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ABSTRACT
Through the analysis of ensembles of coupled model simulations and projections collected from CMIP3 and CMIP5, we

demonstrate that a fundamental spatial scale limit might exist below which useful additional refinement of climate model
predictions and projections may not be possible. That limit varies among climate variables and from region to region. We
show that the uncertainty (noise) in surface temperature predictions (represented by the spread among an ensemble of global
climate model simulations) generally exceeds the ensemble mean (signal) at horizontal scales below 1000 km throughout
North America, implying poor predictability at those scales. More limited skill is shown for the predictability of regional
precipitation. The ensemble spread in this case tends to exceed or equal the ensemble mean for scales below 2000 km. These
findings highlight the challenges in predicting regionally specific future climate anomalies, especially for hydroclimatic
impacts such as drought and wetness.
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1. Introduction
There is widespread scientific consensus that the accu-

mulation of greenhouse concentrations from fossil fuel burn-
ing and other human activities is leading to a warming of
the globe and other associated changes in large-scale climate
(IPCC, 2013). Most assessments indicate that the cost of
the resulting damage from climate change will rise to sev-
eral percent of the global economy in the decades ahead if
left unchecked. Yet, our ability to assess the regional impacts
of climate change, which are critical both to assessing the
damage caused by climate change and the implementation of
adaptive strategies, remains hampered by the remaining sub-
stantial uncertainties associated with regional climate projec-
tions (Murphy et al., 2004; Tebaldi et al., 2005; Hawkins and
Sutton, 2009; Deser et al., 2012; Watterson et al., 2014).
Regional climate projections are typically derived by one

of two methods: statistical downscaling or dynamical down-
scaling (IPCC, 2013). In the former case, statistical relation-
ships between coarse and fine scales derived from modern
climate data are used to take coarse-scale climate model pre-
dictions/projections and estimate the likely impact on climate
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statistics at finer spatial and temporal scales. In the latter case,
information from coarse climate models is used as bound-
ary constraints on a finer resolution model (a regional climate
model) that resolves the smaller spatiotemporal scales of in-
terest. In either case, there is an assumption of a predictable
relationship between the large scales captured in the coarse
climate model projection and the local scales sought by the
downscaling method.
Downscaled climate model projections have increasingly

been used as guidance for policymakers and stakeholders at
the local, national, and international level in assessing poten-
tial impacts and risks associated with human-caused climate
change (von Storch et al., 1993; Mearns et al., 1999; Jones et
al., 2011). However, the reliability of these projections con-
tinues to be debated. There is clearly skill in the largest-scale
quantities; for example, the observed increase in global mean
temperature (and even continental mean temperatures) can
be detected and attributed to anthropogenic climate change
(IPCC, 2007). However, confidence in regional-scale projec-
tions of surface temperature and precipitation is considerably
lower (Whetton et al., 2007; Separovic et al., 2008;Watterson
and Whetton, 2011; Deser et al., 2012; Li et al., 2012).
In the current study, we seek to quantify the predictability

of regional-scale climate change, with an emphasis on surface
temperature and precipitation, across the coterminous United
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States and surrounding areas, through analysis of the mul-
timodel ensembles of coupled model simulations collected
from both CMIP3 and CMIP5. In section 2 we describe the
data and methods used in the study. In section 3 we present
an analysis of regional climate predictability based on CMIP5
multimodel historical simulations. In section 4 we provide a
complementary analysis of CMIP3 multimodel simulations,
analyzing both historical simulations and future projections.
Conclusions are presented in section 5.

2. Data and methodology
We analyze surface temperature and precipitation fields

across the coterminous United States and neighboring
oceanic regions (15◦–60◦N, 70◦–130◦W), as derived from
both observational data and an ensemble of climate model
simulations.
Observational data analyzed include monthly mean 5 ◦

latitude × 5◦ longitude grid-box near-surface temperature
anomalies over 1850–2014 from HadCRUT4. We add the
reference period climatology over 1961–90 to yield absolute
surface temperatures. Precipitation data are taken from the 1 ◦
latitude × 1◦ longitude GPCC dataset over the period 1979–
2004.
For the climate model simulations, monthly mean surface

