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ABSTRACT

Through a series of convection-permitting regional-scale ensembles based on the Weather Research and

Forecasting (WRF) Model, this study investigates the predictability of multiscale weather and convectively

coupled equatorial waves during the active phase of a Madden–Julian oscillation (MJO) event over the Indian

Ocean from 12 October to 12 November 2011. It is found that the practical predictability limit, estimated by the

spread of the ensemble perturbed with realistic initial and boundary uncertainties, is as much as 8 days for hor-

izontal winds, temperature, and humidity for scales larger than 2000 km that include equatorial Rossby, Kelvin,

inertia–gravity, and mixed Rossby–gravity waves. The practical predictability limit decreases rapidly as scale

decreases, resulting in a predictable time scale less than 1 day for scales smaller than 200 km. Through further

experiments using minute initial and boundary perturbations an order of magnitude smaller than the current

realistic uncertainties, the intrinsic predictability limit for tropical weather at larger scales (.2000 km) is estimated

to be achievable beyond 2 weeks, but the limit is likely still less than 3 days for the small scales (,200 km).

1. Introduction

The tropical atmosphere consists of weather systems

spanning a wide range of spatial and temporal scales. At

the planetary scale, theMadden–Julian oscillation (MJO)

is found to be the dominant mode of intraseasonal vari-

ability with typical periods of 20–100 days (Madden and

Julian 1971, 1972; Zhang 2005). The active phase of an

MJO is characterized by enhanced deep convection and

intense precipitation that propagates eastward at a speed

around 5ms21. Within theMJO envelope, a wide variety

of convectively coupled equatorial waves (CCEWs;

Wheeler and Kiladis 1999; Kiladis et al. 2009) reside,

including equatorial Rossby, Kelvin, mixed Rossby–

gravity (MRG), and inertia–gravity (IG) waves. The

equatorial Rossby waves are large-scale ‘‘cyclone pairs’’

that propagate westward at a speed around 4.5ms21

(Kiladis et al. 2009). The equatorial Kelvin waves are also

known as the super cloud clusters that propagate east-

ward at a speed of 15–20ms21 (Nakazawa 1988;

Dunkerton and Crum 1995). The MRG waves propagate

westward at a speed of 15–20ms21 and have the potential

to develop into tropical cyclones (Takayabu and Nitta

1993; Dickinson and Molinari 2002). The westward-

propagating IG (WIG) waves have a wide range of spa-

tiotemporal scales, ranging from smaller-scale diurnal to

semidiurnal variations to larger-scale 2-day waves

(Haertel and Kiladis 2004).

How predictable are the tropical weather systems and

CCEWs? The concept of atmospheric predictability can

be grossly categorized into intrinsic versus practical pre-

dictability (Lorenz 1996; Melhauser and Zhang 2012).

Intrinsic predictability refers to the ability to predict given

nearly perfect representation of the dynamical system

(by a forecast model) and nearly perfect initial/boundary

conditions, an inherent limit due to the chaotic nature of

the atmosphere (Lorenz 1963, 1969; Zhang et al. 2003,

2007; Sun and Zhang 2016). Practical predictability,

sometimes also referred to as the prediction skill, is the

ability to predict given realistic uncertainties in both the

forecast model and initial and boundary conditions

(Lorenz 1982, 1996; Zhang et al. 2002, 2006) that can both

be large at present. The limit of practical predictability

can potentially be extended through the use of more ac-

curate initial conditions (resulting from better data as-

similation methods and/or observations) and/or better

forecast models (better model physics, numerics, and/or
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resolution). Meanwhile, recent studies suggest the pre-

dictability of multiscale midlatitude weather and tropical

cyclones can be intrinsically limited because of the chaotic

nature of moist convection and the rapid upscale error

growth, as shown for winter cyclones (Zhang et al. 2003,

2007; Sun and Zhang 2016), summertime continental

mesoscale convective systems (e.g., Bei and Zhang 2007;

Melhauser and Zhang 2012; Selz and Craig 2015; Zhang

et al. 2016), and hurricanes (e.g., Zhang and Sippel 2009;

Tao and Zhang 2015).

To the best of our knowledge, the predictability of

multiscale tropical weather beyond tropical cyclones is

rather underexplored. Using a then-operational global

prediction system under a perfect model assumption,

Reynolds and Webster (1994) found that the internal

error growth rate in the tropics is several times slower

than that in midlatitudes, while the external error growth

rate due to model deficiencies is considerably larger.

Using a global convection-permitting aquaplanet model

configured with different resolutions, Mapes et al. (2008)

revealed that predictability of tropical weather can be

potentially limited by error growth from midlatitude

moist baroclinic systems. Several estimates of MJO pre-

dictability have been made from global model simulation

(Waliser et al. 2003; Nasuno 2013; Neena et al. 2014a,b).

