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ABSTRACT

This study compares the performance of an ensemble Kalman filter (EnKF) with both the three-dimensional

and four-dimensional variational data assimilation (3DVar and 4DVar) methods of the Weather Research and

Forecasting (WRF) model over the contiguous United States in a warm-season month (June) of 2003. The data

assimilated every 6 h include conventional sounding and surface observations as well as data from wind

profilers, ships and aircraft, and the cloud-tracked winds from satellites. The performances of these methods

are evaluated through verifying the 12- to 72-h forecasts initialized twice daily from the analysis of each method

against the standard sounding observations. It is found that 4DVar has consistently smaller error than that of

3DVar for winds and temperature at all forecast lead times except at 60 and 72 h when their forecast errors

become comparable in amplitude, while the two schemes have similar performance in moisture at all lead

times. The forecast error of the EnKF is comparable to that of the 4DVar at 12–36-h lead times, both of which

are substantially smaller than that of the 3DVar, despite the fact that 3DVar fits the sounding observations

much more closely at the analysis time. The advantage of the EnKF becomes even more evident at 48–72-h

lead times; the 72-h forecast error of the EnKF is comparable in magnitude to the 48-h error of 3DVar/4DVar.

1. Introduction

Data assimilation (DA) is known as the process of cre-

ating the best estimate of the initial state for numerical

weather prediction (NWP) models through combining all

sources of information, including the first guess from pre-

vious short-term model forecasts and observations, along

with the associated uncertainties in each source of in-

formation. Operational NWP models have predominantly

used three- or four-dimensional variational (3DVar or

4DVar) data assimilation methods over the past couple

of decades. Ensemble-based data assimilation methods,

in various forms of ensemble Kalman filters (EnKFs)

first proposed by Evensen (1994), which use a short-term

ensemble to estimate the flow-dependent background

error covariance, are becoming a popular alternative to

the variational approaches.

Recently, systematic intercomparisons between the

EnKF and 3DVar/4DVar have been conducted in various

NWP models. For example, Houtekamer et al. (2005)

compared the EnKF with 3DVar for the Canadian global

model, and Whitaker et al. (2008) did so for the National

Centers for Environmental Prediction’s (NCEP’s) Global

Forecast System (GFS). Both studies showed convinc-

ingly the advantages of the EnKF over 3DVar in global

models. For limited-area models, Meng and Zhang

(2008a,b) also showed that the EnKF consistently out-

performed the 3DVar within the Weather Research and

Forecasting (WRF) model framework at the regional

scales. More recently, Yang et al. (2009) compared the

EnKF with 3D/4DVar using a quasigeostrophic model.

Buehner et al. (2010a,b) compared the EnKF with 4DVar

in an operational scenario of Canadian global model while

Miyoshi et al. (2010) did so for the Japan Meteorological

Agency’s (JMA’s) operational global model; both studies

showed that the EnKF has comparable performance to
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4DVar in global models. For limited-area models, Caya

et al. (2005) compared the performance of the EnKF with

4DVar using synthetic observations for a supercell event in

an anelastic cloud model and found that the EnKF and

4DVar performed comparably. Moreover, both Buehner

et al. (2010a,b) and Caya et al. (2005) found that the EnKF-

initialized models will have better forecast performance at

a later stage of their forecasts after a few assimilation cycles

even though 4DVar may fit the observations better at the

analysis time and requires less than spinup time from a cold

start. To the best of our knowledge, no study has directly

compared the EnKF with 4DVar in a limited-area primi-

tive model, let alone with real-data applications, likely be-

cause of the scarcity of limited-area 4DVar systems.

The current study compares the EnKF with the newly

developed and released community 4DVar data assimi-

lation system in the WRF framework (Huang et al. 2009)

with the EnKF of Meng and Zhang (2008a,b). Also

compared is the 3DVar system (Barker et al. 2004), which

is also available in WRF. Experimental setup of the three

DA systems is shown in section 2. Results of the in-

tercomparison are discussed in section 3 and conclusions

are presented in section 4.

