig. 4

of Z09. This issue will be explored more in section 5.

While the point metrics of analysis performance are in

some sense useful because of their operational utility,

the root-mean of difference total energy (RM-DTE)

gives a more complete picture of analysis error. In this

commonly used metric (e.g., Mitchell et al. 2002; Zhang

et al. 2006; Meng and Zhang 2007; Sippel and Zhang

2008, 2010), DTE5 0.5(u0u0 1 y0y0 1 kT0T0), where k5
Cp/Tr, Cp 5 1004.9 J kg21K21, and Tr 5 270K. Here,

DTE is computed over the horizontal domain for each

vertical level by assessing the differences (primes) be-

tween the NODA-DET forecast or various analyses

and the truth, and the rootmean is then taken over each

vertical column. Differences in RM-DTE error are

associated with different errors in location, structure,

and intensity of the cyclone as well as errors in the

background.

With this inmind, Figs. 10 and 11 illustrate net benefits

of assimilation in terms of RM-DTE. In particular,

Fig. 10 plots the time evolution of area-average RM-

DTE within 180 km of the truth center (i.e., the same

radius as the flight pattern) in the EnKF analyses and

NODA-DET. To isolate RM-DTE associated with

structure or intensity error from that caused by position

error, the domain in NODA-DET was horizontally

translated for this calculation so that the center matched

the center in the truth experiments. Meanwhile, Fig. 11

shows the analysis improvement considering both struc-

tural and position error. In particular, Fig. 11 (left col-

umn) shows how well the analyses perform relative to

NODA-DET by plotting the difference in RM-DTE

between the analyses and the NODA forecast at 24 h,

the end of the assimilation period. Finally, Fig. 11 (right

column) shows the relative reduction of RM-DTE er-

ror between the EnKF analyses and the NODA-DET

forecasts [i.e., (RM-DTECTRL 2 RM-DTENODA-DET)

(RM-DTENODA-DTE)
21].

The results from Figs. 10 and 11 demonstrate that Vr

assimilation substantially reduces net RM-DTE error on

multiple scales. On average, Fig. 10 shows that errors in

storm structure or intensity in all analyses stay relatively

constant with time, roughly between 3.25 and 3.75m s21.

In contrast, RM-DTE error for NODA-DET typically

ranges from 3.75 to 4.5m s21. Thus, in terms of storm

structure within the radius of the butterfly flight pattern,

the analyses reduce error by roughly 20%. Meanwhile,

Fig. 11 gives a better sense of overall error reduction by

the end of the assimilation period. All three analyses

reduce RM-DTE error surrounding the cyclone centers,

and peak error reduction occurs between the 24-h truth

position (end of the solid line) and the NODA-DET

forecast position (black or white 3). This is the region

where forecast flow directly opposes truth flow. CTRL2

FIG. 10. Time evolution of area-average RM-DTE within 180 km of the truth center in (a) CTRL1–3 and the cor-

responding NODA-DET experiments and (b) CTRL1 and sensitivity experiments FLTRW and P3GEO.
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and CTRL3 have a greater area of very large error re-

duction, which can mostly be explained by the large

NODA-DET position errors for TRUTH2 and TRUTH3.

Peak error reduction is greatest in CTRL2 due to both

the position error and the relatively strong wind field in

TRUTH2. In addition, error reduction in CTRL2 and

CTRL3 encompasses nearly all of domain 3, which

suggests that EnKF assimilation of HIWRAP data is

capable of correcting problems with the background

analysis that extend well beyond the tropical cyclone.

Though there are some regions of large percent error

increase in CTRL1 (Fig. 11b), this result must be in-

terpreted carefully. Examination of Fig. 11a reveals

that the change in RM-DTE in areas far from the

TRUTH1 center is small (,2m s21), and the large

percent error increase is associated with relatively

small initial errors in NODA-DET (i.e., a small de-

nominator). Furthermore, in an average sense there is

very little change in RM-DTE farther than 250 km

from the TRUTH1 center in Fig. 11a, despite the

widespread positive values in percent error. While the

ideal condition would be for error in these regions

to decrease, we view this issue to be relatively minor

considering the small error changes involved. Fur-

thermore, assimilation of data external to the cyclone,

which is beyond the scope of this study, would likely

reduce such errors. It is also possible that a refined

method for covariance localization would improve re-

sults at larger radii, though the SCL method has con-

sistently proven successful in the past.