Ling et al. (2014) suggested that MJO predictability may

differ greatly when considering global or local scales and

during differentMJOphases. Such scale dependency also

results in a more limited predictability estimated from

higher-resolution simulation than coarser-resolution

global models (Miyakawa et al. 2014).

In 2011, the Dynamics of the MJO (DYNAMO) field

campaign was conducted over the Indian Ocean to

gather more observations, to advance physical un-

derstanding of MJOs, and ultimately to improve MJO

prediction (Zhang et al. 2013; Yoneyama et al. 2013).

Two moderate-to-strong MJO events occurred during

October and November 2011 and were well observed by

the field campaign, as documented in Johnson and

Ciesielski (2013). More recently, Wang et al. (2015)

conducted a successful simulation of these MJOs using

theWeatherResearch and Forecasting (WRF)Model at

the convection-permitting resolution with 9-km grid

spacing. They showed that the model is capable of re-

producingmost of the observedMJO features, including

its eastward propagation, dynamical structure, and the

overall rainfall pattern and magnitude. Sensitivity ex-

periments with the same regional WRF configuration in

Zhang et al. (2017) subsequently demonstrated the

crucial importance of the global circumnavigating mode

in the MJO initiation and propagation. These results

motivate the use of such a model as a proxy of the

tropical atmosphere for studying its predictability. To

the best of our knowledge, the current study represents

the first systematic investigation of both the practical

and intrinsic limits of multiscale predictability of tropical

weather and CCEWs through a series of unprecedented

convection-permitting regional-scale ensemble simula-

tions. The resulting predictability estimates provide a

benchmark for the future investigation with improved

modeling systems.

The remainder of the paper is laid out as follows. The

model configuration and design of ensemble simulation

are described in section 2. In section 3, an overview is

given for the simulated features of CCEWs. The prac-

tical predictability is estimated in section 4, followed by

an intrinsic predictability assessment in section 5. In

section 6, the error growths are analyzed for CCEWs to

illustrate their distinct predictability limits. Section 7

summarizes the findings of this study.

2. Experimental design

a. Model configuration and the control simulation

In this study, the WRF Model, version 3.4.1

(Skamarock et al. 2008), is employed to conduct simu-

lations. The model configuration is similar to that de-

scribed in section 2a of Wang et al. (2015). The

computational domain covers the equatorial Indian

Ocean and part of the Maritime Continent (208S–208N,

508–1208E). The model grid is 445 3 778 with 9-km

spacing, and it has 45 vertical levels with 9 levels in the

lowest 1 km and a model top at 20 hPa. The initial con-

dition (IC) and lateral boundary condition (LBC) are

specified by the ERA-Interim data (Dee et al. 2011).

The sea surface temperature (SST) for the lower

boundary condition is updated every 6 h according to the

ERA-Interim data.

The WRF double-moment (WDM) scheme (Lim

and Hong 2010) is used to parameterize cloud physics

with modifications to the shape parameters and ter-

minal velocity of snow. Both shortwave and longwave

radiation are treated with the CAM scheme (Collins

et al. 2004). Surface processes are represented with the

unified Noah model (Chen and Dudhia 2001) with

variable surface skin temperature (Zeng and Beljaars

2005). Sub-grid-scale turbulent eddy mixing is pa-

rameterized using the Yonsei University (YSU) PBL

scheme (Hong et al. 2006). No cumulus parameteri-

zation is used, and organized convective motion is

explicitly represented by the 9-km model grid. A

control simulation of the MJO active phase is initial-

ized at 0000 UTC 12 October and integrated for

31 days, which ends on 12 November 2011. Section 3

will provide an overview of the simulated period and

validation of model simulation with observations.

3772 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 74



b. Ensemble simulation

A pair of 20-member ensembles is conducted to study

the practical versus intrinsic predictability of the tropical

weather systems and CCEWs. The first ensemble simu-

lation designed to examine the practical predictability

limits starts from 18 October to 2 November (corre-

sponding to the MJO phases 1–3). The IC and LBC en-

semble perturbations are sampled from the operational

European Centre for Medium-Range Weather Forecasts

(ECMWF) global ensemble forecasts archived in The

Observing System Research and Predictability Experi-

ment (THORPEX) Interactive Grand Global Ensemble

(TIGGE).1 The TIGGE archives 15-day global forecasts

of horizontal winds, temperature, geopotential height,

and specific humidity at eight pressure levels (1000, 925,

850, 700, 500, 300, 250, and 200hPa) at 12-h intervals. The

then-operational ECMWF ensemble has a horizontal

resolution of 32km (T639) for the first 10 days and 63km

(T319) from day 10 to day 15. Ensemble perturbations

from the first 20 TIGGEmembers are interpolated to the

9-km WRF model grid and to 6-h intervals in time and

then are added to the control IC and LBC generated from

ERA-Interim data. Since the TIGGE ensemble forecasts

are valid at the same time as the IC and LBC being per-

turbed, the ensemble perturbations are physically consis-

tent with the flow-dependent realistic uncertainties of the

unperturbed model atmosphere. With the global model

uncertainties downscaled to the regional model at the

9-km resolution, the ensemble forecasts designed herein

will provide a realistic estimate of the practical pre-

dictability of the tropical weather and CCEWs during the

MJO active phase under a perfect model assumption.