(2 m) air temperature and precipitation spanning the period
1979–2004 are available for 38 climate models in the histori-
cal late 19th to early 21st century 20C3M CMIP5 simulation
archives, and 18 for CMIP3 (Taylor et al., 2012) (Table 1).
Where multiple simulations are available for a given model,
a single ensemble mean is calculated to ensure that each dis-
tinct model is represented equally in the ensuing analysis.
We focus our analysis on the boreal summer (June–

August) climatological period during the 1979–2004 pe-
riod of overlap between observations and model simulations.
Both observational and model data are interpolated to a com-
mon (T85, ∼1.4◦ latitude × 1.4◦ longitude) spatial resolution
prior to analysis. For the purpose of the ensuing analyses, we
define the following terms:
(1) Ensemble mean: the uniform arithmetic mean of all

ensemble members;
(2) Ensemble spread: the uniform arithmetic mean of the

absolute difference between any two members across all en-
semble members;
(3) Ensemble mean error or bias: the (signed) difference

between the model ensemble mean and the observational
analysis.
In addition to evaluating the ensemble mean, ensemble

spread, and error for the observational and model fields them-
selves, we perform a power spectral analysis (using the Fast
Fourier transform) of the fields to evaluate the power spec-
tral density (PSD) characteristics of the various quantities in
wavenumber space. In these analyses:
(1) The ensemble mean power spectrum (P) is defined as

the PSD of the non-weighted arithmetic mean (Vm) for all
ensemble members (M = 38):

P = PSD(Vm),Vm = (1/M)
∑
i Vi,M = 38;

(2) The PSD of the ensemble spread is defined as:
ΔP = (1/N)

∑N
k=1Pd,Pd = PSD(Vi−Vj), where i and j are

any pair of ensemble members and N = 703.
(3) The PSD of the ensemble mean error or bias is defined

as the power spectra of the difference between the ensemble
mean and the observation, i.e.,
P′ = PSD(Vm−Vo), where Vm and Vo refer to the ensem-

ble mean and observational variables, respectively.
The ratio of the PSD ensemble mean (signal) and en-

semble spread (noise) as a function of wavenumber defines
a scale-dependent SNR measure (Bei and Zhang, 2007). A
ratio smaller than unity indicates that the noise amplitude is
greater than the signal amplitude, and implies that model es-
timates of mean changes are unreliable at that spatial scale.
Wavenumber 1 corresponds to a single sinusoidal fluctuation
over the entire circle of latitude, i.e., it is the coarsest pos-
sible measure of zonal variability (wavenumber 0 represents
the zonal mean). Since the selected U.S. domain is precisely
1/6 of a circle of latitude, the lowest resolvable wavenumber
for that domain is global wavenumber 6. The horizontal scale
(wavelength) for a given wavenumber is the length of the cir-
cle of latitude divided by the wavenumber, e.g., the length
scale corresponding to wavenumbers 1, 2, 3, 4, 5, 6 and 9 are
∼36 000, 18 000, 12 000, 9000, 7200, 6000 and 4000 km,
respectively.

3. CMIP5 multimodel historical experiments
We form estimates of the internal variability in the cli-

mate means of summertime precipitation and surface air tem-
perature during the period 1979–2004 using the multimodel
ensemble of 38 CMIP5 historical simulations (Fig. S1 in
electronic supplementary material). The mean difference be-
tween any two models within the 38-model ensemble is de-
fined as the ensemble spread; a measure of uncertainty of any
deterministic prediction assuming the truth (as well as any
single deterministic prediction) is a random draw out of the
multimodel ensemble. The ensemble spread can be regarded
as a lower bound on the model uncertainty, since it neither
accounts for the potential bias due to deficiencies in model
physics that are common among models, nor uncertainties in
forcing (both anthropogenic and natural).
Figures 1a and b show the resulting mean and ensem-

ble spread of surface temperature and monthly precipitation
over the U.S. domain. The largest uncertainty for the sur-
face temperature field is found over the western U.S., with
the ensemble spread as high as 5◦C–6◦C; followed by the
central U.S., with a spread of 3◦C–5◦C; and the eastern U.S.,
with a spread of ∼1.5◦C–3◦C (all higher than the surrounding
oceans, at ∼0.5◦C–1.5◦C). It is worth noting that the warm-
ing trend over the U.S. during the past century is on the order
of 1◦C (Ji et al., 2014), though it is beyond the scope of this
study to examine the scale-, variable- and location-dependent
predictability of the climate trend.
The large uncertainty in the mean surface temperature
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Table 1. List of the CMIP5 models used in this study (IPCC, 2013).