FIG. 11. (left)DifferenceRM-DTE and (right) relative error reduction between the deterministic NODA forecasts

and EnKF analyses after 12 h of assimilation (i.e., at 24 h). The thick black or white lines show the TRUTH tracks

during the 12-h assimilation period. A thin black line denotes the zero-difference line, and a black or white3 denotes

the 24-h forecast position from NODA-DET.
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b. Deterministic and ensemble forecasts initialized
from analyses

Here we compare NODA forecast error for the truth

realizations to that in deterministic and ensemble fore-

casts initialized from the EnKF analyses. The EnKF-

initialized forecasts began at 12, 18, and 24 h (i.e., after

1, 7, and 13 cycles). For reasons that will become ap-

parent in section 5, this subsection focuses on a qualita-

tive assessment of the error.

It is clear that assimilation has a benefit for the CTRL1

forecasts despite the relatively small corrections to the

intensity metrics (e.g., Figs. 9d,g) in the analysis. For

example, CTRL1 intensity forecasts for TRUTH1 from

all three start times perform better than NODA-DET

(Figs. 12–13d,g). In fact, two of the three CTRL1-DET

SLP forecasts are nearly perfect through 48 h, whereas

the NODA-DET error in this period is 15–20hPa. These

same CTRL1-DET forecasts also better represent the

maximum wind speed achieved by the TRUTH1 storm

(;60ms21), albeit with a 3–6-h error in timing. Though

the CTRL1 intensity forecast ensemble means are not as

good as the corresponding CTRL1 deterministic forecasts,

they have roughly 50% of the error of the NODA1-ENS

mean by 48h, and their 95% confidence intervals better

overlap the truth (Figs. 13d,g). In addition, the forecast

precipitation structure from CTRL1-DET initialized at

24h is more accurate than that from NODA-DET. For

example, CTRL1-DET has a symmetric ring of precip-

itation around the cyclone center at 48h (Fig. 3f), which

is similar to that seen in TRUTH1 at the same time

(Fig. 3e). Meanwhile, NODA-DET at 48h forecasts

a substantial gap in the northwestern eyewall (Fig. 6b),

which is consistent with its somewhat weaker intensity.

The CTRL1-DET tracks also improve upon the small

south-of-track bias seen in NODA-DET (Fig. 12a), and

they follow very close toTRUTH1.ThoughCTRL1-ENS

forecasts do not improve upon the NODA1-ENS tracks

FIG. 12. A comparison of (a)–(c) track, (d)–(f) minimum SLP, and (g)–(i) maximum 10-mwinds from the truth (cyan) and deterministic

forecasts based on the 0000 UTC 16 Sep GFS (circles) and subsequent EnKF analyses (varying shades of red for analysis times are

indicated in the legend) for the (left) TRUTH1, (middle) TRUTH2, and (right) TRUTH3 scenarios. The NODA-DET data are shown

every 3 h.

2696 MONTHLY WEATHER REV IEW VOLUME 141



(Fig. 13a), this result must be taken in context since 48-h

track error from the NODA1-ENS mean is only about

45km, which is much lower than current average opera-

tional error for the same lead time.On the other hand, the

mean intensity error from the NODA1-ENS is roughly

3 times larger than average operational error. Thus, it is

much easier for the CTRL1 ensembles to outperform

NODA1-ENS in terms of intensity than it is in terms of

track. These results demonstrate that even when forecast

error is not particularly large, there is room for im-

provement using the EnKF.

Forecast improvements for TRUTH2 are larger than

those for TRUTH1. As was previously mentioned, the

NODA forecast intensity error for TRUTH2 is large

after 30 h, mainly because of its large track error and

early landfall. CTRL2 assimilation clearly improves the

subsequent deterministic and ensemble track forecasts,

especially those initialized at 18 and 24 h (Figs. 12–13c).