The intrinsic predictability is estimated from another

set of 20-member ensemble simulations with the IC and

LBC perturbation uncertainties reduced to 1% in terms

of error energy (or 10% error magnitude) comparing to

the ensemble described above, which is a level of

FIG. 1. Horizontal maps of 5-day accumulated precipitation (mm) on (a),(d) 20 Oct, (b),(e) 28 Oct, and

(c),(f) 5 Nov. The results are compared between (a)–(c) TRMM observation and (d)–(f) WRF control simulation.

1More information on the TIGGE dataset can be found online

(https://software.ecmwf.int/wiki/display/TIGGE).
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accuracy that is unlikely to be achievable in the fore-

seeable future. In other words, we seek the upper bound

in prediction using a perfect model under nearly perfect

initial and boundary conditions following Lorenz (1996).

c. Predictability metric

The limit in predictability will be quantified in terms

of relative magnitude between the reference and error

spectral energy, R(k) and E(k), defined respectively as

R(k)5 �
k2x1k2y5k2

x̂
� �2

kx ,ky
(1)

and

E(k)5 �
k2x1k2y5k2

1

N2 1
�
N

i51

bx0
i

� �2

kx,ky

, (2)

where x denotes the variable in consideration,

x5 (1/N)�N

i51xi is the ensemble mean, x0i 5 xi 2 x is the

ensemble perturbation, subscript i5 1, 2, . . .,N indexes

the ensemble member, the hat denotes the Fourier

transformation in two horizontal dimensions, and the

subscripts kx and ky are the zonal and meridional

wavenumbers, respectively. Following Bei and Zhang

(2014), the reference and error energy are decomposed

into spectral components (i.e., a function of global

wavenumber k) and calculated separately for each

model variable to demonstrate the scale and variable

dependency in predictability. The variables of interest

in this study are the u- and y-component winds, tem-

perature, specific humidity, and precipitation. For the

sake of simplicity, the u and y winds are combined as

kinetic energy (KE), that is, (1/2)(u2 1 y2). The refer-

ence and error KE are calculated by first evaluating

(1) and (2) for u and y and then taking their average.

Bei and Zhang (2014) used only one perturbed sim-

ulation and its difference with the unperturbed (control)

simulation to measure the error energy. Only one re-

alization of forecast error was available; therefore, the

predictability estimate was less robust.More ideally, one

can use an ensemble to sample the forecast error and

FIG. 2. Longitude–time plots of 850-hPa zonal wind (color shading from220 to 20m s21) and precipitation (black

contours of 15mmday21) averaged over 58S–58N. The results are compared between (a) TRMM precipitation and

ERA-Interim zonal wind and (b) WRF control simulation. The white grid and numbers to the right indicate the

observed phase of the October 2011 MJO [according to Fig. 6 from Johnson and Ciesielski (2013)]. The pre-

cipitation and wind fields are plotted at 3-h intervals, except for ERA wind, which is at 6-h intervals.

3774 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 74



provide a much more robust estimate for predictability.

In their predictability study on tropical cyclone in-

tensity, Judt et al. (2016) defined an error energy as the

averaged squared differences between two members

from a 20-member ensemble, and the reference energy

was defined as the averaged energy from each member.

The predictability limit was defined as the forecast

time at which error saturates; that is, the error energy

becomes close enough to the reference energy. One

caveat of this predictability limit definition is that the

error growth usually slows down as it approaches satu-

ration so that the exact saturation time is difficult to

evaluate because of this asymptotic behavior.

In this study, a slightly different definition is used.

The error energy (noise) is defined as the ensemble

variance, and the reference energy (signal) is defined as

the energy associated with the ensemble mean. As er-

rors grow, the small-scale reference energy from the

ensemble mean will decrease because of the smoothing

among ensemble members. The predictability limit is

defined as the forecast time at which error energy

reaches and exceeds the reference energy (signal-to-

noise ratio drops below 1).

3. Overview of the control simulation

The control simulation conducted in this study is

mostly consistent with the control experiment results

fromWang et al. (2015) except that the simulation starts

from a later time and analysis nudging is not performed.

The active MJO phase features the eastward propaga-

tion of large-scale organized convection and pre-

cipitation. Figure 1 compares the 5-day accumulated

precipitation from the control simulation to the Tropical

Rainfall Measuring Mission (TRMM) observations.

