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ABSTRACT

This article presents the first practice of assimilating real-world all-sky GOES-16 ABI infrared brightness
temperature (BT) observations using an ensemble-based data assimilation system coupled with the Weather
Research and Forecasting (WRF) Model at a convection-allowing (1 km) horizontal resolution, focusing on
the tornadic thunderstorm event across Wyoming and Nebraska on 12 June 2017. It is found that spurious
clouds created before observed convection initiation are rapidly removed, and the analysis and forecasts of
thunderstorms are significantly improved, when all-sky BT observations are assimilated with the adaptive
observation error inflation (AOEI) and adaptive background error inflation (ABEI) techniques. Better
forecasts of the timing and location of convection initiation can be achieved after only 30 min of assimilating
BT observations; both deterministic and probabilistic WRF forecasts of midlevel mesocyclones and low-level
vortices, started from the final analysis with 100 min of BT assimilation, closely coincide with the tornado
reports. These improvements result not only from the effective suppression of spurious clouds, but also from
the better estimations of hydrometeors owing to the frequent assimilation of all-sky BT observations that
yield a more accurate analysis of the storm. Results show that BT observations generally have a greater impact
on ice particles than liquid water species, which might provide guidance on how to better constrain modeled
clouds using these spaceborne observations.

1. Introduction

Severe thunderstorms that produce damaging winds,
flash floods, hail, and tornadoes have long been one of
the major threats to human life and property. When
examining billion-dollar weather and climate disasters
in the United States during 1980–2017, it is shown that
severe thunderstorms are responsible for over 40% of
the total number of these events, almost 1/7 the total
economic losses, and about 1/6 of the deaths (NCDC
2018). Monitoring and predicting severe thunder-
storms is one of the most important and most difficult
parts of operational weather forecast and warning op-
erations. The average warning lead time for torna-
does has increased from 3 min in 1978 to 14 min in
2011 (Wurman et al. 2012; Stensrud et al. 2013), thanks
in large part to the establishment of the nationwide
Weather Surveillance Radar-1988 Doppler (WSR-
88D) network.

Doppler weather radars play a critical role in the
current severe weather warning paradigm, either via
direct utilization of their reflectivity and radial velocity
observations or in combination with numerical weather
prediction models through data assimilation techniques
(e.g., Polger et al. 1994; Clark et al. 2012). The next-
generation geostationary weather satellites, including
Himawari-8/9 of the Japan Meteorological Agency
(Bessho et al. 2016), the GOES-R series of NASA
(Schmit et al. 2005), the FY-4 series of the China Me-
teorological Administration (Yang et al. 2017), and the
Meteosat Third-Generation (MTG) series of the
EUMETSAT (Stuhlmann et al. 2005), will provide a
similarly important opportunity to enhance the moni-
toring and prediction of severe weather events with
more spectral bands and higher spatial and temporal
resolutions than their predecessors. Himawari-8,
GOES-16, and FY-4A launched on 7 October 2014,
9 November 2016, and 10 December 2016, respectively,
and are already providing high-quality, continuous im-
ages of the atmosphere.Corresponding author: Fuqing Zhang, fzhang@psu.edu
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Infrared imagers on board geostationary weather
satellites, such as the Advanced Baseline Imager (ABI)
on board GOES-16, have some unique advantages over
ground-based Doppler weather radars. Cloud develop-
ment and extent is observed earlier by satellite imagers
that focus on radiance near Earth’s surface than by
Doppler weather radars where precipitating hydrome-
teors must be present for detection. Unlike Doppler
radars that suffer from limited horizontal coverage and
beam blocking from built structures, satellite imagers
can provide nephograms without ‘‘gaps.’’ Imagers like
ABI can provide scans of the continental United States
(CONUS) every 5 min, comparable to the interval of
each WSR-88D volume scan in precipitation mode
(5–6 min), with a subpoint horizontal resolution of 2 km
for infrared channels. This 2-km resolution is sufficient to
monitor the initiation and development of convective
clouds (Schmit et al. 2017). Because of these potential
benefits, it is desirable to directly assimilate infrared
brightness temperature (BT; will be used interchangeably
with ‘‘radiance’’ in this article) observations from geo-
stationary satellites into numerical weather prediction
(NWP) models with the goal to improve severe weather
forecasts.

Previous studies have assimilated synthetic infrared
BT observations from ABI using ensemble-based tech-
niques like the ensemble Kalman filter (EnKF; Evensen
1994; Houtekamer and Zhang 2016). The EnKF has the
advantage of providing flow-dependent time-varying
estimation of background error covariances, compared
with variational-based assimilation techniques like
3DVar (Zhang et al. 2011), and thus is widely used in
data assimilation applications for severe thunder-
storms at convection-allowing storm scales (e.g.,
Snyder and Zhang 2003; Aksoy et al. 2009; Dowell
et al. 2011; Wheatley et al. 2015; Yussouf et al. 2015;
Yokota et al. 2016). Observing system simulation
experiments (OSSEs) of the direct assimilation of syn-
thetic ABI BT observations using EnKF have mostly
focused on extratropical cyclones (Otkin 2010, 2012;
Zupanski et al. 2011; Jones et al. 2013), mesoscale con-
vective systems (Jones et al. 2014; Cintineo et al. 2016),
or tropical cyclones (F. Zhang et al. 2016; Minamide and
Zhang 2017, 2018a); recently, Honda et al. (2018a,b)
assimilated real-data all-sky radiance observations from
the Advanced Himawari Imager (AHI) on board the
Himawari-8 satellite, which has similar infrared chan-
nels as the ABI onboard the GOES-16 satellites, to
improve predictions of tropical cyclones and associated
torrential precipitation and floods. However, storm-
scale data assimilation studies using geostationary
satellite observations only assimilated temperature
and moisture profile retrievals (Jones et al. 2017),

cloud-top temperature (Kerr et al. 2015), water paths
of different hydrometeor species (Jones and Stensrud
2015; Jones et al. 2015, 2016), and GOES-13 clear-sky
infrared radiance (Jones et al. 2018), rather than all-sky
(clear sky and cloud affected) infrared radiance obser-
vations from high spatiotemporal imagers like the ABI.
This study is the first attempt to directly assimilate real-
world all-sky ABI infrared BT observations using an
EnKF approach with a numerical model running at a
convection-allowing 1-km horizontal resolution (finer
than all previous studies) to improve model forecasts
of a tornadic thunderstorm event.

