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While Harvey brought catastrophic destruction 
from damaging winds and record-breaking rainfall 
to the Gulf Coast region, forecasters at NOAA were 
still able to provide valuable predictions of the storm’s 
track and flooding potential days in advance, thanks 
in large part to the useful real-time guidance from 
operational numerical weather predication (NWP) 
models. However, all operational models failed to 
predict the rapid intensification (RI) of Harvey into a 
major storm, even for the forecasts initialized after the 
time RI had already begun; these operational systems 
include NOAA’s regional-scale Hurricane Weather 
Research and Forecasting Model (HWRF), NOAA’s 
Global Forecast System (GFS), and the integrated 
forecast system by the European Center for Medium-
Range Weather Forecasts (ECMWF). Recent studies 
have shown that dominant sources of uncertainty in 
hurricane intensity and structure prediction for lead 
times of 3–5 days primarily come from poor initializa-
tion of the hurricane vortex which could be alleviated 
via high-resolution inner-core observations and/or 
efficient data assimilation methodologies, and from 
global models which could be due to the lack of a 
fine-resolution grid mesh that can resolve the eyewall 
and secondary circulations.

The current study seeks to examine the poten-
tial for improving Harvey’s analysis and prediction 
through advanced ensemble-based assimilation of 
high-spatiotemporal all-sky infrared radiances from 
the next-generation geostationary weather satellite, 
GOES-16. GOES-16 was launched in November 2016 
and contains 6 visible and 10 infrared channels of 
all-sky brightness temperatures (BTs) with 1–2 km 
horizontal resolution available every 15 min under 
the routine surveillance mode and as frequent as every 
minute for a selected target subregion. Compared to its 

BACKGROUND. Hurricane Harvey originated 
from an easterly wave in the tropical Atlantic Ocean 
but reemerged in the Gulf of Mexico as a tropical 
depression at 0000 UTC 23 August 2017 from the 
remnant of the original tropical cyclone. By 0600 UTC 
24 August, Harvey had once again strengthened to a 
tropical storm. Over the course of the next few days, 
Harvey preceded to rapidly intensify into a major 
hurricane as it tracked to the northwest toward the 
Texas coast. The storm reached its peak intensity as 
a category 4 hurricane right before landfall in South 
Texas at 0400 UTC 26 August 2017. After landfall, 
Harvey slowly tracked inland before stalling, weaken-
ing to a tropical storm, and eventually tracking back 
toward and into the Gulf of Mexico before making 
another landfall in western Louisiana as a tropical 
storm. During this period after landfall in South Texas 
and prior to landfall in Louisiana, record rainfall oc-
curred in the greater Houston region and throughout 
southeast Texas.
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predecessor GOES-13, GOES-16—also widely known 
as GOES-R since it is the first in the “R” series of the 
U.S. geostationary infrared satellites—has about 3 
times more channels, 4 times better resolution, and 5 
times faster scans. Similar geostationary satellites such 
as the Japanese Himawari-8/-9 are now also in orbit, 
and GOES-S, with identical capabilities to GOES-16, 
was launched on 1 March 2018 (now renamed as 
GOES-17). Recent studies have shown potential for 
assimilating high-resolution all-sky radiances from 
these next-generation geostationary satellites for tropi-
cal cyclone predictions. The uniqueness of the current 
study is that Harvey is the first major hurricane that 
was captured by GOES-16 whose intensity prediction 
is shown to benefit greatly from assimilation of GOES-
16 radiance; Harvey’s intensity was poorly forecasted 
by operational NWP models.

METHODOLOGY AND EXPERIMENTAL  
DESIGN. Satellite observations of particular interest 
for this study are the BTs (also referred to as radiances) 
from GOES-16. In this proof-of-concept study on 
its potential significance for hurricane analysis and 
prediction, real-data BTs from only one of GOES-16’s 
water vapor channels (channel 8, wavelength is 6.19 
µm) are assimilated every hour over a 24-h period. 
This is one of three water vapor channels that are 
responsive to tropospheric temperature and moisture 
profiles; these three channels are highly correlated in 
the inner-core regions so only one channel is assimi-
lated for this pilot study.

The advanced data assimilation system used for 
assimilating the GOES-16 all-sky radiance is the 
ensemble Kalman filter (EnKF) hurricane analysis 
and forecast system, developed at the Pennsylvania 
State University (PSU), which is built around the 
Advanced Weather Research and Forecasting Model 
(WRF-ARW) and the Community Radiative Transfer 
Model (CRTM). To assimilate all-sky BTs, including 
cloud-affected BTs with large representative errors, 
we employ adaptive observation error inflation 
(AOEI). The successive covariance localization 
method (SCL), which is designed to capture various 
scales, is also applied with a 30-km radius of influ-
ence for BT observations thinned every 12 km and 
with a 200-km radius of influence for BT observa-
tions thinned every 18 km. The covariance relaxation 
method with coefficient of 0.75, together with an 
adaptively estimated spatially homogeneous multipli-
cative inflation factor, is used to maintain a sufficient 
ensemble spread and to avoid filter divergence. The 

WRF-EnKF has 60 ensemble members with 3-km 
horizontal grid spacing.

Two WRF-EnKF experiments are conducted: 
one assimilating all conventional in situ and re-
motely sensed data for the operational GFS analysis 
[WRF(conv)], except for clear-sky satellite radiances 
but including atmospheric motion vectors; the other 
the same as WRF(conv) but also assimilating GOES-
16 all-sky satellite radiances [WRF(GOES16+conv)]. 
The current study focuses on the impacts of all-sky 
radiances in the hurricane inner-core region. The 
WRF-EnKF analysis is linearly relaxed every 6 h to 
the operational GFS analysis from the 300- to 600-km 
radius; within 300 km the analysis is completely from 
WRF-EnKF and outside 600 km completely from the 
operational GFS analysis, which benefited greatly from 
assimilation of clear-sky radiances.