During the simulated period, the precipitation center

moves across the Indian Ocean (phases 1–3) and to the

Maritime Continent (phases 4 and 5). The propagation

of the MJO is not at a constant speed. Phase 2 takes

much longer (10 days) than the following phases.

FIG. 3. Wheeler–Kiladis space–time spectra of precipitation from (a),(b) TRMM observation and (c),(d) WRF

control simulation averaged over 158S–158N that is (a),(c) symmetric and (b),(d) antisymmetric about the equator.

Signal strengths from 1.1 to 2 are shown (shading). The solid curves correspond to dispersion relations for dry

equatorial waves with equivalent depth of 15m. The zonal wavenumber and time frequency are labeled with

corresponding zonal wavelength and time period, respectively; positive (negative) wavelength indicates eastward

(westward)-propagating signals.
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Consistent with Wang et al. (2015), the eastward prop-

agation of the simulated precipitation agrees with the

observation as shown in the Hovmöller diagrams in

Fig. 2. At 850hPa, westerlies (easterlies) are found west

(east) of the precipitation center, which is the typical

large-scale MJO flow pattern.

At smaller scales, the simulated precipitation shows

IG wave signals over the Maritime Continent

(908–1208E). The propagation direction of these IG

waves follows the prevailing zonal wind, that is, WIG

waves in easterly wind and vice versa. At least some of

these waves and precipitation patterns over the Mari-

time Continent are likely forced by the thermal diurnal

cycles associated with the landmass (Mapes et al. 2003;

Love et al. 2011). The precipitation over the Indian

Ocean (508–908E) is organized into several 2-day epi-

sodes that are modulated by the phase of the MJO and

several episodes of westward-propagating equatorial

Rossby waves and eastward-propagating equatorial

Kelvin waves (hereafter referred to as Rossby and

Kelvin waves for simplicity). The model simulation of

these finer-scale features is less accurate than the MJO

signal itself as compared to the observations. There are

generally mismatches in timing of the IG waves over the

Indian Ocean.

However, the model simulation has a relatively good

representation of the spectral modes of the multiscale

CCEWs. Figure 3 compares the Wheeler and Kiladis

(1999) space–time spectra (WK spectrum) of pre-

cipitation between the observation and the control

simulation. Compared to the TRMM observation, the

WRF simulation captures most of the CCEW modes

although with errors in their signal strengths. The zonal

wavelengths and time periods of the simulated waves

agree with the observation except that Kelvin waves are

propagating more slowly and the large-scale eastward-

propagating IG (EIG) waves are missing the 2.5-day

period in the simulation. The signal strengths of diurnal

WIG, MRG, and Rossby waves are weaker in the sim-

ulation than in the observation, while Kelvin wave and

MJO signal strengths are comparable to the observa-

tion. The large-scale 2-day WIG wave signals are sim-

ulated stronger than the observation. The WK spectra

are calculated for a single MJO active phase during the

simulated 1-month period, which is a relatively short

sample size. Therefore, the large-scale low-frequency

wave signals are expected to have some errors due to

sampling noises. The errors in model and the specified

initial and boundary conditions also cause the simulated

WK spectra to differ from observation. Despite these

discrepancies, the WRF simulation provides a reason-

able representation of the observed CCEW and well

serves the need as a control simulation.

4. Limit of practical predictability

To estimate the practical predictability (prediction

skill) of the tropical multiscale weather and CCEWs, the

error growth during the first ensemble simulation is in-

vestigated in this section. Figure 4 shows the longitude–

time Hovmöller diagram of root-mean difference total

energy [RM-DTE; as defined in Melhauser and Zhang

(2012)], which is a combined measure of errors in hori-

zontal winds and temperature. As forecast time prog-

resses, the overall error increases because of the realistic

uncertainties from the LBC. Larger RM-DTE is located

near the region of stronger precipitation. There are ap-

parent westward-propagating streaks of RM-DTE that

are related to the CCEWs over the entire domain. The

errors associated with the IG waves over the Maritime

Continent have diurnal maxima following the peak

precipitation, and there is no obvious trend during the

2-week period. On the other hand, the three successive

moist phases of Kelvin waves over the Indian Ocean has

increasingly larger errors. Such error growth behavior

indicates a flow dependency in predictability that is

more limited in the areas of precipitative systems.