2. Experimental design

In this study, the regional Advanced Research Weather

Research and Forecasting (ARW-WRF) model (Skamarock

et al. 2005) version 3.1.1 is employed as the platform to

investigate all DA approaches in a realistic scenario. All

experiments are conducted over a single domain covering

FIG. 1. Model domain configuration. The circles denote the lo-

cations of the radiosonde observations used for assimilation and

verification. The dashed box shows the subset of the domain se-

lected for verification statistics.

FIG. 2. Vertical profiles of the month-averaged 12-h forecast RMSEs of (a) U (m s21), (b) V (m s21), (c) T (K), and

(d) Q (g kg21) for various DA methods.
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the contiguous United States and surrounding areas

(Fig. 1), which has 71 3 51 horizontal mesh grids with

90-km spacing and 27 vertical levels up to 50 hPa. The

Grell–Devenyi cumulus scheme, WRF single-moment

six-class graupel microphysics scheme, and Yonsei State

University (YSU) boundary layer scheme are used for all

deterministic forecasts, whereas multiphysics parame-

terizations are considered for ensemble forecasts in the

EnKF [as in Meng and Zhang (2008a,b)]. The first fore-

cast cycle of this month-long experiment is initialized at

0000 UTC 1 June 2003, where the NCEP global final

analysis (FNL) data are used to create the initial and

lateral boundary conditions (IC and LBC). In subsequent

cycles, the lateral boundary conditions are interpolated

from the FNL analyses, whereas the initial conditions are

updated and propagated from previous DA analyses.

The WRF variational data assimilation system (WRF-

Var) version 3 (Huang et al. 2009) and the WRF EnKF

system of Meng and Zhang (2008a,b) are used for all DA

experiments. The WRF-Var has both 3DVar and 4DVar

capabilities; the newly released 4DVar component is

developed as an extension from the previous WRF

3DVar system (Barker et al. 2004). The background

error covariance in 3DVar/4DVar experiments is static

and prescribed by the National Meteorological Center

(NMC) method (Parrish and Derber 1992), which as-

sumes homogeneous and isotropic correlations for a set

of independent control variables derived from the fore-

cast difference between the 24- and 12-h lead time fore-

casts of the preceding month for the given domain (i.e.,

May 2003 in this case). The variance scale parameter is

carefully tuned to 3.0 rather than the default value of 1.0

to give the best performance of the 3DVar among various

experiments tested (not shown; this also improves the

performance of 4DVar as compared to the default). The

EnKF adopts settings similar to those in Meng and Zhang

(2008a,b), that is, an ensemble of 40 members with di-

verse physics parameterization schemes, perturbed lat-

eral boundary conditions from FNL analyses, a relaxation

coefficient of 0.8 (Zhang et al. 2004), and the covariance

localizations of Gaspari and Cohn (1999) using a radius of

influence of 1800 km for radiosondes and profilers and

600 km for other observations. The initial ensemble per-

turbations are randomly generated at 0000 UTC 1 June

2003 through the CV5 option (Barker et al. 2004) of the

WRF-Var system, as in Meng and Zhang (2008a,b).

Various types of meteorological observations from the

archived Meteorological Assimilation Data Ingest System

FIG. 3. Time evolution of the vertically averaged 12-h forecast RMSE of (a) U (m s21), (b) V (m s21), (c) T (K), and

(d) Q (g kg21).

568 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



(MADIS) are assimilated during the month of June 2003,

namely winds, temperature, moisture, and surface pressure

from radiosondes, ships, and surface stations; winds from

profilers; winds and temperature from aircraft; and cloud-

tracked winds from satellites. Satellite radiances as well as

other indirect observations are not used in this study be-

cause of the complexity of the observation operators. The

observation preprocessing module (OBSPROC) of WRF-

Var is implemented for data sorting, quality control, and

observational error assignment (Barker et al. 2004). The

first analysis time for all experiments is at 1200 UTC 1 June

2003; afterward, continuous DA cycles (analysis and

forecast) with 6-h intervals are performed until the end of

the month, valid at every 0000, 0600, 1200, and 1800 UTC.

The assimilation window of 4DVar covers the period

from 23 h to 13 h of each analysis time; therefore, all

available observations distributed over such a 6-h window

are assimilated at their exact time rather than at an ap-

proximate analysis time as in 3DVar and EnKF.