RESULTS FROM ASSIMILATION OF ALL-
SKY GOES-16 RADIANCE FOR INNER-
CORE INITIALIZATION. Figure 1 shows a 
comparison of BTs simulated by the PSU WRF-EnKF 
analyses WRF(GOES16+conv) versus WRF(conv) and 
the corresponding GOES-16 7.35-µm channel-10 obser-
vations (hereafter referred to loosely as “independent” 
since only channel-8 data were assimilated) of Hurri-
cane Harvey at selected times prior to its intensification 
into a major hurricane. The additional assimilation 
of GOES-16 all-sky radiances, beyond conventional 
observations alone, results in WRF-CRTM simulated 
radiances that progressively better match the indepen-
dent GOES-16 observations with regards to both cloud 
intensity and patterns. In particular, the EnKF-analyzed 
radiance in WRF(GOES16+conv) displays strong 
agreement with independent brightness temperature 
observations in regions of strong inner-core convection 
near the center of the domain, as well as the peripheral 
rainbands evolving in different sectors of the outer 
region. Furthermore, even the clear-sky regions demon-
strate good agreement with independent observations, 
including the correct depiction of similar gradients in 
atmospheric water vapor. In contrast, the WRF analysis 
without the GOES-16 radiance data assimilation not 
only underestimates the intensity of cold cloud tops, 
but also poorly captures the structure of the incipient 
inner-core and outer rainbands (Fig. 1).

Moreover, Fig. 2 shows improved predictions 
of Harvey’s intensity by the WRF Model initial-
ized with the PSU WRF-EnKF assimilation of the 
GOES-16 all-sky radiance while the track forecasts 
were both accurate up to landfall. Harvey’s rapid 
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Fig. 1. Impact of GOES-R on the Harvey analysis: (top) GOES-16 observations vs the WRF-EnKF analysis (middle) 
with and (bottom) without GOES-16 all-sky radiance assimilation valid at (left) 1800 UTC 23 Aug, (center) 0000 
UTC 24 Aug, and (right) 1200 UTC 24 Aug 2017.

intensification, timing, and peak intensity are captured 
by WRF(GOES16+conv). In contrast, the correspond-
ing WRF forecasts without GOES-16 all-sky radiance 
assimilation [WRF(conv)] barely develop Harvey 
into a category 1 hurricane and do not contain rapid 
intensification. The only difference between the two 
WRF forecasts is whether the GOES-16 all-sky radi-
ances (channel 8) are assimilated. More specifically, the 
WRF(conv) forecast initialized at 0000 UTC 24 August 
underpredicts Harvey’s intensity but overpredicts the 

intensity when initialized at 1200 UTC 24 August. 
As a reference, the regional-scale forecast by NOAA’s 
operational model HWRF initialized at the same time 
as the WRF(GOES16+conv) experiment was able to 
develop Harvey into a category 2 hurricane; however, 
it underestimated the peak intensity and timing. The 
operational HWRF forecast assimilated many more 
remote sensing and in situ observations but not the 
GOES-16 all-sky radiance (nor did any other opera-
tional model, including GFS).
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CONCLUDING REMARKS. In summary, al-
though more systematic investigations through large 
numbers of events and realizations will be necessary 
in the future before operational implementation, the 
current study highlights the potential for improv-
ing hurricane forecasts through the effective use 
of high spatiotemporal resolution all-sky radiance 
observations from the next-generation satellites (e.g., 
GOES-16). To the best of our knowledge, no cloudy 
radiance observations, either from geostationary or 
polar-orbiting satellites, are effectively assimilated into 
current-generation U.S. operational NWP models, 
which is at least partially responsible for the inferior 
performance of the U.S. operational model (GFS) to 
the counterpart operational model at the ECMWF, 

which has demonstrated significant forecast skill im-
provements resulting from cloudy-radiance assimila-
tion. Other recent studies have shown also the promise 
of assimilating high-resolution all-sky radiances from 
the next-generation geostationary satellites for tropical 
cyclone predictions.

Note that, although the current study uses the same 
model configurations, model analysis, and observa-
tions as if they were operated in real time, it is also 
crucial to have high-performance computing facilities 
that can perform advanced hurricane analysis and 
forecasting with advanced NWP models and data as-
similation algorithms in a timely manner. Moreover, 
given inherent uncertainties in hurricane prediction, 
we will also need to develop probabilistic forecasting 

Fig. 2. Comparison of Harvey’s position and intensity forecasts by regional models: Harvey’s (a),(c) track and 
(b),(d) maximum 10-m surface wind speed predicted by the WRF Model forecasts initialized with and without 
GOES-16 all-sky radiance assimilation, but always including conventional observations, at 0000 and 1200 UTC 
24 Aug 2017, respectively. The operational HWRF forecast and the NHC best-track estimates are also shown.
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strategies including—but not limited to—the use of 
sufficient ensemble size and sufficient model resolu-
tion for ensemble prediction systems initialized with 
flow-dependent initial condition uncertainties that 
are also generated from the advanced ensemble data 
assimilation techniques, such as the EnKF used in this 
study. Accurate probabilistic and ensemble forecast-
ing will complement accurate deterministic forecasts 
empowered by next-generation satellite observations 
and next-generation numerical weather prediction 
models. These tools will be crucial for emergency 
managers and the general public to make informed 
decisions when facing hurricanes and other severe 
weather hazards.
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