Model Sponsor

Atmospheric
resolution (lat
× lon)

BCC CSM1.1 Beijing Climate Center, China Meteorological Administration 2.8◦ ×2.8◦
BCC CSM1.1(m) Beijing Climate Center, China Meteorological Administration 2.8◦ ×2.8◦
CanCM4 Canadian Centre for Climate Modeling and Analysis 2.8◦ ×2.8◦
CanESM2 Canadian Centre for Climate Modeling and Analysis 2.8◦ ×2.8◦
CCSM4 National Center for Atmospheric Research 0.9◦ ×1.25◦
CESM1-BGC Community Earth System Model Contributors 0.9◦ ×1.25◦
CESM-CAM5 Community Earth System Model Contributors 0.9◦ ×1.25◦
CESM1-FASTCHEM Community Earth System Model Contributors 0.9◦ ×1.25◦
CESM1-WACCM Community Earth System Model Contributors 1.875◦ ×2.5◦
CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici 3.75◦ ×3.75◦
CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 0.75◦ ×0.75◦
CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 1.875◦ ×1.875◦
CNRM-CM5-2 Centre National de Recherches Météorologiques/Centre Européen de Recherche et Forma-

tion Avancée en Calcul Scientifique
1.4◦ ×1.4◦

CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen de Recherche et Forma-
tion Avancée en Calcul Scientifique

1.4◦ ×1.4◦

CSIROMk3.6.0 Commonwealth Scientific and Industrial Research Organization in collaboration with
Queensland Climate Change Centre of Excellence

1.875◦ ×1.875◦

EC-EARTH EC-EARTH consortium 1.125◦ ×1.125◦
GFDL CM2.0p1 NOAA Geophysical Fluid Dynamics Laboratory 2◦ ×2.5◦
GFDL CM3 NOAA Geophysical Fluid Dynamics Laboratory 2◦ ×2.5◦
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory 2◦ ×2.5◦
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 2◦ ×2.5◦
GISS-E2-H-CC NASA Goddard Institute for Space Studies 2◦ ×2.5◦
GISS-E2-H NASA Goddard Institute for Space Studies 2◦ ×2.5◦
GISS-E2-R-CC NASA Goddard Institute for Space Studies 2◦ ×2.5◦
HadCM3 Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto

Nacional de Pesquisas Espaciais)
2.5◦ ×3.75◦

HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological Administration 1.25◦ ×1.9◦
HadGEM2-CC Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto

Nacional de Pesquisas Espaciais)
1.25◦ ×1.9◦

HadGEM2-ES Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto
Nacional de Pesquisas Espaciais)

1.25◦ ×1.9◦

INM-CM4.0 Institute for Numerical Mathematics 1.5◦ ×2◦
IPSL-CM5A-LR L’Institut Pierre-Simon Laplace 1.875◦ ×3.75◦
IPSL-CM5A-MR L’Institut Pierre-Simon Laplace 1.25◦ ×2.5◦
IPSL-CM5B-LR L’Institut Pierre-Simon Laplace 1.875◦ ×3.75◦
MIROC5 Atmospheric and Ocean Research Institute (The University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for Marine-Earth Science and Technology
1.4◦ ×1.4◦

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, Atmospheric and Ocean Research
Institute (The University of Tokyo), and National Institute for Environmental Studies

2.8◦ ×2.8◦

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmospheric and Ocean Research
Institute (The University of Tokyo), and National Institute for Environmental Studies

2.8◦ ×2.8◦

MRI-CGCM3 Meteorological Research Institute 1.125◦ ×1.125◦
MRI-ESM1 Meteorological Research Institute 1.125◦ ×1.125◦
NorESM1-ME Norwegian Climate Centre 2.5◦ ×2.5◦
NorESM1-M Norwegian Climate Centre 1.875◦ ×2.5◦
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field (Fig. 1a) can be interpreted through a parallel assess-
ment using the observational (HadCRUT4) surface temper-
ature during the overlapping time period (Fig. 1c). The er-
ror/bias can be estimated as the model ensemble mean mi-
nus the observations. The domain-averaged ensemble spread
(∼2.1◦C) is found to be larger but grossly comparable to
the domain-averaged root-mean-square of this estimate of
error/bias (1.2◦C). Moreover, the spatial pattern of the er-
ror/bias is similar to that of the ensemble spread, with the
western U.S. displaying the largest mean error, followed by
the Great Plains in the central U.S., and finally the eastern
U.S. There are, however, some notable differences as well. Of
particular interest is the relatively low spread over the North
American west and east coasts and neighboring ocean regions
(Fig. 1a), which contrasts with the large error/bias estimates
over these same regions (Fig. 1c). This suggests the pres-
ence of a systematic bias that is common to most or all of the
climate models, perhaps associated with deficiencies in the