As a result, the intensity forecasts for TRUTH2 also

improvemarkedly, and the latter two CTRL2-initialized

forecasts capture well the truth evolution (Figs. 12–13e,h).

The forecasts initialized at 24 h are particularly suc-

cessful, and their cyclonesmove almost exactly along the

TRUTH2 track. Finally, Figs. 4d,f reveals that the pre-

cipitation distribution from the CTRL2-DET forecast

initialized at 24 h is also similar to the truth before and

after landfall.

The results from CTRL2 demonstrate a case when

a long assimilation period is especially desirable. The

effects of the poor first guess are obvious in the first

CTRL2-initialized forecasts, which are worse than the

subsequent forecasts. In CTRL2-DET, the analyzed

vortex is broad and disorganized because the analysis is

not completely eliminating the incorrectly placed vortex

FIG. 13. A comparison of (a)–(c) track, (d)–(f) minimum SLP, and (g)–(i) maximum 10-m winds from the truth (cyan) with the NODA

ensembles (gray) and ensemble forecasts initialized with subsequent EnKF analyses (varying shades of red for analysis times are indicated

in legend) for the (left) TRUTH1, (middle) TRUTH2, and (right) TRUTH3 scenarios. Solid lines denote the ensemble mean. Circles in

(a)–(c) indicate the 95% confidence intervals on the ensemble mean position at 42 h (spread in the zonal and meridional directions is very

similar; 48-h position is not shown because of difficulties tracking storms in a number of members over high terrain after landfall), while

dotted lines in (d)–(i) indicate 95% confidence intervals on the ensemble mean intensity.
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from the prior forecast (not shown). The correction to

the steering flow is also insufficient, and the result is

a storm that tracks similarly to that in NODA-DET but

intensifies more slowly. The EnKF required multiple cy-

cles to pull the CTRL2 analysis more closely to TRUTH2

and thus lead to a more accurate forecast. Figures 12 and

13 clearly show the large improvement in the forecast

initialized at 18h (7 cycles) and some continued im-

provement in the forecast initialized at 24h (13 cycles).

Forecasts initialized from CTRL3 also tend to im-

prove with time, though the tendency is not as strong as

with the CTRL2 forecasts. Deterministic and ensemble

track forecasts initialized from all three start times are

better than those of NODA (Figs. 12–13c), and the

forecasts from 24 h are arguably the best. It is notable

that the final track forecasts from CTRL3 are poorer

than those from CTRL2, and sensitivity tests (not

shown) reveal that this is as a result of a failure of the

EnKF to adequately remove analysis error of the back-

ground (i.e., steering) flow. Recall, however, that the

CTRL3 analysis is still more accurate than NODA-DET

over most of domain 3 (Fig. 9e), and assimilation of data

from outside the storm could further correct the back-

ground. Despite the difficulties with track, the CTRL3

intensity forecasts are all very good. All three CTRL3-

DET forecasts follow very close to the TRUTH3 mini-

mum SLP and maximum winds and accurately depict

a weaker storm than in NODA-DET. The CTRL3-

ENS intensity forecasts are also generally better than

NODA3-ENS, and the best forecast is that initialized

at 24 h. The means of both maximum winds and mini-

mum SLP from the final CTRL3-ENS forecasts are

nearly identical to the TRUTH3 intensity metrics, and

they also have quite narrow confidence intervals (Figs.

13f,i). Thus, not only is this forecast highly accurate,

but it also comes with high certainty. Finally, the pre-

cipitation distribution from the CTRL3-DET forecast

in Fig. 5 also improves upon that from NODA-DET in

Fig. 6, particularly by 48 h.