3. Intercomparison of 3DVar, 4DVar, and EnKF

The performance of all three DA systems over the one-

month period is examined in this section. The root-

mean-square error (RMSE) of horizontal winds (U, V ),

temperature T, and the mixing ratio of water vapor Q are

calculated between model forecasts and radiosonde ob-

servations over a subset of the model domain (dashed box

in Fig. 1). The same area is used for verification of fore-

cast performance as in Meng and Zhang (2008b). There

are a total of 59 individual 72-h WRF deterministic fore-

casts, initialized respectively from the variational and

EnKF mean analyses at 0000 and 1200 UTC each day,

used in all the verification statistics shown below.

We first examine the vertical distribution of the mean

RMSE of the12-h WRF forecasts of U, V, T, and Q av-

eraged over the entire month (Fig. 2). At a first glance,

the largest RMSE of U, V, and T is around 200 hPa near

the tropopause while the largest error of Q is in the mid

to lower troposphere. Comparison of vertical profile of

the mean 12-h forecast error from each DA experiment

shows that the EnKF performs comparably to 4DVar for

the horizontal winds and temperature fields while the

EnKF has noticeably smaller RMSE than 4DVar for

moisture throughout the troposphere, especially at mid

levels. The comparable performance of the EnKF versus

4DVar for the wind and temperature fields and the ad-

vantage of the EnKF with regard to moisture are fairly

persistent throughout the month, as can be seen from

the time series of vertically averaged RMSE shown in

FIG. 4. As in Fig. 2, but for the analysis RMS fits to observations.
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Fig. 3. Both the EnKF and 4DVar have substantially

smaller RMSEs than does 3DVar for all forecast vari-

ables at nearly all times (Figs. 2 and 3). The better per-

formance of the EnKF over 3DVar is consistent with the

findings of Meng and Zhang (2008b) despite the coarser

resolution in this study. It is worth noting that despite

using a coarse horizontal resolution, the RMSEs for both

the EnKF and 3DVar in the current study are similar in

magnitude to those in Meng and Zhang (2008b; see their

Figs. 4 and 6), suggesting that the difference between

variational and ensemble methods discussed herein is not

sensitive to model resolution.

Figure 4 displays the vertical profiles of the RMS dif-

ferences between the analysis of each DA scheme and the

sounding observations averaged over all 59 analyses. Note

that these differences are no longer called ‘‘errors’’ but are

considered as a measure of the fit of the analysis to obser-

vations, since all verifying observations are assimilated by

each scheme and thus no longer are considered to be in-

dependent verifications at the analysis time. In sharp contrast

to Fig. 2 of the 12-h forecast error, Fig. 4 shows that the

3DVar scheme best fits the observations, followed by

4DVar, while the EnKF analysis has the largest difference

between the radiosonde observations throughout the vertical

domain. This result confirms that an analysis with a closer fit

to observations does not necessarily lead to a better forecast.

Figure 5 summarizes the domain-averaged (in both ver-

tical and horizontal directions) RMSEs further averaged

over all 59 WRF forecasts of the month for each DA

experiment at forecast lead times from 0 to 72 h evalu-

ated every 12 h. Beyond what have been shown in Figs. 2

and 3, it is found that 4DVar has consistently smaller

error than 3DVar from 12- to 48-h forecast lead times for

horizontal winds and temperature fields, but their fore-

cast error amplitude becomes comparable afterward (at

60 and 72 h). The differences in the RMSE of the mois-

ture field between 4DVar and 3DVar are relatively small,

since few moist processes are considered in the linear

models of 4DVar (Huang et al. 2009). This implies that the

4DVar may not resolve more flow-dependent moist in-

formation through adjoint minimization than that in the

static background error covariance as in 3DVar. On the

other hand, the advantage of the EnKF over both 3DVar

and 4DVar becomes more evident after the 36-h forecast

time for all forecast fields, while the EnKF moisture

forecast field is superior to those of both 3DVar and

4DVar at all lead times despite fitting less closely to the

observations at the analysis time. This result is consistent

with the time dependence of the relative performance of

4DVar and EnKF in previous works (Caya et al. 2005;

Buehner et al. 2010a,b). It is rather remarkable that the

72-h forecast error of the EnKF is comparable in mag-

nitude to the 48-h error of 3DVar/4DVar, a gain of nearly

1-day lead time in forecast accuracy.