The tornadic thunderstorm event from 12 June 2017
in Wyoming and Nebraska is briefly summarized in
section 2. The observations, numerical model, and ex-
periment design are presented in section 3. Verification of
the EnKF is discussed in section 4, followed in section 5
by an evaluation of the performance of the determin-
istic and ensemble forecasts initialized at various times
from the EnKF analysis. Results are summarized in
section 6.

2. Overview of the 12 June 2017 severe
weather outbreak

During the morning of 12 June 2017, an upper-level low
was moving eastward from northern Nevada into Utah,
with an upper-level jet located to its southeast and
stretching from southern Nevada and northern New
Mexico into Wyoming and Nebraska. Southeasterly winds
in the low levels to the east of the Rocky Mountains
transported abundant moisture into eastern Colorado and
southeastern Wyoming during the previous day. Strong
instability with surface-based CAPE above 3000 J kg21

and little to no CIN was present in this region by early
afternoon of 12 June. The 0–6-km wind shear exceeded
10ms21 in northeastern Colorado, southeastern Wyoming,
and the Nebraska panhandle, accompanied by a very
large supercell composite parameter (Thompson et al.
2003) greater than 8 as well as a very large significant
tornado parameter (Thompson et al. 2003) greater than 2
in the adjacent regions of these three states at local noon
[mountain standard time (MST); MST 5 UTC 2 0700].
The NOAA Storm Prediction Center (SPC) predicted a
moderate risk of severe thunderstorms with tornado
probability greater than 15% (with possible significant
tornadoes) and large hail probability greater than 45% in
eastern Wyoming and surrounding areas in its 1630 UTC
day 1 convective outlook issued on 12 June 2017. SPC
later issued a tornado watch at 1910 UTC for northeast
Colorado, western Nebraska, and southeast Wyoming
effective until 0200 UTC 13 June, indicating a particularly
dangerous situation (PDS) for possible intense tornadoes,
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large hail, and damaging winds—the first PDS tornado
watch ever issued for Wyoming.

Remotely sensed observations of this severe weather
event from before convection initiation until after
the final tornado report are shown in Figs. 1 and 2. The
composite reflectivity images of this event (Fig. 1) are
generated by interpolating the level 2 reflectivity of
three WSR-88Ds located at Denver, Colorado (KFTG),
Cheyenne, Wyoming (KCYS), and North Platte, Nebraska
(KLNX), onto a domain that is used for numerical
experiments with a horizontal resolution of 1 km (see
section 3 for the model settings) and taking the maxi-
mum values vertically as well as 2.5 min before and after
each plotting time. The BT images from channel 10 (Fig. 2),
the lower-level tropospheric water vapor channel of ABI
with a central wavelength of 7.3mm, are interpolated onto
same plotting grid as in Fig. 1.

Widespread convection initiated along the slopes of
the Rocky Mountains in north-central Colorado near
the border between Colorado and Wyoming, as well as
farther north in central Wyoming during early afternoon

around 2000 UTC (Figs. 1b, 2b). Several storms de-
veloped parallel to the mountain slopes (Figs. 1c,d), and
their overshooting tops can be clearly identified in sat-
ellite BT images (Figs. 2c,d). The storms moved north-
eastward into Wyoming and Nebraska (Figs. 1d–f, 2d–f),
with the southernmost storm generating the first EF-2
tornado of the day from 2258 to 2308 UTC with a
track across the Colorado–Wyoming border. There was
also another EF-2 tornado, which formed at 2309 UTC
from a separate storm farther to the north and lasted
until 0001 UTC 13 June. Between 2300 and 0100 UTC,
some of the storms merged (Fig. 1f), and new storms also
initiated alongside the existing storms (Figs. 1f–h),
generating multiple EF-0 and EF-1 tornadoes; several
studies imply that there might be relationships between
storm mergers and subsequent tornadogenesis (e.g.,
Wurman et al. 2007; Hastings and Richardson 2016;
Honda and Kawano 2016). All these storms eventually
combined to form a single very intense supercell thun-
derstorm (Figs. 1h, 2h). This supercell produced a long-
lived EF-2 tornado from 0119 to 0225 UTC that tracked

FIG. 1. Composite reflectivity at (a) 1900, (b) 2000, (c) 2040, (d) 2100, (e) 2200, and (f) 2300 UTC 12 Jun, and (g) 0000, (h) 0100, and
(i) 0200 UTC 13 Jun 2017. Shading of background indicates elevations. Filled triangles in all panels are tornado reports from SPC, with
different colors indicating reports from different tornadoes. Locations of WY, NE, and CO and the three WSR-88Ds that were used to
generate composite reflectivity are also marked in (a).
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nearly 40 mi. This storm continued moving northeast-
ward (Figs. 1h,i)—weakening and becoming disorga-
nized, producing widespread anvil clouds (Figs. 2h,i)—
and eventually dissipated in South Dakota.

While convection initiation (CI) processes and storm
overshooting tops can be clearly observed in the satellite
images, it is hard to determine the precise storm evolution
and storm interactions from satellite observations. There is
also no clear relationship between the height of the over-
shooting tops and the severity of the storms. For example,
the storm associated with the highest overshooting top
during storm development from 2200 to 0000 UTC
(Figs. 2e–g) was comparably weak in radar reflectivity
(Figs. 1e–g) and only spawned an EF-0 tornado with 4-min
lifespan to the northeast of Cheyenne, Wyoming.

3. Data, model, and experiments

a. GOES-16, ABI, and the observations

GOES-16, the first satellite of the GOES-R series, was
launched by an Atlas V rocket at Cape Canaveral,
Florida, on 19 November 2016. It underwent multiple

examinations, calibrations, and validations for a year
while holding at its checkout location at 89.58W above
the equator, which is the location of the satellite during
the event of this study. It was shifted to the GOES-East
operational location at 75.28W on 11 December 2017
and was announced as the operational GOES-East
satellite on 18 December 2017, succeeding GOES-13.
The successor of current GOES-West (GOES-15),
GOES-17, was launched on 1 March 2018, and is ex-
pected to become operational in late 2018.