4. Sensitivity experiments

This section examines the sensitivity of the results to

random observation error, variations in flight track and

radar geometry, removing observations with a large w

component, and the covariance mixing coefficient. These

experiments give important insights into the CTRL1

behavior and into how changes to observation and anal-

ysis strategies can impact results.

a. Alternate observation error experiments

To understand the intrinsic variability of the above

forecasts, the alternate observation error (AOERR)

experiments in Fig. 14 examine the forecast sensitivity to

random observation error. A total of 10 different anal-

yses were created at 12, 18, and 24 h by using the CTRL1

prior forecasts and assimilating TRUTH1 observations

with different2 random error vectors. The error vector

was only perturbed for the final analysis for each set of

forecasts because of computational time and storage

constraints (i.e., for each forecast time this method only

requires 10 additional analyses without cycling). The

observations were assimilated in exactly the same order

in all experiments so that each experiment used the

same set of covariance ROIs for any given observation.

From the resultant analyses and perturbations, sets of 10

deterministic and three ensemble3 forecasts were per-

formed for each time.

Perhaps the most important result from the deter-

ministic AOERR experiments in Figs. 14a–f is that large

forecast spread can develop as a result of only random

error in observations. This spread is particularly evi-

dent for forecasts from the 12- and 18-h analysis times,

wherein the SLP envelope at 48 h is at least 20 hPa (Figs.

14a,b), and the maximum 10-m wind envelope is about

15m s21(Figs. 14d,e). The spread decreases for the set

of forecasts initialized at 24 h (Figs. 14c,f), and it dem-

onstrates why quantitative assessment of error in the

previous section is inappropriate. For example, upon

assessment of only the CTRL1-DET intensity forecasts

initialized at 12 and 18 h, one might get the impression

that 6 h of cycling has done no good (i.e., the CTRL1-

DET forecast from 18 h is worse than that from 12 h).

However, it turns out that the CTRL1-DET forecast

from 12 h is anomalously good compared to the other

AOERR forecasts, whereas the CTRL1-DET forecast

initialized at 18h is anomalously bad. The large sensitivity

to very small analysis differences is very similar to the

results of Zhang and Sippel (2009) and Sippel and Zhang

(2010), who noted that initial condition error much

smaller than that seen in current operational analyses can

quickly grow in the presence of moist convection.

Another important result is that on average the

AOERR intensity forecasts perform better with a lon-

ger assimilation period. This improvement is especially

evident in the AOERR minimum SLP forecasts, where

the envelope of forecasts from 12h barely encompasses

TRUTH1, but those initialized at 24 h are clustered very

close to the truth. The evolution of the mean in the

AOERR ensemble forecasts (Figs. 14g–l) also suggests

2 The error vectors carry the same mean and standard deviation,

but individual elements within the vectors are different.
3Only 3 of the 10 sets were used to initialize the ensembles be-

cause of storage and computational limitations.
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a benefit from assimilation cycling. The ensemble-

mean intensity in all three AOERR ensembles initial-

ized at 12 h is less (and more erroneous) than that in

CTRL1-ENS. This result again indicates that the rela-

tively good CTRL1 forecasts from that time were some-

what by chance. However, by 24h, the ensemble-mean

minimum SLP from two of the three AOERR experi-

ments follows TRUTH1more closely than does themean

of CTRL1-ENS.

b. Variable-length leg experiments

An experiment (VLEG) was conducted to investigate

whether focusing observations on the inner core at the

expense of the outer circulation would have a practical

benefit on analyses and forecasts. To do this, we ran an

alternate flight pattern through TRUTH1 wherein each

complete butterfly pattern with 360-km legs was followed

by two complete patterns with 180-km legs (Fig. 7).

FIG. 14. A comparison of sensitivity (a)–(f) deterministic and (g)–(l) ensemble intensity forecasts with NODA1 (circles), TRUTH1

(cyan), and CTRL1 (red). Thin black and light green lines respectively indicate (a)–(f) deterministic and (g)–(l) ensemble-mean forecasts

obtained from the AOERR and VLEG analyses. Dotted red lines indicate the 95% confidence interval on the ensemble mean.
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Taking more frequent observations in and just

outside of the inner core does not provide an obvious

net benefit in the VLEG analysis. While time-average

RM-DTE in VLEG is lower than in CTRL1 within

about 150 km of the track (Fig. 15a), it is higher out-

side that radius, presumably due to less frequent

sampling of the outer regions of the storm. The evo-

lution of maximum 10-m winds is somewhat less noisy

in the VLEG analysis and perturbations (Fig. 15b)

than in CTRL1 (Fig. 9g), but the VLEG analysis of

winds also exhibits somewhat of a weak bias compared

to CTRL1.