models’ representations of land–sea contrast or continental
sea-breeze circulations.
The region of maximum uncertainty (ensemble spread)

for precipitation (Fig. 1b) is found over lower latitudes (the
south central U.S. and Latin America), with an ensemble
spread exceeding 2.5 mm d−1—roughly half the amplitude of
the observed mean (signal). A second uncertainty maximum
in precipitation is located over the northern Great Plains in
the lee of the Rockies, with an ensemble spread exceeding
1.5 mm d−1. The spatial pattern of the ensemble mean er-
ror (Fig. 1d) is once again grossly consistent with that for the
ensemble spread (uncertainty), in that regions of peak am-
plitude are similar (e.g., common maxima along the south-
ern edge of the domain and northern Great Plains), though
the ensemble mean errors of approximately−2.5 mm d−1 are
considerably larger than the ensemble spread for the Gulf
Coast and Florida Peninsula. In addition, the North Amer-
ican domain-mean absolute ensemble mean error and spread

 

Fig. 1. Ensemble mean and spread/error for CMIP5 historical simulations and observations of summer (June–August)
surface air temperature and precipitation over the U.S. during 1979–2004. Top: ensemble mean (contours) and ensem-
ble spread (color-shaded) for (a) surface air temperature and (b) precipitation. Bottom: observational mean (contours)
and error (color-shaded) for (c) surface air temperature and (d) precipitation. The corresponding domain-mean spreads
are 2.09◦C for (a), 0.97 mm d−1 for (b), 1.16◦C for (c), and 0.58 mm d−1 for (d).
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are also comparable in magnitude (0.58mm d−1 and 0.97mm
d−1, respectively).
Unlike surface temperature, which is primarily deter-

mined by large-scale processes, precipitation is heavily in-
fluenced by smaller-scale processes including moist convec-
tion, land–sea contrast, and orographic lifting. This distinc-
tion is exemplified by the local maxima for both ensemble
mean error and spread over the Gulf of Mexico (hot spot of
convection) and the mountainous areas of the western U.S.
(where orographic effects are important). Comparing Figs.
1b and d suggests that, for the CMIP5 simulations of clima-
tological mean precipitation, the ensemble spread can be used
qualitatively to assess the uncertainty in the ensemble mean
estimate. To place the U.S. results in a broader perspective,
we also compare the ensemble mean, spread, and error for
the global domain (not shown). The basic results discussed
above appear to apply at this larger scale as well (though a
detailed analysis of the global domain is beyond the scope of
the current study).
The spatial scale–dependence of the predictability of sur-

face temperature and precipitation is quantified by evaluating
the PSD along both global circles of latitude and a latitudi-
nal/longitudinal sub-region containing the coterminous U.S.
(15◦–60◦ N, 70◦–130◦W). Figure 2 shows the ensemblemean
(left) and ensemble spread (middle) PSD for the CMIP5 sur-
face temperature and precipitation fields, along with the ratio
of the ensemble mean to the ensemble spread, i.e., the SNR
(right) as a function of global wavenumber. For the global
circle of latitude ensemble mean temperature (Fig. 2a), the
PSD exhibits a peak at lower wavenumbers (1–3) for the mid-
latitudes (40◦–60◦N); while for the subtropics (20◦–40◦N),
three distinct spectral peaks are observed (wavenumbers 1, 3
and 5). By contrast, for the ensemble spread, the PSD (Fig.
2b) decreases quite gradually in both the midlatitudes and
the subtropics, though greater amplitudes are found across
all wavenumbers for the former. The SNR (Fig. 2c) exceeds
unity at all latitude and wavenumber ranges, with the excep-
tion of (1) wavenumber 4 between 40◦–60◦N, (2) wavenum-
ber 6 poleward of 50◦N, and (3) wavenumber 9 between 45◦–
55◦N. Given the SNRs, surface temperature projections can
be considered most reliable for wavenumbers 1–2 in the mid-
latitudes, and wavenumbers 1, 3 and 5 within the subtrop-
ics. Therefore, meaningful surface temperature predictions
(SNR>1) appear possible over a somewhat broad range of
latitudes and wavenumbers.
For the more limited U.S. sub-region, the ensemble mean