Among the multiple instruments on board GOES-16 that
sense the Earth, the sun, and space environment, the ABI is
the primary instrument for imaging Earth’s weather and
climate. It has two visible, four near-infrared, and 10 in-
frared channels with subpoint resolutions of 0.5–2km, up to
4 times finer than its predecessors. The ABI is able to
produce a full disk scan every 15min, a CONUS scan
(5000km 3 3000km) every 5min, and a mesoscale scan
(1000km 3 1000km) every 30s using a ‘‘flex’’ scan mode,
or it can produce a full disk scan every 5min using a
‘‘continuous full disk’’ scan mode. Previous GOES imagers
took at least 25min to finish a full disk scan. Further details

FIG. 2. Brightness temperature of channel 10 of GOES-16 ABI at (a) 1857, (b) 1957, (c) 2037, (d) 2100, (e) 2200, and (f) 2300 UTC 12 Jun,
and (g) 0000, (h) 0100, and (l) 0200 UTC 13 Jun 2017.
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on the ABI and characteristics of its channels can be found
in Schmit et al. (2005, 2017).

Observations used in this study are retrieved from
NOAA’s Comprehensive Large Array-Data Stewardship
System (CLASS). Channel 10 of the ABI has a weighting
function that peaks at roughly 620 hPa in clear-sky con-
ditions (Schmit et al. 2017), and observations from this
channel are assimilated. The ABI measured level 1b ra-
diances are converted to BT observations as the Cloud
and Moisture Imagery product (CMIP). The BT obser-
vations have been calibrated and geolocated, and raw BT
observations with a horizontal resolution of ;2.5 km in
Colorado, Wyoming, and Nebraska taken during the
event will be used without data thinning. It should be
pointed out that observational errors of high-resolution
observations like BT from GOES-16 ABI usually contain
spatial correlations; however, in order to take the most
advantage of the higher resolutions of ABI compared
with its predecessors, especially the high-resolution de-
tails of the convective-scale structures of the developing
thunderstorms, we choose to use raw BT observations
without data thinning, while using a relatively large ob-
servational error together with the adaptive observation
error inflation (AOEI) technique [Minamide and Zhang
(2017); will be explained in more detail in section 3b] to
implicitly take spatially correlated observational errors
into account. We do not perform any additional quality
control procedures on the raw observations.

b. Numerical model and data assimilation systems

The Pennsylvania State University (PSU) WRF–EnKF
cycling data assimilation system (Zhang et al. 2009;
Weng and Zhang 2016)—evolved from an early devel-
opment of Meng and Zhang (2008a,b) based on the fully
compressible, nonhydrostatic Advanced Research core
of the Weather Research and Forecasting (WRF-ARW)
numerical model (Skamarock et al. 2008), version 3.8.1—
is used in this study. A single model domain consisting of
401 3 301 3 61 grid points with a horizontal grid spacing
of 1 km, 61 vertical layers with 19 in the lowest 1 km above
ground level (AGL) and the uppermost level at 50 hPa,
is used. This domain covers northern Colorado, south-
eastern Wyoming, and southwest Nebraska, where the
tornadic thunderstorm formed and developed (Fig. 1).
Physical parameterization schemes are chosen based on
sensitivity experiments and are similar to the suite used
in the High-Resolution Rapid Refresh (HRRR) model,
including the Thompson et al. (2008) microphysics
scheme with mixing ratios of water vapor (Qv), cloud
water (Qc), cloud ice (Qi), rainwater (Qr), snow
(Qs), and graupel (Qg) and number concentration of
ice and rainwater; unified Noah land surface model
(Ek et al. 2003); Monin–Obukhov–Janjić Eta scheme

(Janjić 1996) for surface layer parameterization;
Mellor–Yamada–Janjić TKE scheme (Janjić 1994) for
PBL processes; and the Rapid Radiative Transfer
Model for general circulation models (RRTMG)
schemes (Iacono et al. 2008) for longwave and short-
wave radiation. Simulated radar reflectivity is calculated
using the built-in module of the Thompson microphysics
scheme.

The Community Radiative Transfer Model (CRTM;
Han et al. 2006) is a rapid radiative transfer model that
is widely used in the satellite data assimilation com-
munity as the observation operator to calculate simu-
lated brightness temperature from numerical model
variables. This study uses CRTM to generate simulated
satellite infrared BT from the WRF-ARW variables
with the successive order of interaction (SOI) forward
solver (Heidinger et al. 2006) using the OPTRAN code.
The default standard tropical region profile in CRTM
was used above the model top of 50 hPa; this profile
choice has a minor impact on the calculations, given
that atmosphere above 50 hPa contributes little to the
simulated BT according to the weighting function of
channel 10.

The data assimilation part of the cycling PSU WRF–
EnKF system uses the ensemble square root filter
(EnSRF; Whitaker and Hamill 2002) variation of EnKF.
The AOEI technique (Minamide and Zhang 2017) is used
to limit potentially erroneous innovations for all-sky ra-
diance assimilation and is shown to provide better analysis
and forecasts than a fixed observation error; it adaptively
inflates observation error for BT observations if the in-
crement is large, while keeping a minimum 3-K error
when the increment is small. The adaptive background
error inflation (ABEI) technique (Minamide and Zhang
2018b, manuscript submitted to Quart. J. Roy. Meteor.
Soc.) is used to help initiate clouds and is proven to be
effective; it provides inflation factors proportional to the
discrepancies between simulated and observed brightness
temperatures where observed clouds are not simulated,
while truncated at a maximum value of 1.4 corresponding
to a discrepancy of 44.4 K for channel 10 of ABI, same as
in Minamide and Zhang (2018b, manuscript submitted to
Quart. J. Roy. Meteor. Soc.). The covariance relaxation
method (Zhang et al. 2004) is used to maintain ensemble
spread, combining 80% of prior perturbation and 20% of
posterior perturbation in the EnKF analysis. Using a cri-
terion similar to F. Zhang et al. (2016), every channel 10
BT observation is first assessed to determine whether it is
in a clear-sky region, as defined when channel 14 (window
channel) BT are higher than 285 K, or in a cloudy region,
as defined when channel 14 BT are lower than 285 K. Each
observation height is then assigned to be either 620 hPa,
the peak of weighting function of channel 10 in clear-sky
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condition, or 250 hPa, the approximate height of cloud
top, depending upon whether the observation is in a
clear-sky or cloudy region, respectively. A broad radius
of influence (ROI) for vertical localization of 5 times
the altitude AGL of each observation is used during the
EnKF; considering that BT is an accumulated nonlocal
type of observation, the length scale of vertical ROI is
selected so that influences from observations will reduce by
about 25% at both the model bottom and top under clear-
sky conditions. The horizontal ROI is fixed to 30 km for
all BT observations, which is slightly narrower than the
40–60-km horizontal ROI that has been used in previous
simulated and real ABI radiance assimilation studies
with horizontal model grid spacing of 3–6 km (Jones
et al. 2015; Cintineo et al. 2016; Honda et al. 2018b); this
study uses a much higher 1-km resolution for the numer-
ical model together with raw ABI radiance observations.