Likewise, ensemble and deterministic forecasts ini-

tialized from the VLEG analysis are not meaningfully

different from the CTRL1 forecasts. This is most easily

seen by examining the VLEG forecasts in the context

of the AOERR forecasts (Fig. 14). Considering the

decrease in analysis RM-DTE near the storm center

(Fig. 15a), this lack of improvement in the VLEG

forecasts might be a result of the degraded analysis of

the outer circulation. Though this topic certainly war-

rants further investigation for operational flight plan-

ning, such an analysis is well beyond the scope of this

study.

c. Experiment with observations of strong w removed

As was mentioned in the introduction, one potential

concern for assimilating Vr with the HIWRAP geome-

try is the relatively large constant elevation angle, which

might result in vertical velocity strongly influencing the

analysis. This situation could lead to significant analysis

errors due to the short length scale for w variations and

concomitant noisy or weak covariance between w and

other model state variables (e.g., Poterjoy and Zhang

2011). To show the extent to which w impacts observed

Vr, Fig. 8e shows data points from the 19-h output file of

TRUTH1 wherein the ratio between w and Vr exceeds

50%, 25%, and 10%. For each of these thresholds, the

percentage of Vr observations impacted is 36%, 19%,

and 11%, respectively.

We explored this potential problem by running an

assimilation experiment wherein observations were

rejected when the above ratio exceeded 25%. Curiously,

the results in Figs. 10 and 15c,d suggest that observations

with a strong w component are actually beneficial to

the CTRL1 analysis. Area-average RM-DTE near the

center in FLTRW is consistently higher than in CTRL1

(Fig. 10), and time-average FLTRWRM-DTE along the

track is also higher (Fig. 15c). These results suggest that

HIWRAP’s geometry may not be a hindrance for ac-

curate EnKF analyses, though it is possible that using

a different model or physics configuration would give

a slightly different result.

d. Experiment with lower covariance mixing
coefficient

Here we examine the sensitivity of the EnKF pos-

terior perturbations of minimum SLP and maximum

winds to the choice of the mixing coefficient for co-

variance inflation. As was noted earlier, the point in-

tensity metrics are not distributed around the EnKF

posterior mean in Fig. 9. This result is related to anal-

ysis position spread, which is affected by the choice of

mixing coefficient. We found that changing a to 0.5 in

experiment MIX05, so that analysis covariance uses

only 50% of the prior perturbations instead of 80%,

significantly modifies the point intensity distributions

relative to the truth and EnKFmean. For example, Fig.

15f shows that the EnKF posterior mean in MIX05 is

much closer to the center of the perturbation distri-

bution. While MIX05 does provide a slightly better fit

to maximum 10-m winds than does CTRL1 (Figs. 9g

and 15f), it is not uniformly better in terms of time-

average RM-DTE (Fig. 15e). Finally, limited testing

suggests that MIX05 also does not produce better

forecasts (not shown).

e. Experiment with P3-like radar geometry

A final sensitivity experiment, P3GEO, uses alternate

radar geometry similar to that of the NOAA WP-3D

tail Doppler radar. For this experiment, we again em-

ploy instantaneous radar scans to gather observations

along conical surfaces that look forward from the air-

craft position at 3-km altitude. The angle between the

aircraft bearing and the conical surfaces is 708, which is

consistent with the WP-3D radar geometry (see Fig. 2

of WZ12). This experiment is conducted only for the

TRUTH1 simulation, and for the sake of simplicity the

center latitude and longitude of all radar scans is ex-

actly the same as in TRUTH1. That is, we assume the

same ground-relative plane speed and distance be-

tween scans so that this experiment considers only the

impact of radar geometry and altitude. The number of

observations gathered per hour is roughly the same as

in CTRL1. All other aspects of P3GEO are the same as

in CTRL1.