Figure 5 shows the spectra of reference and error

energy, E(k) and R(k), for KE, temperature, specific

humidity, and precipitation. Let l 5 k21 be the hori-

zontal wavelength; the spectra are plotted as a function

FIG. 4. Longitude–time plot of RM-DTE (m s21; shading) at

850 hPa and the precipitation from the control simulation (black

contour of 15mmday21) averaged over 58S–58N. The RM-DTE is

the square root of ensemble-averaged DTE between the perturbed

ensemble simulations and the control simulation from 18 Oct to 2

Nov (shown as t 5 0–15 days).
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of k but labeled with its corresponding l values. The

time-averaged reference KE spectrum (black line in

Fig. 5a) has a 25/3 slope at small scales and transitions

to a steeper23 slope at around l5 500 km toward larger

scales. According to Lorenz (1969) and Rotunno and

Snyder (2008), there will be a predictability limit for the

small scales because of its shallower spectral slope. The

temperature and humidity spectra (Figs. 5b,c) have a

similar shape compared to the KE spectrum, while the

precipitation spectrum (Fig. 5d) is much shallower. Er-

ror energy spectral evolution can be viewed from the

colored lines with time progresses from blue to red. At

t 5 0, the initial error KE from the ECMWF analysis is

about one order ofmagnitude smaller than the reference

energy at large scales and becomes comparable with

reference energy at intermediate scales around l 5
500km. The initial error is artificially too small at small

scales, because the ECMWF analyses are archived at a

relatively coarse resolution (32 km) and thus not fully

resolving l , 200km. The error growth is more or less

linear at larger scales, while the small-scale error

saturates almost immediately. At small scales, the error

energy exceeds the time-averaged reference energy,

indicating the loss of predictability. Compared to other

variables, precipitation has a wider range of scales with

lost predictability after several forecast days.

To further illustrate the time evolution of errors at

different scales, the reference and error energy are av-

eraged over three arbitrarily selected scale ranges: large

(l . 2000km), intermediate (200 , l , 2000km), and

small (l , 200 km), and their time series are shown in

Fig. 6. The errors in KE, temperature, and humidity

have similar multistage growth behavior as described in

Zhang et al. (2007). Small-scale errors grow the fastest in

the first 12 h, and then after saturation, they stay at rel-

atively the same level. Large- and intermediate-scale

errors grow slowly during the whole simulation period,

and the large-scale error never reached reference energy

for KE. The predictability limit not only depends on the

rate of error growth but is also complicated by the var-

iations in reference energy. For temperature, the refer-

ence energy has a clear diurnal cycle at both large and

FIG. 5. Reference energy spectra R(k) averaged over the 15 days (black lines) and error energy spectra E(k)

(color coded with simulation time t5 0–15 days) for (a) kinetic energy, (b) temperature, (c) specific humidity, and

(d) precipitation. The shown spectrum is averaged over the vertical levels.
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small scales. The large-scale reference energy also ap-

pears to be modulated by the low-frequency waves; the

humidity reference energy has three minima that are as-

sociated with the precipitation episodes over the Indian

Ocean. For precipitation, the small- and intermediate-

scale error energy exceeds their corresponding reference

energy very early in the simulation, and the large-scale

error energy is comparable to the reference after 4 days

of simulation, but the exact time for loss of predict-

ability is uncertain because of the constantly varying

reference energy.

Figure 7 plots the estimated practical predictability

limits (thick lines) as a function of horizontal wave-

length. At large scales, the KE and temperature have

practical predictability limits up to 15 days, followed by

the specific humidity, which has a limit of 8 days, and

practical predictability of precipitation is limited to only

3 days. The predictability of all variables dropped sig-

nificantly across the intermediate scale. The practical

predictability is limited to less than 12h for KE,

temperature, and specific humidity for scales l, 200km

and l , 800km for precipitation.

5. Limit of intrinsic predictability

In this section, the intrinsic predictability limit is

identified by investigating the second ensemble simula-

tion with IC and LBC error energy reduced to 1%, a

level of accuracy that is unlikely to be attainable in the

foreseeable future. Figure 8 shows the time series of

error energy of this new ensemble (red) for KE and

precipitation at three scales and compares their error

evolution to the original ensemble with 100% error

(blue). When error energy is reduced to 1%, the large-

and intermediate-scale error KE (Figs. 8a,b) still grows

at a similar rate as the 100% error case during most of

the simulation period, although there is some indication

of increased error growth rate during the first 3 days. By

the end of simulation, error KE from the 1%-error case

remains an order of magnitude lower than that from the

FIG. 6. Time series of spectral energyaveragedat large (L; l. 2000km;black), intermediate (M; 200, l, 2000km;blue),

and small (S; l , 200km; red) scales for (a) kinetic energy, (b) temperature, (c) specific humidity, and (d) precipitation.

The thick lines show the error energy, while thin lines show the reference energy.
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100%-error case. This indicates that the intrinsic pre-

dictability for these scales is likely to be achievable

beyond the 15-day simulation period, since the pre-

dictability horizon can be extended by reducing the IC

and LBC errors.