Figure 6 shows the time evolution of the vertically av-

eraged 72-h RMSEs from all DA experiments, which

FIG. 5. Domain-averaged RMSEs further averaged over all 59 WRF forecasts of the month for each DA experiment at forecast lead times

from 0 to 72 h evaluated every 12 h for (a) U (m s21), (b) V (m s21), (c) T (K), and (d) Q (g kg21).
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displays an apparent fluctuation between different ini-

tialization times. The 72-h RMSE of the 4DVar-initialized

forecasts is comparable to that of the 3DVar over all months

while the advantage of the EnKF over the two variational

schemes is most evident for a few episodes (e.g., 10–13 June)

that feature the passage of strong mesoscale convective

systems (Davis et al. 2004; Hawblitzel et al. 2007).

The clear advantage of the EnKF over 3DVar and

4DVar in the moisture field in all verifications signifies the

benefit of using a flow-dependent background error co-

variance, since the balance used to estimate the back-

ground error covariance in WRF-Var (the same for both

3DVar and 4DVar) does not include the multivariate

correlations for moisture field. The lack of multivariate

balance may be one of the key factors impacting the DA

performance. The EnKF also benefits from using a multi-

physics ensemble mean for an improved forecast prior

before the analysis (Meng and Zhang 2008a). However, it is

unclear whether the faster growth of forecast error in winds

and temperature of variational methods is a result of the

larger error in moisture field initially or is due to the use of

a static background error covariance that is not in balance

with the flow-dependent moisture field, or a combination of

both, which will be further examined in a future study.

4. Concluding remarks

The intercomparison of three state-of-the-art data as-

similation approaches is presented on the platform of the

regional-scale WRF model configurations, covering both

variational (3DVar/4DVar) and ensemble-based (EnKF)

methods over the month of June 2003. The accuracy of the

12-to-72 h forecasts initiated from various DA methods by

assimilating surface and upper-air observations is exam-

ined. The EnKF and 4DVar generally have comparable

performance, both of which are better than 3DVar, for the

12-to-36-h forecast skills of horizontal winds and temper-

ature, while the EnKF has a substantially lower RMSE in

moisture than 4DVar (and 3DVar) at all forecast lead

times. The advantage of the EnKF for the moisture field is

likely due to its use of multivariate flow-dependent back-

ground error covariance in contrast to the static covariance

used in 3DVar/4DVar, as found in previous limited-area

studies of Meng and Zhang (2008b) and Torn and Hakim

(2008). The advantages of the EnKF over 4DVar (and

3DVar) become more pronounced for all forecast quan-

tities examined at long forecast lead times (48–72 h). This

advantage is particularly remarkable during active con-

vective episodes of the month over the verifying domain.

FIG. 6. As in Fig. 3, but for the 72-h forecast RMSEs.
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Between the two variational schemes, the 4DVar con-

sistently outperforms 3DVar for both horizontal winds and

temperature up to 60-h forecast lead times but becomes

comparable afterward. The 4DVar has similar amplitude

of moisture RMSE to that of 3DVar at all lead times,

suggesting that the simple moist physics used in the adjoint

model of 4DVar is insufficient to adjust the moisture field

to other fields.

The current study is based on a relatively coarse reso-

lution because of the high computational cost required by

the current 4DVar implementation. More systematic

comparisons are planned in the future on the DA per-

formances over a finer-resolution domain. On the other

hand, since the advantage of 4DVar over 3DVar comes

from the adjoint integration and minimization over the

entire 6-h assimilation window while the advantage of the

EnKF over 3DVar comes from the flow-dependent back-

ground error covariance, it is foreseeable to combine both

of these advantages in a hybrid data assimilation system

that couples the EnKF with 4DVar. A proof-of-concept

study of such a hybrid system is shown to be promising in

Zhang et al. (2009); there the short-term ensemble forecast

from the EnKF provides the flow-dependent error co-

variance for 4DVar while the 4DVar analysis replaces the

mean of the EnKF analysis. Our ongoing work investigates

the coupling of an EnKF with 4DVar in the WRF frame-

work that builds on the work of Zhang et al. (2009) as well

as on the WRF EnKF–3DVar hybrid study of Wang et al.

(2008); the preliminary results are very encouraging and

will be reported in a separate paper.
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