c. Experiment design

Two sets of simulations without data assimilation are
first carried out as references. One deterministic fore-
cast is run from 1800 UTC 12 June to 0000 UTC 13 June
using the hourly HRRR analysis as initial and lateral
boundary conditions (referred to as ‘‘DETER’’ hereafter).
Another simulation is a set of ensemble forecasts gen-
erated by first running 6- and 12-h 20-member ensem-
ble forecasts from 1200 and 0600 UTC 12 June using
corresponding GEFS analysis and forecasts; then, 40
ensemble initial conditions are generated by subtracting
the mean of these 40 GEFS simulations at 1800 UTC
from each simulation and adding these 40 ‘‘perturba-
tions’’ to the 1800 UTC HRRR analysis. The pertur-
bations are downscaled before adding them to the
HRRR analysis to generate the ensemble initial condi-
tions and have a domain-averaged standard devia-
tion of 0.55 K, 1.05 g kg21, 1.14 m s21, and 1.12 m s21 for
temperature, water vapor mixing ratio, and the two
horizontal components of wind, respectively. The cal-
culations of moisture are performed on dewpoint tem-
perature instead of water vapor mixing ratio to avoid
negative mixing ratio values, assuming unchanged
pressure of dry air during conversion between water
vapor mixing ratio and dewpoint temperature. Last,
a 40-member ensemble forecast is carried out from
1800 until 0000 UTC 13 June using these 40 initial
conditions and corresponding updated boundary con-
ditions (referred to as ‘‘NODA’’ hereafter). These two
sets of simulations are briefly described in section 3d.

Cycling EnKF is started at 1900 UTC from the NODA
ensemble forecast valid at the same time, an hour before
observed CI around 2000 UTC. The EnKF is performed
every 5 min, consistent with the 5-min interval of BT
observations, and only BT observations are assimilated.

There is a change from ‘‘flex’’ scan mode to ‘‘continuous
full disk’’ scan mode for the ABI data from 2040 to
2100 UTC, during which observations were unavailable;
thus, the cycling EnKF ends at 2040 UTC, providing
100 min of EnKF cycles (referred to as ‘‘ENKF’’ here-
after). Deterministic forecasts are initialized from
the 1930, 2000, and 2040 UTC EnKF analysis mean
(referred to as ‘‘Fcst1930,’’ ‘‘Fcst2000,’’ and ‘‘Fcst2040,’’
respectively, hereafter), and ensemble forecasts are also
initialized at these times using EnKF analysis ensembles
(referred to as ‘‘EF1930,’’ ‘‘EF2000,’’ and ‘‘EF2040,’’
respectively, hereafter). A schematic diagram showing
the experiment design is provided in Fig. 3.

d. Simulations without data assimilation

The reference deterministic and ensemble simula-
tions without data assimilation are examined in this
subsection. Figure 4 shows composite reflectivity from
the DETER forecast. Storms are initiated along the
slopes of the Rocky Mountains shortly after initializa-
tion at 1800 UTC, more than 1 h earlier compared with
the observed CI (Fig. 1b), and form into several strong
storms as early as 1900 UTC (Fig. 4a). These storms
undergo a merging process similar to the observed
storms (Figs. 4c,d). Although large discrepancies are
present in the timing of CI in the DETER forecast com-
pared with observations, the general location of CI and
movement of the storms are close to the actual storms, as
these characteristics are primarily regulated by mesoscale
to synoptic-scale environmental conditions, which are
generally well simulated by rapid-cycling convection-
allowing HRRR system. The DETER forecast also
simulates a well-defined track of 2–5-km updraft helicity
(UH; Fig. 5a) in close proximity to the tornado reports, in-
dicating the existence of an intense mesocyclone. However,
there are also several UH tracks alongside the longest
one in the eastern half of the model domain. Further-
more, a low-level vortex (represented by maximum

FIG. 3. Schematic diagram of the experiment design for cycling
EnKF assimilating GOES-16 ABI BT observations and associated
deterministic and ensemble forecasts.
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vertical vorticity within 1 km AGL) associated with
these UH tracks is intermittent, and strong near-surface
rotation only existed for a short period of time (Fig. 5c).

Similar to the DETER forecast, there also are earlier
storm initiations along the slopes of the Rockies in the
NODA ensemble forecast (Fig. 6a). Furthermore, the

ensemble has very large uncertainties at later times,
especially after 2200 UTC (Figs. 6d–f), with previously
higher probabilities (greater than 60%) gradually di-
minishing to values lower than 50%, indicating a loss of
confidence in the storm prediction. As can be expected
from the large spread of composite reflectivity, ensemble

FIG. 4. Simulated composite reflectivity of DETER forecast at (a) 1900, (b) 2000, (c) 2100, (d) 2200, and (e) 2300 UTC 12 Jun, and
(f) 0000 UTC 13 Jun 2017.

FIG. 5. Deterministic forecasts of (a) maximum of 2–5-km UH and (c) maximum of 0–1-km maximum vertical
vorticity of DETER forecast. Probabilistic forecasts of (b) 180 m2 s22 2–5-km UH and (d) 0.004 s21 0–1-km
maximum vertical vorticity of NODA ensemble forecast. Temporal maximum values throughout the entire sim-
ulations were used.
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probability of midlevel mesocyclone in NODA is wide-
spread and generally weak (lower than 50%; Fig. 5b),
although there is a region with slightly higher probability
in southeast Wyoming, coincident with the tornado re-
ports. However, consistent with that of DETER forecast,
there are no organized low-level vortex tracks in high-
UH-probability regions (Fig. 5d), indicating large un-
certainties in the prediction of near-surface rotation in
the NODA ensemble forecast.