On the other hand, the small-scale error KE (Fig. 8c)

grows much more rapidly and the reduced error only

delays the loss of predictability by about 1 day. This

behavior is as expected according to Rotunno and

Snyder (2008) because of the 25/3 power law of small-

scale KE. The intermediate-scale KE error growth rate

is higher at the beginning of the simulation, because part

of the intermediate-scale range has a shallower KE

spectrum (200 , l , 500km). The temperature and

humidity error energy results for the 1%-error case are

similar to KE (not shown), and precipitation (Figs. 8d–f)

also displays similar behavior, but its range of scales that

have limited predictability is much wider than other

variables. The intrinsic predictability limits are also

plotted as thin lines in Fig. 7 as a function of horizontal

wavenumber. For the 25/3 power-law range (l ,
500km), theories predict that predictability will be

limited. The results are consistent with the theory that

reducing the IC and LBC error perturbations to 10%

does not increase the predictability limit 10 times. The

intrinsic predictability limit for KE is about 10 days at

l5 500 km and decreases to,1 day at small scales. The

same predictability limit is true for other variables such

as temperature and humidity but not for precipitation,

which has more limited intrinsic predictability.

For regional models, the specification of LBC is non-

trivial for the accuracy of simulation. To evaluate the

relative importance of IC and LBC, an extra set of en-

semble simulations are conducted with perturbations

(from 100% error) only added to the IC, and the results

are plotted in Fig. 8 as gray lines (IC error only). For large-

and intermediate-scale KE, the LBC error contributes a

lot to the overall error growth; without LBC error, the

error energy remains at a similar IC error level throughout

the simulation. However, for small-scale KE, a correct

LBC does not help to reduce the initial error growth; it

only slightly reduces errors later in the simulation when

they are already saturated. For precipitation, the large-

scale error energy is reduced by specifying a correct LBC,

while the intermediate- and small-scale errors are not

significantly reduced before saturation. The intermediate-

scale precipitation error is only occasionally lowered with

the correct LBC, indicating a mixed influence from the

boundary and local regions.

Similar to the definition of error doubling time

(Lorenz 1969), an ‘‘error growth time’’ is defined as the

time in which the initial error energy grows two orders of

magnitude (from 1% to 100% initial error energy).

Figure 9 plots the error growth time as a function of the

horizontal wavenumber. For l . 500km, the error

growth time exceeds 15 days for KE and temperature

and ;10 days for humidity. The error growth rate rap-

idly increases as l decreases from 500 to 100 km; for l ,
100 km, the error growth time is well below 6h. The

precipitation error growth rate is much higher than

other variables for the large and intermediate scales.

However, its error growth rate increases more smoothly

across scales, unlike other variables that have a rapid

growth-rate boost within a narrow scale band.

6. Predictability of CCEWs at different scales

In the previous sections, the practical and intrinsic

predictability limits are estimated for different model

variables and for different spatial scales. To identify the

underlying processes for the error growth at different

spatial and temporal scales, a Wheeler–Kiladis space–

time spectral analysis is conducted in this section to

extract CCEWs from the simulation and study the pre-

dictability associated with each wave mode.

Figure 10 shows the WK spectra for precipitation

from the control simulation. Both the zonal wave-

number and time frequency axes are shown in log scale.

The spatial scale is again separated into large (L), in-

termediate (M), and small (S) scales similar to previ-

ous sections; the specified temporal- and spatial-scale

FIG. 7. Predictability limits for kinetic energy (black), tempera-

ture (blue), specific humidity (red), and precipitation (green)

plotted as a function of zonal wavenumber (labeled as wavelength).

Thick (thin) lines are practical (intrinsic) predictability limits. The

limits are defined as the time it takes for the error energy (100%

error for practical limit and 1% error for intrinsic limit) to reach

reference energy. The limits are calculated for each member, and

the ensemble average is plotted. Smoothing is applied across the

wavelength to remove some noise for better visualization.
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windows for the CCEWs are indicated with black boxes.

Along with the MJO signal, the Rossby (n 5 1 ER),

Kelvin, MRG, 2-day WIG (n 5 1 WIG_L), and EIG

(n 5 0 EIG_L) waves all reside in the large scale. At

intermediate scales, the n 5 1 IG waves (WIG_M and

EIG_M) with diurnal to semidiurnal periods are the

dominant wave modes. The small scale has no clearly

identifiable wave signals. Precipitation signals related to

small-scale moist convection spread throughout the

small-scale spectrum, and according to the previous sec-

tions, its predictability is intrinsically limited to ,1 day.

A space–time bandpass filter is applied to the

precipitation field to extract each wave mode according

to its period and wavelength window as shown in Fig. 10.

Since the perturbed ensemble forecast is performed only

for a shorter 15-day period, the control simulation is

used to fill in the missing days before filtering.

Figures 11a–e show longitude–time plots for the filtered

precipitation associated with large-scale waves. Spa-

ghetti plots of a selected precipitation contour (black)

among members from the first ensemble (100% error)

are shown in Figs. 11f–j, and they are compared to the

1%-error cases in Figs. 11k–o. For the ensemble with

100% error sampled from the ECMWF forecasts, the

precipitation contours diverge and become out of phase.