The results of P3GEO, which are shown in Figs. 10

and 15, suggest that the differences in radar geometry

between the NOAA WP-3D tail Doppler radar and

HIWRAP may not play a critical role in determining

analysis quality. Errors in maximum 10-m winds (Fig.

15h) are commensurate with those in CTRL1 (Fig. 9g),

and average RM-DTE around the storm center is simi-

lar in both experiments (Fig. 10b). The distribution of

difference RM-DTE (Fig. 15g) shows that CTRL1 gen-

erally performs better to the north of the center, and
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P3GEO is better to the south, though neither experiment

has an obvious advantage. Finally, limited testing (not

shown) reveals similar forecast errors in P3GEO to those

in CTRL1.

5. Discussion and conclusions

This study has explored the use of an EnKF to as-

similate radial velocity observations of a hurricane from

FIG. 15. (left) Time-average difference RM-DTE and (right) evolution of maximum-wind in EnKF analyses for

(a),(b) VLEG; (c),(d) FLTRW; (e),(f) MIX05; and (g),(h) P3GEO. RM-DTE differences are calculated between the

given analysis and CTRL1 and averaged over the entire analysis period. A thin black line denotes the zero-difference

line in (a),(c),(e),(g). The thick white lines in (a),(e),(g) and black line in (c) show the TRUTH1 track during the 12-h

assimilation period. For (b),(d),(f),(h), a dashed line represents TRUTH1, a solid line indicates the EnKF posterior,

and thin gray lines show the EnKF perturbations.
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a new instrument and platform. Using simulated data

experiments, the analyses ingest hypothetical observa-

tions from the HIWRAP Doppler radar, which flies on

board NASA’s Global Hawk unmanned aerial system.

The experiments focus on Hurricane Karl, which rap-

idly intensified to a major hurricane over the Bay of

Campeche in 2010.

The study is designed to assess how the EnKF per-

forms for several different situations in which the first-

guess error covariance is either relatively accurate or

poor. To accomplish this goal, three different reali-

zations of the truth were selected to generate and as-

similate observations into essentially the same initial

ensemble (i.e., the covariance was the same but the truth

changed). Forecasts without assimilation (NODA) rep-

resent the intensity and track of the realizations with

varying degrees of accuracy, but at least one aspect of

forecast error (i.e., either track or intensity) significantly

exceeds operational error in each case.

The most important result from this research is that

HIWRAP data can be used for hurricane analyses and

prediction. Assimilation carries out over a 12-h period,

and by the end of that period the analysis error is much

lower than in the deterministic NODA forecasts. The

improvement comes from corrections to storm location,

structure, and maximum intensity that vary between

the realizations. As a result of the improved analyses,

a majority of deterministic and ensemble mean forecast

error is eliminated, which is in general agreement with

recent research that has shown the substantial benefit of

assimilating radial velocity data for hurricane analysis

and forecasting, both in OSSEs (Aksoy et al. 2012) and

real-data (e.g., Z09; Z11; WZ12) experiments.

While the analyses highlight the potential of using an

EnKF with HIWRAP data, the differences between the

results are also insightful. For example, forecasts ini-

tialized from a situation where the first-guess error co-

variance is relatively accurate (i.e., CTRL1) demonstrate

an immediately clear benefit of assimilation. Alternative

situations with relatively poor initial error covariance

(i.e., CTRL2–3) need more analysis cycles to improve

ensemble and deterministic EnKF-initialized forecasts.

Thus, when the first guess is bad, the benefit of the

Global Hawk’s potentially long on-station times be-

comes more evident.

Even when the first guess is good, the results here

suggest that a longer assimilation period is still benefi-

cial. This fact is made clear from forecasts initialized

with the AOERR analyses, wherein the error vector of

observations assimilated into CTRL1 was perturbed for

the final cycle prior to the forecasts. This method ef-

fectively made sets of 10 slightly different EnKF analy-

ses for each forecast initialization time. The sets of

AOERR intensity forecasts initialized after 13 cycles

more closely follow the truth than the forecasts initial-

ized at the earlier times, which demonstrates the benefit

of a longer assimilation period.