4. The accuracy of EnKF analysis

a. Quantitative verifications

The performance of the WRF–EnKF system is first in-
vestigated using observation–space diagnostic metrics, in-
cluding root-mean-square innovation/fit (RMSI/RMSF),
bias, and ensemble spread. RMSI/RMSF is calculated as

RMSI/RMSF 5
�����������������������

(d 2 d)2
D Er

,

where d 5 yo 2 H(xb) or d 5 yo 2 H(xa) represents the
innovation of background mean [H(xb)] or fit of analy-
sis mean [H(xa)], compared with observations (yo) in
observation space, respectively; H is the observation
operator (which is the CRTM model here); and x is the
model state vector with superscripts b and a indicating
the background (prior) and analysis (posterior) estimates.
Bias is calculated as

Bias 5 h2di ,

where d is the same as defined in RMSI/RMSF calcu-
lations. Ensemble spread is calculated as

Spread 5

������������������������������������������������������������������
1

N 2 1 �
N

n51
H(xn) 2 H(xn)

h i2
�s

,

where N is the ensemble size (which is 40 here), and n is
the index of each ensemble member.

These verification metrics during EnKF cycles are
shown in Fig. 7a. The BT RMSI/RMSF experiences a
very steep drop from 23 to 7 K at the first (1900 UTC)
EnKF cycle, and a similar reduction of bias from 16 to
2 K occurs simultaneously. RMSI/RMSF remains at a
relatively small magnitude afterward and shows a very
slight increase after 2000 UTC due to storm initiation.
The persistent decrease of the magnitude of bias
throughout the entire EnKF cycles indicates a reduction
of spurious convection (will also be examined later).
Ensemble spread also drops rapidly during the first
several EnKF cycles and remains at almost constant
values around 2 K after 1945 UTC, while root-mean-
square observational errors (

���������
hs2

oi
p

) generally follow
the trend of RMSI/RMSF, consistent with its formula-
tion. The quasi-steady state of all these metrics after
several EnKF cycles indicates that the EnKF system is
working properly and maintains a close representation
of the observations.

We further divide mean bias of ensemble mean into
averages of positive bias and negative bias. A positive
bias resulted from higher brightness temperature in the

FIG. 6. Ensemble probability of 40-dBZ composite reflectivity of NODA ensemble forecast at (a) 1900, (b) 2000, (c) 2100, (d) 2200, and
(e) 2300 UTC 12 Jun, and (f) 0000 UTC 13 Jun 2017. Black contours in all panels are observed 40-dBZ composite reflectivity.
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observation than prior or posterior ensemble mean
indicates spuriously simulated clouds, while a negative
bias indicates insufficient coverage of clouds or lower
cloud tops in the simulation, compared with observa-
tions. It can be seen in Fig. 7b that the negative bias
persistently remained at a relatively small value of
;3 K after the first several cycles, indicating an effec-
tive removal of spuriously simulated clouds during
EnKF cycles and subsequent short-term ensemble
forecasts between EnKF cycles. On the other hand,
although the positive bias also remained below 3 K
throughout all EnKF cycles, there is a slight increase in
the magnitude of positive bias after 1945 UTC, resulted
from a comparably slower initiation of clouds in the
EnKF cycles, compared with the observations. How-
ever, magnitudes of both positive and negative biases
experience notable reduction during every EnKF cycle
(became closer to 0), proving that our technique can
both suppress and initiate clouds, and the increase of
positive bias could potentially be reduced by tuning
ABEI parameters.

The rank histogram (Anderson 1996; Hamill and
Colucci 1996, 1997; Harrison et al. 1995; Talagrand et al.
1997; Hamill 2001) is used to examine whether the en-
semble spread is reasonable and representative to
background uncertainties (Fig. 8). It plots the distribu-
tion of the ranks of each observation among corre-
sponding predicted background or analysis values in the
observation space. A flatter histogram indicates a suffi-
cient variance, a U-shaped histogram indicates an in-
sufficient variance, and a left- or right-skewed histogram
indicates a positive or negative ensemble bias, re-
spectively. At the beginning of the EnKF cycles, the
ensemble has insufficient variance and negative bias
(observation values larger than simulated values;
Fig. 8a), consistent with Fig. 7a. The bias is greatly re-
duced after the first EnKF cycle, with the number of
observations ranked at the upper end reduced by 70%
(from 11 851 to 3442). The insufficient variance is also
partly reduced, although still skewed rightward. Several
cycles later at 2000 UTC, the shape of the rank histo-
gram is much flatter than the first cycle at 1900 UTC, and
there is even a little overdispersion at this time when the
leftmost and rightmost biases are excluded (Fig. 8b). At
the end of the EnKF cycles (Fig. 8c), the shape of
the rank histogram is considerably flatter than earlier
cycles, indicating that EnKF helps to maintain a rea-
sonably good ensemble spread, although there are
some amounts of both right bias (resulted from spurious
clouds) and left bias (resulted from insufficient coverage
of observed clouds).

Ensemble equitable threat scores (ETSs; Wilks 2011)
of composite reflectivity are used to examine the im-
provement of assimilating BT observations. The ETS is
calculated as

ETS 5
H 2 R

H 1 M 1 F 2 R
,

R 5
(H 1 M)(H 1 F)

n
,

where H, M, and F are the numbers of total hits, misses,
and false alarms of all (40) ensemble members com-
bined, and n is the total number of grid points of all
ensemble members combined, which equals 40 3 400 3
300 5 4 800 000 here. ETS of deterministic forecasts
are calculated similarly using one forecast instead of the
40-member ensemble to determine hits, false alarms,
misses, and the total number of grid points. Two thresh-
olds of 20 and 40 dBZ for composite reflectivity are
evaluated, representing regions of general precipitation
and convective precipitation, respectively. From Fig. 9, it
is clear that before 2000 UTC, because there is no orga-
nized storm, ETS for 40-dBZ reflectivity remains near