However, when the error energy is reduced to 1%,

the contours remain in phase among members

throughout the whole simulation. The same analysis is

performed for the intermediate-scale IG waves, and

results are shown in Fig. 12. In contrast to large-scale-

wave results, the error reduction does not bring the

contours in phase and large displacement errors still

FIG. 8. Time series of spectral error energy integrated within (a),(d) L, (b),(e) M, and (c),(f) S scales for (a)–(c) kinetic energy and

(d)–(f) precipitation. The reference error energy is shown as black lines, the blue (red) lines show the error energy from the 100% (1%)-

error case, and the gray lines show the case with errors only in the initial condition.
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exist for intermediate-scale waves. These results agree

with the findings from the previous section that the es-

timated large-scale predictability for precipitation can

potentially be extended from 3 to;15 days if errors are

reduced to 1%, while for intermediate scales, its pre-

dictability remains intrinsically limited (Fig. 7).

Table 1 lists the averaged pattern correlations between

perturbed and unperturbed simulations as a more quan-

titative measure of CCEW phase errors. A correlation of

1 indicates that two waves are perfectly in phase, while

zero correlation indicates two waves completely out of

phase. For precipitation, the large-scale CCEWs all show

that a significant improvement in wave phase (from ;0.6

to;0.8 correlation) is possible, which is contrasted by the

intermediate-scale IG waves that stay out of phase

(correlation ,0.3) even with reduced error. For other

variables, results from the previous section show that the

practical predictability for KE, temperature, and humidity

is much less limited than precipitation at large and in-

termediate scales. Therefore, the zonal wind, temperature,

and humidity phases associated with Rossby, Kelvin, and

MRGwaves can potentially be improved to almost perfect

(correlation .0.9) with reduced error. The intermediate-

scale predictability for zonal wind, temperature, and hu-

midity is more limited but less so than precipitation.

7. Concluding remarks

In this study, the October 2011 MJO active phase

is simulated using the WRF Model with similar

configuration as Wang et al. (2015). The control simu-

lation is initialized with ERA-Interim data. The model

faithfully reproduced most of the large-scale features of

the MJO and CCEWs. We conducted 20 perturbed

simulations for the 15-day period from 18 October to

2 November to estimate the practical predictability of

the multiscale tropical weather. The IC and LBC per-

turbations are sampled from the ECMWF global

ensemble forecasts from the TIGGE archive. Pre-

dictability limit is defined as the time in which error

energy (ensemble variance) reaches/exceeds the refer-

ence energy (energy associated with the ensemble-mean

field). Intrinsic predictability is identified by another set

of perturbed simulations with the IC and LBC error

energy reduced to 1%. Two-dimensional spectral de-

composition is applied to the error and reference energy

to reveal the horizontal-scale dependency in pre-

dictability. The predictability limits are calculated sep-

arately for kinetic energy, temperature, specific

humidity, and precipitation at each scale. Findings from

this study are summarized as follows:

1) The practical predictability is scale and variable

dependent. For large-scale (l . 2000km) horizontal

winds and temperature, the practical predictability

limit is ;15 days, and for humidity, the limit is

;8 days. The predictability rapidly drops across the

FIG. 9. Error growth time (days) plotted as a function of zonal

wavenumber (labeled as wavelength) for kinetic energy (black),

temperature (blue), specific humidity (red), and precipitation

(green). The error growth time is defined as the time it takes for

1% initial error to grow and reach 100% initial error. The growth

time is calculated for each member, and the ensemble average is

plotted.

FIG. 10. As in Figs. 3c and 3d, but for zonal wavenumber and

time frequency shown in log scale. Space–time filtering windows

are shown as black boxes for ER wave, Kelvin wave, MRG wave,

n 5 1 WIG wave at intermediate scale (WIG_M) and at large

scale (WIG_L), n 5 0 EIG at large scale (EIG_L), and n 5 1 EIG

at intermediate scale (EIG_M).
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intermediate scale (200, l, 2000km), and for small

scales (l , 200 km), their practical predictability is

limited to ,12h. Precipitation has more limited

predictability than other variables; its large-scale

practical predictability limit is only 3 days and drops

to ,12h for the smaller scales.

2) Intrinsic predictability limits for horizontal winds,

temperature, and humidity are .10 days for scales

larger than 500 km. At these larger scales, the

practical predictability horizon can be well extended

by reducing errors in IC and LBC. However, for

scales smaller than 500km, the intrinsic predictability

limit decreases; at,100-km scales, the limit is,1 day,

which is likely related to a shallower 25/3 power law

in the KE spectrum. For precipitation, a wider range

of its smaller scales has intrinsically limited predict-

ability compared to other variables.

3) Error growth rate is low at large scales and high at small

scales; the increase takes place in a very narrow scale

range (100–500km) for horizontal winds, temperature,

and humidity. On the other hand, precipitation error

growth rate increases more smoothly across scales.