(Fig. 2d) and spread (Fig. 2e) are both larger at lower
wavenumbers than for their global counterparts, but the SNR
(Fig. 2f) falls below unity for global wavenumber 12 (hor-
izontal scale of 30◦ longitudinal variation, i.e., distances of
∼3000 km) over the central latitudes of the U.S. (35 ◦–45◦N),
and for nearly all wavenumbers greater than 36 (scales less
than 10◦ in longitudinal distance, i.e., distances less than
∼1000 km). This observation implies that state-of-the-art
(i.e., CMIP5) climate model projections are likely to exhibit
very limited skill in predicting regional variations in surface
temperature at scales below 1000 km. It is noteworthy that

wavenumber 18 (∼20◦ or ∼2000 km in longitudinal distance)
exhibits the maximum SNR at nearly all latitudes for the U.S.
domain. We interpret this observation as indicative of the in-
fluence of topographical features in the U.S. that induce en-
hanced predictability at this characteristic spatial scale.
The findings for precipitation (Figs. 2g and h) are quite

different from those for surface temperature (Figs. 2a and b).
Precipitation exhibits greater spectral amplitude in the sub-
tropics relative to the midlatitudes, especially for lower (1–2)
wavenumbers. SNRs at the global scale (Fig. 2i) are generally
lower, substantially exceeding unity only for wavenumbers
1–2 between 20◦N and 50◦N, and wavenumber 4 between
40◦N and 60◦N. Low predictability (SNR<1) is observed
even at wavenumbers 1–2 poleward of 50 ◦N, implying con-
siderable challenges in predicting regional-scale variations in
precipitation at high latitudes. Interestingly, however, for the
U.S. regional sub-domain (Figs. 2j–l), there are apparently
predictable signals (SNR>1) for global wavenumbers 6–12
at nearly all latitudes, and for even higher wavenumbers (24–
60, i.e., scales as small as 600 km) in the central U.S. lati-
tudes (35◦–45◦N). The larger signals over these latitudes in
the North American domain may be related to regional-scale
terrain effects and land–ocean contrasts, although some mod-
els may still have deficiencies in simulating these effects.
To further assess the scale and latitude dependence of

surface temperature and precipitation predictability over the
U.S. sub-domain, we average the fields over three represen-
tative latitude ranges (low latitude, 15◦–30◦N; midlatitude,
30◦–45◦N; and high latitude, 45◦–60◦N; see Fig. 3). Given
that the observations represent a single realization drawn
from a larger distribution of possible climate histories, if the
model ensemble accurately reflects the true climate, the PSD
of the observations should be similar to that of individual en-
semble members, and the ensemble mean should reflect the
approximate mode of the distribution. On the other hand, the
PSD of the ensemble spread (representing the uncertainty)
should closely resemble that of the difference between the en-
semble mean and observations (error/bias) across wavenum-
bers.
For the global domain, the PSD of the ensemblemean and

observational mean are indeed similar for all latitude ranges
for both surface temperature and precipitation. An exception
is the anomalously low PSD values for surface temperature at
wavenumber 2 and those exceeding ∼50, the latter of which
we attribute to the low spatial density of surface temperature
observations over the open ocean. The PSD for the ensem-
ble spread generally exceeds that of the ensemble error/bias
at most wavenumbers, and especially at lower wavenumbers
(<10) and for surface temperature. Consistent with our ear-
lier findings (Fig. 2), the PSD for both the ensemblemean and
observations (i.e., the signals) exceed those for the ensem-
ble spread and error (noise or uncertainties) for wavenum-
bers 1–20 for all three latitude ranges for surface temperature
(Figs. 3a–c), implying predictability across the associated
spatial scales. For precipitation, by contrast, predictability is
only evident (Figs. 3g–i) for wavenumbers 1–3 for the low-
latitude (15◦–30◦N) and midlatitude (30◦–45◦N) zone, and
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Fig. 2. Wavenumber–latitude distribution of the PSD of (a–f) surface air temperature and (g–l) precipitation over the
global (0◦–360◦) and U.S. regional (70◦–130◦W) sub-domain. Shown are the PSDs for the ensemble mean, i.e., sig-
nal (left); ensemble spread, i.e., noise (middle); and ratio of the former to the latter, i.e., the SNR (right). The PSD
amplitude scale is logarithmic.
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Fig. 3. PSD of the observations (black), ensemble mean (red), ensemble error (blue) and ensemble spread (green) for summer
(June–August) (a–f) surface air temperature and (g–l) precipitation over the global (0◦–360◦E) and U.S. regional (70◦–130◦W)
sub-domain averaged over three different latitude bands (left, 15◦–30◦N; middle, 30◦–45◦N; right, 45◦–60◦N). Scales for both
axes are logarithmic.