FIG. 7. Evolutions of (a) observation–space diagnostics of RMSI/
RMSF (red) and mean bias (blue) of ensemble mean, ensemble
spread (purple), and RMS observation error (black), and (b) mean
positive bias (blue) and mean negative bias (red) of ensemble mean
throughout the EnKF cycles.
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0 (Fig. 9b) for EnKF, NODA, and DETER, while the
ETS values for 20-dBZ reflectivity show fluctuations
(Fig. 9a). After 2000 UTC, a persistent increase occurs for
both scores, indicating increasing skill in the analysis
of hydrometeors, although neither these variables nor
composite reflectivity is directly assimilated. Meanwhile,
it is clear that EnKF ETS values are constantly higher
than those of the NODA ensemble at both reflectivity
thresholds throughout the entire EnKF cycles, indicating
an improved analysis of the initiation and early devel-
opment of the storms, resulting from the efficient removal
of spurious clouds as well as triggering of new clouds,
which is examined next by comparing EnKF analysis with
observations.

b. Comparisons with observations

Simulated ABI channel 10 BT of prior (background)
and posterior (analysis) mean of the EnKF experiment
at 1900, 2000, and 2040 UTC is shown in Fig. 10,
while their respective differences with assimilated ob-
servations (O 2 B and O 2 A, which have opposite signs

compared with bias defined in previous subsection)
are shown in Fig. 11. Because of much earlier CI in the
1-h ensemble forecast before the first EnKF cycle at
1900 UTC (Fig. 6a), there is a vast region within the
model domain that is covered with clouds (Fig. 10a) with
large positive innovations (Fig. 11a), while there is no
cloud in observations at all (Fig. 2a). However, it is ap-
parent that the spurious clouds are significantly reduced
after the first EnKF cycle (Fig. 10b): the large regions of
positive innovations in prior mean (Fig. 11a) are greatly
reduced, and only localized regions of clouds with pos-
itive innovations along the mountain slopes exist after
EnKF in posterior mean (Fig. 11b). There are a few new
clouds that form during the 5-min ensemble forecasts
between each cycle, but assimilating BT observations
effectively reduces the number of clouds that are in-
consistent with the observations, and the spurious clouds
are almost completely removed 1 h later at 2000 UTC
(Fig. 10d). New clouds also are effectively generated
by assimilating BT observations as the coverage of
clouds at the last EnKF cycle (Figs. 10e,f) is close to the

FIG. 8. Rank histograms of ENKF prior ensemble (blue) and posterior ensemble (red) at (a) 1900, (b) 2000, and (c) 2040 UTC.

FIG. 9. ETS scores for (a) 20- and (b) 40-dBZ composite reflectivity regions of DETER (black solid), NODA
(black dashed), ENKF (black dotted), deterministic forecasts from EnKF analysis at 1930 (blue solid), 2000 (green
solid), and 2040 (red solid) UTC, and ensemble forecasts at 1930 (blue dashed), 2000 (green dashed), and 2040 (red
dashed) UTC.
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observed clouds (Fig. 2c). The difference O 2 A at this
time (Fig. 11f) also indicates a good representation of
clouds in EnKF analysis mean compared to the ob-
served clouds, with only a slightly smaller coverage and
warmer temperature, and the reduction of negative
difference in O 2 A (Fig. 11f) compared with O 2 B
(Fig. 11e), proves that our techniques are initiating
clouds using BT observations, consistent with evolu-
tion of biases in Fig. 7b.

The influence of assimilating BT on hydrometeors
is further investigated by examining the evolution of
domain-averaged liquid water path (LWP; mass-
weighted vertical integration of cloud water and rain-
water), ice water path (IWP; integration of cloud ice,
snow and graupel), and total water path (TWP; com-
bining both LWP and IWP) in Fig. 12. At the first EnKF
cycle at 1900 UTC, the domain-averaged LWP is re-
duced by about 60%, while ice water path is reduced by

FIG. 10. Simulated brightness temperature of ABI channel 10 of (a),(c),(e) prior mean and (b),(d),(f) posterior mean of EnKF at (left)
1900, (middle) 2000, and (right) 2040 UTC.

FIG. 11. Differences between observations and simulated BT of ABI channel 10 (observation minus EnKF) of (a),(c),(e) prior mean and
(b),(d),(f) posterior mean of EnKF at (left) 1900, (middle) 2000, and (right) 2040 UTC.
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almost 95%. With the attempted formation of new
clouds or recovery of the EnKF removed clouds, there
are some slight increases in both water and ice contents
during the subsequent 5-min free forecast period, but
the reduction with the BT assimilation at the next cycle
is bigger than such increases due to cloud formation or
recovery. Such increase in LWP and IWP became little
in the free forecast periods after 1930 UTC, indicating
continuous cycling BT assimilating cannot only remove
spurious clouds, but also make them harder to form.
Subsequently, after 2000 UTC, both IWP and LWP
show persistent increases during both ensemble fore-
casts and EnKF, but the increase of LWP is much slower
than that of IWP. It can also be seen from changes of
IWP and LWP during each EnKF cycle throughout
the entire experiment that assimilating BT observa-
tions might have a greater impact on ice hydrometeors
than liquid hydrometeors, which is consistent with
previous studies of Zupanski et al. (2011) that up-
dating ice particles when assimilating BT generally
have greater improvements than updating liquid wa-
ter particles. The different impact of BT on liquid
versus ice water particles might suggest ways to fur-
ther improve the performance of BT assimilation in
the future.

Assimilating infrared BT observations using EnKF
can influence mesoscale environmental conditions as
well. However, due to the generally weak correla-
tions between BT and atmospheric state variables,
the influence is limited for this event and does not
pose statistically significant improvement compared
with NODA (figure not shown). The combined im-
pact of simultaneous assimilation of satellite and
conventional observations will be explored in future
studies.