4) Large-scale CCEWs (i.e., Rossby, Kelvin,MRG, and

the 2-day IG waves) have a predictability that can be

potentially improved by reducing the IC and LBC

errors. With errors reduced to 1%, the zonal wind,

temperature, and humidity associated with large-

scale waves can be improved to almost perfectly in

phase. However, for the intermediate scale, the

diurnal and semidiurnal IG waves have a predict-

ability that is more intrinsically limited.

The current findings encourage the future develop-

ment in data assimilation and modeling systems to

FIG. 11. (a)–(e) Longitude–time plots of precipitation (color shading every 1mmday21 from210 to 10mmday21; zero shown in white)

filtered for (a) Rossby, (b) Kelvin, (c) MRG, (d) WIG_L, and (e) EIG_L waves and averaged over 08–58N. (f)–(j) Spaghetti plots of the

contours highlighted in black in (a)–(e); each color corresponds to a member from the perturbed ensemble simulation (100%-error case).

(k)–(o) As in (f)–(j), respectively, but for the ensemble simulation with error energy reduced to 1%.
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further improve the predictability of CCEWs. However,

the authors would like to point out some caveats in

interpreting the results in this paper. The convection-

permitting WRF Model, although providing a reason-

able representation of CCEWs, is still not perfect. In this

study, only the uncertainties from model IC and LBC

are accounted for when estimating practical pre-

dictability. While the IC and LBC uncertainties are

sampled from realistic forecast errors, the estimated

practical predictability may potentially differ from those

estimated from other modeling systems that account for

additional error sources (e.g., model dynamics, physics

parameterizations, and low-boundary-condition forc-

ings). The predictability estimates from the MJO active

phase event in this study may also differ from those es-

timated for other events.

The current study only simulates a 15-day period within

anMJOactive phase, which is not long enough to estimate

the predictability of MJO itself. In previous MJO pre-

dictability studies using global model simulations, the

practical predictability estimates range from 15 to 45 days,

depending on the models and diagnostics used

(Gottschalck et al. 2010; Vitart and Molteni 2010; Neena

et al. 2014b; Hamill and Kiladis 2014). The MJO pre-

dictability metric is usually based on the real-time

multivariate MJO (RMM) index (Wheeler and Hendon

2004), which captures more of the large-scale features of

the MJO signal. Ling et al. (2014) suggested that, when

finer-scale local features are included, the estimated pre-

dictability becomesmore limited thanwhen using a global

measure. The predictability of MJO is also found to be

dependent on its phase (Waliser et al. 2003; Nasuno 2013;

Neena et al. 2014a,b). While the active phase of the MJO

has better predictability, the models have difficulty in ac-

curately predicting the timing of convection onset during

its suppressed phase. As an extension of these global

model MJO predictability studies, the current study

provides a comprehensive predictability estimate for the

multiscale CCEWs during an MJO active phase. How the

predictability estimates change for a suppressed MJO

phase may be a future research topic.

The selection of MJO diagnostics is also nontrivial in

predictability studies. Waliser et al. (2009) proposed sev-

eral candidate MJO diagnostics that can capture more

small-scale details ofMJO than traditional ones. Results in

this paper show that predictability is variable dependent.

Therefore, process-oriented diagnostics (Kim et al. 2014)

that targets the tropospheric moisture or even pre-

cipitation may result in very different predictability esti-

mates compared to just using dynamic variables. A longer

regional simulation with convection-permitting resolution

may be the next step to facilitate a comprehensive pre-

dictability study that compares different diagnostics.
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FIG. 12. As in Fig. 11, but for the two intermediate-scale waves,

WIG_M and EIG_M. Only five members are shown in the

spaghetti plots, and the longitude–time plots are zoomed in on

608–808E and the first 5 days of the simulation.

TABLE 1. Averaged pattern correlation between member (per-

turbed run) and the control (unperturbed run) for zonal wind,

temperature, specific humidity, and precipitation associated with

each CCEW mode. The improvement in pattern correlation from

the 100% error case to the 1% error case is indicated by an arrow.

CCEW

mode Zonal wind Temperature

Specific

humidity Precipitation

Rossby 0.84/0.99 0.85/0.99 0.72/0.97 0.75/0.88

Kelvin 0.77/0.97 0.82/0.97 0.67/0.92 0.65/0.85

MRG 0.75/0.95 0.64/0.94 0.65/0.94 0.64/0.86

WIG_L 0.51/0.86 0.51/0.86 0.46/0.81 0.45/0.74

EIG_L 0.51/0.85 0.64/0.92 0.49/0.83 0.46/0.70

WIG_M 0.27/0.43 0.38/0.50 0.27/0.44 0.17/0.28

EIG_M 0.16/0.27 0.33/0.45 0.17/0.32 0.09/0.17
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