for almost no wavenumbers for the high-latitude (45 ◦–60◦ N)
zone.
For the U.S. regional sub-domain, the PSD for the ensem-

ble mean is generally consistent with that for the observations
for both surface temperature and precipitation, and low and
intermediate wavenumbers. However, for the high-latitude

zone (45◦–60◦N) the ensemble-mean PSD considerably ex-
ceeds that of the observations for higher (> 24 for surface
temperature and > 12 for precipitation) wavenumbers. The
discrepancy between the ensemble spread and the ensemble
mean error/bias is considerably greater for the U.S. regional
domain than for the global domain as well.
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The inferred predictability of surface temperature and
precipitation for the U.S. regional domain varies considerably
between the two variables and three latitude ranges (Figs. 3d–
f, j–l). For example, the SNR for surface temperature exceeds
unity for all wavenumbers lower than 36 (spatial scales as
small as ∼1000 km) for the low-latitude (15◦–30◦N) zone,
but the SNR is close to the “no predictability” value of unity
for nearly all wavenumbers for the midlatitude (30 ◦–45◦N)
and high-latitude (45◦–60◦N) zones. For precipitation, only
for the midlatitude zone (30◦–45◦N) is there evidence of pre-
dictability, and at fairly low (6–12) global wavenumbers (i.e.,
spatial scales no less than ∼6000 km). These examples high-
light the challenge for regional-scale climate predictability in
North America with existing state-of-the-art global climate
models.

4. CMIP3 historical experiments and future
projections

To further investigate the robustness of our findings based
on the CMIP5 historical simulations (Figs. 1–3) we perform

parallel analyses using the CMIP3 (Meehl et al., 2007; Wat-
terson et al., 2014) (Table 2) multimodel ensemble simula-
tions using both (1) the same historical period (1979–2004)
(Zhou and Yu, 2006; Timm and Diaz, 2009) and (2) the
CMIP3 (“A2” scenario) 21st century climate change projec-
tions.
Our conclusions regarding the predictability of regional-

scale climate over North America with the CMIP5 historical
simulations (Figs. 1–3) are similar to those obtained with the
CMIP3 historical multimodel simulations (Figs. 4–6), with
only one minor discrepancy: slightly lower SNR values are
found for both the global surface temperature and precipita-
tion fields over the midlatitudes of North America for global
wave numbers 6–12. The fact that little-to-no improvement in
regional predictability is found to result from the substantial
model development and improvement reflected by the 5-year
period between CMIP3 and CMIP5 suggests that, even with
increasingly refined and detailed climate models, our conclu-
sions regarding an apparent scale limit for regional-scale cli-
mate predictability are likely to remain true.
Similar conclusions are also obtained for the 21st cen-

tury projections using the “A2” emissions scenario for the pe-

 

Fig. 4. As in Fig. 1 but using CMIP3 historical simulations.



AUGUST 2016 ZHANG ET AL. 913

Fig. 5. As in Fig. 2 but using CMIP3 historical simulations.

riod 2074–99 using the CMIP3 multimodel ensemble simula-
tions (Figs. 7–9). Even though obviously we do not have ob-
servations to verify these simulations, our conclusions again

remain mostly unchanged: there is an apparent scale limit
by which the uncertainty in the prediction (noise) becomes
greater than the ensemble mean prediction (signal). This fur-
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Fig. 6. As in Fig. 3 but using CMIP3 historical simulations.

ther highlights the limited predictability of climate models,
especially at regional scales for different climate scenarios.