5. Improvements in forecasts

a. Deterministic forecasts

Deterministic forecasts are carried out from the 1930,
2000, and 2040 UTC EnKF analysis mean (referred to as
Fcst1930, Fcst2000, and Fcst2040, respectively). Simulated
composite reflectivity and ABI channel 10 BT of these
three experiments are shown in Figs. 13 and 14. All three
deterministic forecasts share some similar characteristics,
yet also are different from each other in the detailed de-
velopment of the storms. For example, they all have storm
initiation along the Rocky Mountain slopes and are lo-
cated similarly as of 2100 UTC (Figs. 13a,e,i); however,
Fcst1930 has two strong individual storms (Fig. 13a), while
in Fcst2000, the southern storm just to the north of 408N is
significantly weaker than the other storm closer to the
Wyoming–Colorado border (Fig. 13e), and in Fcst2040
multiple storms are initiated (Fig. 13i). The strength
and juxtaposition of early storms also influences later
development, as detailed by Y. Zhang et al. (2016): at
2200 UTC, there is an intense and large storm just across
the Wyoming–Colorado border in Fcst2040 accompanied
by several weaker ones to the northwest (Fig. 13j), while in
Fcst2000, a cluster of strong storms appeared (Fig. 13f),
and for Fcst1930, the major storm is located farther
southwest with a lower translation speed (Fig. 13b). The
major storm in Fcst1930 later triggered new storms
ahead (Fig. 13c) and dissipated gradually (Fig. 13d). For
Fcst2000, the storm cluster also triggered new storms
ahead (Fig. 13g), which were maintained (Fig. 13h), while
for Fcst2040, the strong storm was maintained with fewer
new storms initiated (Figs. 13k,l). It can also be seen that
simulated BT of Fcst2040 at 2100 UTC (Fig. 14i) is closest
to the observed storms (Fig. 2d), compared with the other
two; however, it is hard to infer storm development and
organization beneath cloud tops from satellite images.

The ETS of these three deterministic forecasts are
also calculated and presented in Fig. 9. A sharp decrease
of ETS occurs after the initialization of each forecast,
resulting from the model adjustment of imbalances in
EnKF analysis, as well as subsequent adjustment of
hydrometeors according to the thermodynamic condi-
tions. The ETS of the general precipitative region
(20 dBZ) show no distinct differences among the three
forecasts (Fig. 9a). For the convective region (40 dBZ;
Fig. 9b), Fcst2000 has the largest values around 2200 UTC,
and Fcst1930 has the smallest values during this period.
This results from a better collocation of the 40-dBZ
regions in Fcst2000, as compared with observations
(Fig. 13f), than the other two forecasts (Figs. 13b,j). Al-
though the ETS of all three forecasts for 40-dBZ re-
flectivity decreases after 2200 UTC, ETS of Fcst2040
increases again after 2300 UTC, owing to a slightly

FIG. 12. Evolution of domain-averaged LWP (blue), IWP (red),
and TWP (black) during EnKF.
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better forecast of the storm interactions. However, it
should be noted that 40-dBZ ETS values are almost
constantly smaller than 0.3 for all forecasts, and none of
them can be regarded as skillful, although all three

experiments show much better scores than DETER
before 2200 UTC. It is also worth noting that although
the ETS for the general precipitative region of all three
forecasts show persistent increases during the entire

FIG. 13. Simulated composite reflectivity of (a)–(d) Fcst1930, (e)–(h) Fcst2000, and (i)–(l) Fcst2040 at (first column) 2100, (second
column) 2200, and (third column) 2300 UTC 12 Jun, and (fourth column) 0000 UTC 13 Jun 2017. Black contours in all panels are observed
40-dBZ composite reflectivity.

FIG. 14. Simulated BT of ABI channel 10 of (a)–(d) Fcst1930, (e)–(h) Fcst2000, and (i)–(l) Fcst2040 at (first column) 2100, (second
column) 2200, and (third column) 2300 UTC 12 Jun, and (fourth column) 0000 UTC 13 Jun 2017.
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forecast period (Fig. 9a), in the convective regions the
ETS values peak around 2200 UTC and decrease af-
terward (except for Fcst2040, as stated earlier; Fig. 9b),
indicating different predictability characteristics for the
two kinds of precipitation structures.

Although composite reflectivity of the three forecasts
is similar both qualitatively and quantitatively, their
predictions of mesocyclone and low-level tornado vor-
tex signatures were significantly different, with a clear
improvement seen when more satellite observations are
assimilated. The major UH tracks in Fcst1930 (Fig. 15a)
are located to the southwest of the observed tornado
reports, and there is only a slight signature of near-
surface rotation along the UH tracks (Fig. 15b). Some
improvement in the location of the UH tracks occurs in
Fcst2000 (Fig. 15c), although there are still no continu-
ous low-level vortex tracks in this deterministic forecast
(Fig. 15d). The UH tracks are further improved in
Fcst2040 (Fig. 15e), becoming stronger and wider and
tracking farther into Nebraska as observed for the tor-
nadoes, and there is a clear track of low-level vortices
overlaid on top of the same UH track (Fig. 15f), in-
dicating the existence of a strong near-surface vortex
signature beneath the midlevel mesocyclone in this
specific prediction. These results indicate that a better
prediction of the tornadoes could be achieved with more
cycles of infrared BT assimilation for this event.

b. Ensemble forecasts

The probabilistic forecasts of this event from the EnKF
analysis are also examined. The ensemble probabilities of

ensemble forecasts show some similarity to the de-
terministic forecasts from the EnKF analysis at the
same time. For EF1930, high probabilities at 2100 UTC
(Fig. 16a) show a similar shape as the storms in Fcst1930
at the same time (Fig. 13a), but become dislocated from
observed storms at 2300 UTC (Fig. 16c). The dislocation
of higher probability becomes smaller in EF2000 at both
2100 (Fig. 16e) and 2200 UTC (Fig. 16f), and the southern
high probability region in EF2000 at 2100 UTC further
shrinks in EF2040 (Fig. 16i). The spurious storms in
northeast Colorado in EF1930 and EF2000 are also much
weaker in EF2040 both at 2100 (Fig. 16i) and 2200 UTC
(Fig. 16j). Furthermore, EF1930 and EF2000 trigger new
storms ahead of the old ones at 2300 UTC (Figs. 16c,g),
and the old storms dissipate gradually (Figs. 16d,h); al-
though EF2040 experiences similar processes at 2300 UTC
(Fig. 16k), old storms in EF2040 did not undergo rapid
dissipation, better matching with the observations.