The AOERR simulations also give insight into the

potential for large sensitivity to small initial condition

differences. Though the only difference between the

deterministic AOERR simulations is in the observation

error vector applied before assimilation, storms differ by

up to 20 hPa in SLP and 15m s21 in maximum 10-mwind

in as few as 30 h. This result is similar to Zhang and

Sippel (2009), who showed that tiny initial analysis er-

rors in tropical cyclones can rapidly amplify in the

presence of moist convection.

Other sensitivity experiments give more practical

insight into assimilation of HIWRAP data. For exam-

ple, focusing the flight pattern more on the inner core

and less on the outer circulation of the TRUTH1 storm

is not beneficial to analyses or forecasts. Though as-

similating observations from such a pattern can some-

what reduce analysis error within and just outside the

inner-core region, it comes at the expense of analysis

quality at larger radii. Subsequent forecasts also do not

improve, likely as a result of the degraded outer cir-

culation. Similarly, a simple experiment showed that

analyses accuracy may not differ when using a scanning

geometry similar to that of the NOAA WP-3D tail

Doppler radar. Though further analysis over multiple

cases is needed to quantify the general differences as

a result of flight track and scanning geometry, results

such as this can be very useful for future operational or

research flight planning.

While these results are promising, the extent to

which assimilating HIWRAPVr can improve real-time

forecasts remains unclear. First, it is important to note

that these results are subject to a very small sample

of realizations in an OSSE context with a simplified

scanning strategy. Analysis errors can vary from storm

to storm, though we have attempted to account for that

in the experiment design. In general, this OSSE has

limited model error, so analysis error with real Vr data

would likely be larger than that obtained here. Storm

movement through the hourly assimilation cycles and

an imperfect observation operator are other sources of

error in the real-data case that have not been consid-

ered here. Another caveat is that assimilation is limited

to simulated Vr data from within the cyclones, and data

that are typically available external to the storm has

been ignored. We acknowledge that many different

data types (e.g., environmental dropsondes, space-

based remote sensing, and surface in situ data from

ships and buoys) contribute to skillful forecasts, and

assimilation of such data here would likely have
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reduced analysis and forecast error relative to the

NODA experiments regardless of Vr availability. It is

also possible for vortex relocation techniques, which

have not been used herein, to improve forecasts even

when data assimilation is not utilized.

Given the above caveats, we have begun work to

more completely assess the benefit of assimilating

HIWRAP Vr data as well as other datasets based from

the Global Hawks. An initial goal is to use more ex-

tensive OSSE and real-data studies to compare the

assimilation of Vr fromHIWRAP and from the NOAA

WP-3D tail Doppler radar. We also wish to assess real-

data assimilation of HIWRAPVr frommultiple storms

as the data become available; only a thorough exami-

nation such as that in Z11 will more precisely demon-

strate the general utility of assimilating this data.

Finally, a thorough examination of the usefulness of the

Global Hawk UAS for forecasting should include assim-

ilation of other data such as radiances from the Scan-

ning High-resolution Interferometer Sounder (S-HIS;

Revercomb et al. 2003), dropsondes profiles from

the Advanced Vertical Atmospheric Profiling System

(AVAPS; Hock and Franklin 1999), wind retrievals

from the Tropospheric Wind Lidar Technology Ex-

periment (TWILITE; Gentry et al. 2007), surface wind

speed retrievals from the Hurricane Imaging Radiom-

eter (HIRAD; Amarin et al. 2010), and brightness

temperatures from the High-Altitude Monolithic Mi-

crowave Integrated Circuit (MMIC) Sounding Radiom-

eter (HAMSR;Brown et al. 2007). These instrumentswill

all fly on the Global Hawks as part of the NASA Hurri-

cane and Severe Storm Sentinel (HS3) investigation be-

ing conducted during the Atlantic hurricane seasons of

2012–14.
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