5. Concluding remarks

In summary, through an analysis of surface temperature
and precipitation variability in the CMIP5 historical simu-

lations and comparisons with observational data during the
overlapping (1979–2014) interval of the late 20th/early 21st
century, we have found that there appears to be a fundamen-
tal scale limit below which refinement of climate model pre-
dictions may not be possible. While the predictability limit
depends on the variables and regions analyzed, the averag-
ing period and/or season, a seemingly robust result is that,
for North America, the uncertainty due to intrinsic noise ap-



AUGUST 2016 ZHANG ET AL. 915

 

Fig. 7. Ensemble mean (contours) and ensemble spread (color-shaded) for CMIP3 “A2” scenario future projections
(AD 2074–99) for (a) averaged summer (June–August) surface air temperature and (b) precipitation over the U.S.

Table 2. List of CMIP3 models used in this study (IPCC, 2007).

Model Sponsor

Atmospheric
resolution (lat
× lon)

BCCR-BCM2.0 Bjerknes Centre for Climate Research, Norway 2.8◦ ×2.8◦
CCCMA CGCM3 1.5 Canadian Centre for Climate Modelling & Analysis 2.8◦ ×2.8◦
CNRM-CM3.1 Météo-France/Centre National de Recherches Météorologiques 2.8◦ ×2.8◦
CSIROMK3.0.2 CSIRO Atmospheric Research 1.875◦ ×1.875◦
CSIROMK3.5.3 CSIRO Atmospheric Research 1.875◦ ×1.875◦
GFDL CM2.0 0.3 US Dept. of Commerce/NOAA/Geophysical Fluid Dynamics Laboratory 2.5◦ ×2◦
GFDL CM2.0 1.3 US Dept. of Commerce/NOAA/Geophysical Fluid Dynamics Laboratory 2.5◦ ×2◦
GISS MODEL E R.9 NASA/Goddard Institute for Space Studies 5◦ ×4◦
INGV ECHAM4.1 Instituto Nazionale di Geofisica e Vulcanologia 1.125◦ ×1.125◦
INM CM3.0.1 Institute for Numerical Mathematics 5◦ ×4◦
IPSL-CM4.1 L’Institut Pierre Simon Laplace 3.75◦ ×2.5◦
MIROC3.2 (medres) Center for Climate System Research (The University of Tokyo), National Institute for En-

vironmental Studies, and Frontier Research Center for Global Change (JAMSTEC)
2.8◦ ×2.8◦

MPI ECHAM5.4 Max Planck Institute for Meteorology 1.875◦ ×1.875◦
MRI-CGCM2 3 2A.5 Meteorological Research Institute 2.8◦ ×2.8◦
NCAR CCSM3 0.8 National Center for Atmospheric Research 1.4◦ ×1.4◦
NCAR PCM1.4 National Center for Atmospheric Research 2.8◦ ×2.8◦
UKMO HADCM3.2 Hadley Centre for Climate Prediction and Research/Met Office 3.75◦ ×2.75◦
UKMO HADGEM1.2 Hadley Centre for Climate Prediction and Research/Met Office 3.75◦ ×2.75◦

proaches in magnitude the amplitude of the climate change
signal at horizontal scales below about 1000 km for surface
temperature, and 2000 km for precipitation.
Our findings generalize beyond the specifics of the

CMIP5 historical simulation ensemble. Parallel analyses
of both (i) the earlier generation CMIP3 historical simula-

tion ensemble and (ii) 21st century climate projections based
on the CMIP3 “A2” emissions scenario, yield qualitatively
very similar conclusions. Given that downscaling methods
(whether based on statistical or dynamical approaches) re-
quire information from large-scale climate model simulations
as boundary conditions and/or reference states, the lack of
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Fig. 8. As in Fig. 2 but using CMIP3 “A2” scenario future projections (AD 2074–99).

predictability at these larger scales likely translates to a lack
of predictability at local scales. One apparent exception,
based on our findings, are cases where smaller-scale oro-
graphic forcing or land–sea contrasts provide additional pre-

dictability at smaller scales.
Given the importance of future projections of surface

temperature and precipitation for assessing climate change
impacts such as heat stress, flooding potential and drought
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Fig. 9. As in Fig. 3 but using CMIP3 “A2” scenario future projections (AD 2074–2099).

magnitude, duration and extent, our findings suggest great
challenges in assessing climate change risk and damage at re-
gional scales most important to stakeholders and policymak-
ers. One potential implication of our findings is that regional
adaptation efforts might, in some circumstances, be better fo-
cused on reducing vulnerability to climate change in general,
rather than planned adaptation to specific projected climate
changes.
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