Similar to the results from the deterministic forecasts,
the ETS of composite reflectivity for EF1900 and
EF2000 also decrease significantly after initialization
(Fig. 9a), but the magnitudes are smaller. For the gen-
eral precipitation region (Fig. 9a), EF1930 and EF2000
generally have similar values throughout the ensemble
forecasts, while EF2040 has higher values before about
2130 UTC. On the other hand, for the convective pre-
cipitation region (Fig. 9b), although ETS for the three
ensemble forecasts are similar before 2100 UTC, EF2040
has smaller ETS values than the other two ensembles
after 2100 UTC, owing to its smaller spread in the
prediction of storm locations (Figs. 16k,l). Given that

FIG. 15. (a)–(c) Maximum of 2–5-km UH and (d)–(f) maximum of 0–1-km maximum vertical vorticity of (left) Fcst1930, (middle)
Fcst2000, and (right) Fcst2040. Black triangles indicate tornado reports (as in Fig. 1).
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satellite infrared imagers provide information only above
cloud tops and are unable to provide information on storm
structures beneath the cloud tops, these results are not
surprising. All three ensemble forecasts show higher ETS
scores than NODA in precipitative regions, although
similar to ETS of deterministic forecasts, and 40-dBZ ETS
of all ensemble forecasts remain below 0.25.

Despite similar quantitative scores for the simulated
composite reflectivity of the three ensemble forecasts, a
persistent improvement on the probabilistic forecasts of
mesocyclone and low-level vortex signature can be seen
when more BT observations are assimilated. Probabi-
listic forecast of UH of EF1930 (Fig. 17a) is primarily
located in Colorado. Probabilistic forecast of UH of
EF2040 (Fig. 17c) has a similar track to that of EF2000
(Fig. 17b), but EF2040 has consistently higher proba-
bilities, and the track is better defined and more com-
pact. Probabilistic track of vertical vorticity of EF2040
(Fig. 17f) is also much longer than the other two en-
semble forecasts (Figs. 17b,d), extending farther into
Nebraska. These improvements, especially the higher
and more compact probabilities, indicate a higher con-
fidence in the probabilistic predictions of midlevel me-
socyclones and near-surface rotation in EF2040 than
EF1930 and EF2000.

In summary, both deterministic forecasts and ensem-
ble forecasts from EnKF analysis show that prediction of

the midlevel mesocyclone and low-level rotation can be
improved when satellite infrared radiance observations are
assimilated using EnKF, although the quantitative mea-
surements of simulated composite reflectivity of forecasts
from the EnKF analysis at different times are similar.

6. Summary

Using an EnKF data assimilation system coupled with
the WRF-ARW Model running at a convection-allowing
resolution, this study presents the first attempt to assim-
ilate real-world all-sky infrared BT observations of the
ABI onboard the GOES-16 satellite for a tornadic
thunderstorm event. The analysis and prediction of the
severe convective storms and associated severe weather
signatures in Colorado, Wyoming, and Nebraska on
12 June 2017, with and without BT data assimilation, are
examined.

Observation–space diagnostics including RMS in-
novation and fit, bias, ensemble spread, and rank his-
togram indicate that the EnKF system works properly
and maintains a reasonable variance among ensemble
members. Errors at the beginning of the EnKF cycles
at 1900 UTC result from spreading spurious clouds
that are rapidly reduced within the first several cycles
when hydrometeors, especially ice-phased particles, are
effectively removed and spurious clouds suppressed.

FIG. 16. Ensemble probability of 40-dBZ simulated composite reflectivity of (a)–(d) EF1930, (e)–(h) EF2000, and (i)–(l) EF2040 at (first
column) 2100, (second column) 2200, and (third column) 2300 UTC 12 Jun, and (fourth column) 0000 UTC 13 Jun 2017. Black contours in
all panels are observed 40-dBZ composite reflectivity.
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The magnitude of errors, as well as the amount of wa-
ter condensates, remains at relatively low values be-
fore observed convection initiation at approximately
2000 UTC. After the storms initiate, errors show a slight
increase but still remain below 6 K, indicating the effec-
tiveness of both removing and generating clouds of our
techniques. Nonetheless, ensemble ETS of stratiform and
convective precipitation regions indicate that the EnKF
assimilation of ABI BT observations provides a better
estimation of the storms than the NODA ensemble
forecast that did not include data assimilation.

Both deterministic and ensemble forecasts are carried
out from the 1930, 2000, and 2040 UTC EnKF analysis.
ETS values indicate that both the general precipitative
region (composite reflectivity greater than 20 dBZ)
and the convective precipitation region (composite re-
flectivity greater than 40 dBZ) forecasts from different
EnKF analyses generally have similar skill. It is worth
noting that none of the forecasts have 40-dBZ ETS
above 0.3. Although more EnKF cycles do not improve
deterministic or probabilistic forecast skill of the storms
in terms of composite reflectivity, there is a substantial
improvement of the prediction of midlevel mesocyclone
and low-level vortex signatures when more BT obser-
vations are assimilated. Deterministic forecasts from
1930 and 2000 UTC EnKF analysis produce curvy UH
tracks and unorganized short low-level vertical vorticity
tracks at the wrong locations, and corresponding en-
semble probabilistic forecasts of UH and vertical vor-
ticity are also short, ending before the storms enter
Nebraska. In contrast, a well-defined low-level vertical

vorticity track accompanying a straight and long-lasting
UH track is generated by the deterministic forecast from
2040 UTC EnKF analysis, and the probabilistic forecasts of
both UH and low-level vertical vorticity from 2040 UTC
EnKF analysis are also better defined and longer lasting
than ensemble forecasts from the other two times, in-
dicating improvement on the structure and the develop-
ment of the storms. Generally speaking, greater confidence
on the prediction of low-level rotation as well as other se-
vere weather signatures associated with thunderstorms can
be gained when more BT observations are assimilated.

The results presented in this study indicate that assimi-
lating ABI BT observations using EnKF techniques has the
potential to improve the prediction of severe thunderstorms
that may lead to improvements in the operational warning
processes for severe weather. Spaceborne instruments pro-
vide unique observations that complement those from
ground-based Doppler weather radars and might be espe-
cially useful during convection initiation when assimilated in
combination with radar observations; the simultaneous as-
similation of radar, satellite, and conventional observations
for severe thunderstorm events will be explored in the fu-
ture. Besides, how to better utilize infrared BT observations
to extract more information—including but not limited to
bias correction, vertical and horizontal localization, simul-
taneous assimilation of multiple channels, and treatment of
spatially correlated observational errors—will also need
further exploration.
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